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In this lecture, we complete the analysis of the performance of the empirical risk mini-
mizer under a constraint on the VC dimension of the family of classifiers. To that end, we
will see how to control Rademacher complexities using shatter coefficients. Moreover, we
will see how the problem of controlling uniform deviations of the empirical measure µn from
the true measure µ as done by Vapnik and Chervonenkis relates to our original classification
problem.

4.1 Shattering

Recall from the previous lecture that we are interested in sets of the form

T (z) :=
{

(1I(z1 ∈ A), . . . , 1I(zn ∈ A)), A ∈ A , z = (z1, . . . , zn) . (4.1)

In particular, the cardinality of T (z), i.e., the numbe

}

r of binary patterns these vectors
can replicate as A ranges over A, will be of critical importance, as it will arise when
controlling the Rademacher complexity. Although the cardinality of A may be infinite, the
cardinality of T (z) is always at most 2n. When it is of the size 2n, we say that A shatters

the set z1, . . . , zn. Formally, we have the following definition.

Definition: A collection of sets A shatters the set of points {z1, z2, ..., zn}

card{(1I(z1 ∈ A), . . . , 1I(zn ∈ A)), A ∈ A} = 2n .

The sets of points {z1, z2, ..., zn} that we are interested are realizations of the pairs Z1 =
(X1, Y1), . . . , Zn = (Xn, Yn) and may, in principle take any value over the sample space.
Therefore, we define the shatter coefficient to be the largest cardinality that we may obtain.

Definition: The shatter coefficients of a class of sets A is the sequence of numbers
{SA(n)}n≥1, where for any n ≥ 1,

SA(n) = sup card (1I(z1 A), . . . , 1I(zn A)), A
z1,...,zn

{ ∈ ∈ ∈ A}

and the suprema are taken over the whole sample space.

By definition, the nth shatter coefficient SA(n) is equal to 2
n if there exists a set {z1, z2, ..., zn}

that A shatters. The largest of such sets is precisely the Vapnik-Chervonenkis or VC di-
mension.

Definition: The Vapnik-Chervonenkis dimension, or VC-dimension of
d VC

A is the largest
integer d such that SA(d) = 2 . We write (A) = d.
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If SA(n) = 2n for all positive integers n, then VC(A) := ∞

In words, A shatters some set of points of cardinality d but shatters no set of points of
cardinality d+1. In particular, A also shatters no set of points of cardinality d′ > d so that
the VC dimension is well defined.

In the sequel, we will see that the VC dimension will play the role similar to of cardinality,
but on an exponential scale. For interesting classes A such that card(A) = ∞, we also may
have VC(A) < ∞. For example, assume that A is the class of half-lines, A = {(−∞, a], a ∈
IR} ∪ {[a,∞), a ∈ IR}, which is clearly infinite. Then, we can clearly shatter a set of size
2 but we for three points z1, z2, z3,∈ IR, if for example z1 < z2 < z3, we cannot create the
pattern (0, 1, 0) (see Figure 4.1). Indeed, half lines can can only create patterns with zeros
followed by ones or with ones followed by zeros but not an alternating pattern like (0, 1, 0).
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Figure 1: If A = {halflines}, then any set of size n = 2 is shattered because we can
create all 2n = 4 0/1 patterns (left); if n = 3 the pattern (0, 1, 0) cannot be reconstructed:
SA(3) = 7 < 23 (right). Therefore, VC(A) = 2.

4.2 The VC inequality

We have now introduced all the ingredients necessary to state the main result of this section:
the VC inequality.

Theorem (VC inequality): For any family of sets A with VC dimension VC(A) = d,
it holds

√

2d log(2en/d)
IE sup |µn(A)− µ(A)| ≤ 2

A∈A n

Note that this result holds even ifA is infinite as long as its VC dimension is finite. Moreover,
observe that log(|A|) has been replaced by a term of order d log 2en/d .

To prove the VC inequality, we proceed in three steps:

( )
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1. Symmetrization, to bound the quantity of interest by the Rademacher complexity:

IE[sup |µn(A)− µ(A)|] ≤ 2Rn( )
A∈A

A .

We have already done this step in the previous lecture.

2. Control of the Rademacher complexity using shatter coefficients. We are going to
show that

gR (A) ≤

√

2 lo
n

(

2SA(n)

n

)

3. We are going to need the Sauer-Shelah lemma to bound the shatter coefficients by
the VC dimension. It will yield

S (n) ≤
(en)d

, d = VCA (
d

A) .

Put together, these three steps yield the VC inequality.

Step 2: Control of the Rademacher complexity

We prove the following Lemma.

Lemma: For any B ⊂ IRn, such that |B| < ∞ :, it holds

n
[ ∣ 1 2

σ
∣ )

B
] (Rn( ) = IE max ∣

∑ log 2 B
ibi∣ ≤ max

| |
b∈B n b∈B

i=1

|b|2
√

n

where | · |2 denotes the Euclidean norm.

Proof. Note that
1Rn(B) = IE
n

[

max Zb ,
b∈B

|

where Zb =
∑n

i=1 σibi. In particular, since

∣

∣

]

−|bi| ≤ σi|bi| ≤ |bi|, a.s., Hoeffding’s lemma
implies that the moment generating function of Zb is controlled by

n n

IE
[

exp(sZb)
]

=
∏

IE
i=1

[

exp(sσibi)
]

≤
∏

exp(s2b2i /2) = exp(s2 b 2
2/2) (4.2)

i=1

| |

Next, to control IE maxb∈B Zb| , we use the same technique as in Lecture 3, section 1.5.
¯To that end, define

[

B = B ∪
∣

∣

{−B

]

} and observe that for any s > 0,

IE

[

1
max |Zb|

]

= IE

[

maxZb

]

= log exp

(

sIE

[

maxZb

])

1≤ log IE exp smaxZb ,
b∈B b∈B̄ s b ¯∈B s

[ (

b ¯∈B

)]

where the last inequality follows from Jensen’s inequality. Now we bound the max by a
sum to get

[ ]

1 ∑ log |B̄| s b 2

IE max |Zb| ≤ log IE [exp(sZb)] ≤ +
| |2 ,

b∈B s s 2n
b∈B̄

where in the last inequality, we used (4.2). Optimizing over s > 0 yields the desired
result.

3



We apply this result to our problem by observing that

Rn(A) = sup (
,

Rn(T z))
z1,... zn

where T (z) is defined in (4.1). In particular, since T (z) ⊂ {0, 1}, we have |b √|2 ≤ n
for all b ∈ T (z). Moreover, by definition of the shatter coefficients, if B = T (z), then
|B̄| ≤ 2|T (z)| ≤ 2SA(n). Together with the above lemma, it yields the desired inequality:

√

2 log(2SA(n))Rn(A) ≤ .
n

Step 3: Sauer-Shelah Lemma

We need to use a lemma from combinatorics to relate the shatter coefficients to the VC
dimension. A priori, it is not clear from its definition that the VC dimension may be at
all useful to get better bounds. Recall that steps 1 and 2 put together yield the following
bound

2 log(2S (n))
IE[sup n(A)

A
− µ(A) ]

A∈
|µ | ≤ A

2

√

(4.3)
n

In particular, if SA(n) is exponential in n, the bound (4.3) is not informative, i.e., it does
not imply that the uniform deviations go to zero as the sample size n goes to infinity. The
VC inequality suggest that this is not the case as soon as VC(A) < ∞ but it is not clear a
priori. Indeed, it may be the case that

VC

SA(n) = 2n for n ≤ d and SA(n) = 2n− 1 for n > d,
which would imply that (A) = d < ∞ but that the right-hand side in (4.3) is larger than
2 for all n. It turns our that this can never be the case: if the VC dimension is finite, then
the shatter coefficients are at most polynomial in n. This result is captured by the Sauer-
Shelah lemma, whose proof is omitted. The reading section of the course contains pointers
to various proofs, specifically the one based on shifting which is an important technique in
enumerative combinatorics.

Lemma (Sauer-Shelah): If VC(A) = d, then ∀n ≥ 1,

d

SA(n) ≤
∑

(

n en d

.
k

)

≤
d

k=0

( )

Together with (4.3), it clearly yields the VC inequality. By applying the bounded difference
inequality, we also obtain the following VC inequality that holds with high probability. This
is often the preferred from for this inequality in the literature.

Corollary (VC inequality): For any family of sets A such that VC(A) = d and any
δ ∈ (0, 1), it holds with probability at least 1− δ,

√

2d log(2en/d)
√

log(2/δ)
sup µn A)− µ(A)| ≤ 2 +
A∈A

| ( .
n 2n
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Note that the logarithmic term log(2en/d) is actually superfluous and can be replaced
by a numerical constant using a more careful bounding technique. This is beyond the scope
of this class and the interested reader should take a look at the recommending readings.

4.3 Application to ERM

The VC inequality provides an upper bound for supA∈A |µn(A)− µ(A)| in terms of the VC
dimension of the class of sets A. This result translates directly to our quantity of interest:

2VC( ) log 2en
)ˆsup |Rn h)− VC(A) log(2/δ

( R(h) 2
n

)

+
h∈H

≤

√

A
|

(
√

(4.4)
2n

where A = {Ah : h ∈ H} and Ah = {(x, y) ∈ X × {0, 1} : h(x) = y}. Unfortunately, the
VC dimension of this class of subsets of X × {0, 1} is not very natural. Since, a classifier h
is a {0, 1} valued function, it is more natural to consider the VC dimension of the family
A =

{

{h = 1} : h ∈ H
}

.

Definition: Let H be a collection of classifiers and define

Ā = {h = 1} : h ∈ H

We define the VC d

{

imension VC( ) o

}

=
{

A : ∃h ∈ H, h(·) = 1I(· ∈ A) .

H ¯f H to be the VC dimension of

}

A.

¯ ¯It is not clear how VC(A) relates to the quantity VC(A), where A = {Ah : h ∈ H} and
Ah = {(x, y) ∈ X ×{0, 1} : h(x) = y} that appears in the VC inequality. Fortunately, these
two are actually equal as indicated in the following lemma.

Lemma: Define the two families for sets: = A X×
h : h 2 {0,1} where

{ ¯
A { ∈ H} ∈

Ah = (x, y) ∈ X × {0, 1} : h(x) = y} and A =
{

{h = 1 : h 2X .
S S ≥ VC Ā

} ∈ H ∈
Then, Ā(n) = Ā(n) for all n 1. It implies ( ) = VC(A

}

).

Proof. Fix x = (x1, ..., xn) ∈ X n and y = (y1, y2, ..., yn) ∈ {0, 1}n and define

T (x, y) = {(1I(h(x1) = y1), . . . , 1I(h(xn) = yn)), h ∈ H}

and
T̄ (x) = {(1I(h(x1) = 1), . . . , 1I(h(xn) = 1)), h ∈ H}

To that end, fix v ∈ {0, 1} and recall the XOR (exclusive OR) boolean function from {0, 1}
to {0, 1} defined by u⊕ v = 1I(u = v). It is clearly1 a bijection since (u⊕ v)⊕ v = u.

1One way to see that is to introduce the “spinned” variables ũ = 2u − 1 and ṽ = 2v − 1 that live in
˜{−1, 1}. Then u⊕ v = ũ · ṽ, and the claim follows by observing that (ũ · ṽ) · ṽ = ũ. Another way is to simply

write a truth table.
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When applying XOR componentwise, we have



1I(h(x1) = y1)


1I(h(x1 = 1) y
 ..



) 1
 ..



 .
1I(h(xi) 



 .

 





= yi) = 1I(h(xi) = 1)




..





.
⊕

.



 .



.





1I(h(xn) = yn)





 



 

1I(h(xn) = 1)













...
 yi



 ..
 .

yn













¯



Since XOR is a bijection, we must have card[T (x, y)] = card[T (x)]. The lemma follows
by taking the supremum on each side of the equality.

It yields the following corollary to the VC inequality.

Corollary: Let H be a family of classifiers with VC dimension d. Then the empirical
ˆrisk classifier herm over H satisfies

erm

√

2d log(2en/d)ˆR(h ) ≤ minR(h) + 4 +
h∈H n

√

log(2/δ)

2n

with probability 1− δ.

Proof. Recall from Lecture 3 that

ˆR(herm)−min ) ≤ ˆR(h 2 sup
h∈H h∈H

The proof follows directly by applyi

∣

∣Rn(h)−R(h)
∣

ng (4.4) and the above lemma.

∣
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