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In this lecture, we continue our discussion of covering numbers and compute upper
bounds for specific conditional Rademacher averages R%(F). We then discuss chaining and
conclude by applying it to learning.

Recall the following definitions. We define the risk function

R(f) =ElX, f(X))], (X,)Y)edx x[-1,1],

for some loss function £(-,-). The conditiona Rademacher average that we need to control

is
Zaz Vi, | 551 ] .

Furthermore, we defined the conditional Rademacher average for a point = = (x1,...,2y)

to be
Zng T; ] .

Lastly, we define the e-covering number N (F,d, z-:) to be the minimum number of balls (with
respect to the metric d) of radius € needed to cover F. We proved the following theorem:

sup
fer

R(llo F)= sup
(xl’yl)v“'v(xn:yn)

RE(F) = E [sup

feF|Mn

Theorem: Assume |f| <1 for all f € F. Then

R2(F) < mf{ \/2log(2N(f, dff,e))}7

e>0 n

where df is given by

dw f, Z|f xz - $Z ’

We make use of this theorem in the following example. Define Bg ={zeR?: |z[, <1}.
Then take f(z) = (a,z), set F = {{a,-) : a € BL}, and X = B{. By Holder’s inequality,
we have

[f(2)] < lalool2lr <1,

so the theorem above holds. We need to compute the covering number N(F,d7,c). Note
that for all a € B4, there exists v = (v1,...,v,) such that v; = g(z;) and

1 n
= [a,zi) —vi| <e
nz’:l

for some function g. For this case, we will take g(z) = (b, x), so v; = (b, z;). Now, note the
following. Given this definition of g, we have

& (f,9) Z|a:1:1 (b,x;)| = Z| —b,zi)| < |a—blos



by Hoélder’s inequality and the fact that |z|; = 1. So if |[a —b|x < €, we can take v; = (b, z;).
We just need to find a set of {b1,...,byr} C IR? such that, for any a there exists b; such
that |a — bjlc < 00. We can do this by dividing B into cubes with side length & and
taking the b;’s to be the set of vertices of these cubes. Then any a € Bgo must land in one
of these cubes, 50 |a — bj|o < € as desired. There are ¢/ of such b;’s for some constant
c¢ > 0. Thus

N (B, d¥,e) < /e

We now plug this value into the theorem to obtain

RE(F) < inf {e—l— ng(c/gd)}.

e>0 n

Optimizing over all choices of ¢ gives

e dlngl(n) N RE(F) < c /dloqu(n).

Note that in this final inequality, the conditional empirical risk no longer depends on
x, since we “sup’d” x out of the bound during our computations. In general, one should
ignore x unless it has properties which will guarantee a bound which is better than the sup.
Another important thing to note is that we are only considering one granularity of F in our
final result, namely the one associated to €*. It is for this reason that we pick up an extra
log factor in our risk bound. In order to remove this term, we will need to use a technique
called chaining.

5.4 Chaining

We have the following theorem.

Theorem: Assume that |f| <1 for all f € F. Then

RE < inf 14 —|—12/1\/10 (N(F,dz,t))dt
n_;go £ \/ﬁs g y Y2 .

(Note that the integrand decays with t.)

Proof. Fix = (z1,...,%,), and for all j = 1,..., N, let V; be a minimal 277/-net of F
under the dj metric. (The number N will be determined later.) For a fixed f € F, this
process will give us a “chain” of points f which converges to f: d3(f7, f) < 277,

Define F' = {(f(x1),..., f(zn))", f € F} C [~1,1]". Note that

. 1
Ru(F) = ;Eiggw, f)

where ¢ = (o1, ...,0y). Observe that for all N, we can rewrite (o, f) as a telescoping sum:

<07f>:<O-af_f](<l>+<O-vf](i/_flif—1>+"'+<0-7ff_f8>



where f§ := 0. Thus

RE(F) < 1Esup|<af fN|+Z E;up|< > — £
j=1

We can control the two terms in this inequality separately. Note first that by the Cauchy-
Schwarz inequality,
a3 (f, )

1
—Esup (o, f — fX)| <o
JEsu (0,1 = )1 < lo ™2

Since |o|2 = /n and d(f, f3) < 27, we have

flEsupK Sl
feF

Now we turn our attention to the second term in the inequality, that is

N
1
S:E —IEsup |{(c, f{ — 7 )]
j:1n fGFK J J 1>|

Note that since f7 € V; and f7_; € Vj_1, there are at most |Vj||V;_1| possible differences
f3 = fj—1. Since V1| < [V;1/2, |[V}||Vjma| < |V;1?/2 and we find ourselves in the finite
dictionary case. We employ a risk bound from earlier in the course to obtain the inequality

2log(2| B
Ro(B) < max bl Y2108 CIB)
beB n

In the present case, B = {fjo —fio1.f € F} so that |B| <|V;|?/2. Tt yields

2log 2V, Nog |V
R (B) ST.#:QT.ﬂ

n n

where r = supscp | f; — f7_1]2. Next, observe that

f5 = fioale = V- d5(fF, f520) < Vn(d5(f5, f) +d5(f, f5-1)) <3-279V/n.

by the triangle inequality and the fact that d( 7o f ) < 277, Substituting this back into our
bound for R, (B), we have

Rn(B) <6277

log|Vill _ ¢ o \/loguv(f, d3,277))
n n

since V; was chosen to be a minimal 277/-net.
The proof is almost complete. Note that 277 = 2(277 — 27771) 50 that

N
IZQ I\ log(N(F, 5, 2-7) TZ —27971), log(N(F, dg, 27))

Next, by comparing sums and integrals (Figure 1), we see that

Jj—1 iy
Z —2757), flog(N (F. g, 27) /2

7j=1

1/2

VIos(N(F.d5. 1))t

(N+1)



\/ sqrt(log[N(F, d;: t)l)

2-[n+1:| z-n 1,1"2 1

Figure 1: A comparison of the sum and integral in question.

So we choose N such that 2= (V+2) < ¢ < 2-(N+1D and by combining our bounds we obtain

1
VIog(N(F. 5, 1))dt < de + / VIog(N, F, )dt
€

R 192 1/2
RE(F 32—N+/
%) NWE

—(N+1)

since the integrand is non-negative. (Note: this integral is known as the “Dudley Entropy
Integral.”) O

Returning to our earlier example, since N (F,d%,¢) < ¢/e¢, we have

5 12 1
Ry (F) < ;I>1f(; {4E+ \/ﬁ/s \/log((c'/t) )dt} .
Since f01 V/log(c/t)dt = ¢ is finite, we then have

RE(F) < 12e\/d/n.

Using chaining, we’ve been able to remove the log factor!

5.5 Back to Learning
We want to bound

iZUiE(yhf(xi))

Rn(loF)= sup E [sup
xnyyn) =1

(xlvyl)a"'v( fE]-'

] |

We consider RZ(® o F) = IE [sup e 7 |15 0i® o f(x;)|] for some L-Lipschitz function
®, that is |®(a) — ®(b)| < L|a — b| for all a,b € [—1,1]. We have the following lemma.



Theorem: (Contraction Inequality) Let ® be L-Lipschitz and such that ®(0) = 0,
then

RI(Do F) < 2L-RE(F).

The proof is omitted and the interested reader should take a look at [LT91, Kolll] for
example.

As a final remark, note that requiring the loss function to be Lipschitz prohibits the use
of R-valued loss functions, for example £(Y,-) = (Y — )2
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