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In this lecture, we continue our discussion of covering numbers and compute upper
ˆbounds for specific conditional Rademacher averages Rx
n(F). We then discuss chaining and

conclude by applying it to learning.
Recall the following definitions. We define the risk function

R(f) = IE[`(X, f(X))], (X,Y ) ∈ X × [−1, 1] ,

for some loss function `(·, ·). The conditiona Rademacher average that we need to control
is

n
1R(`l ◦ F) = sup IE sup σi`(yi, f(xi)) .

(x1,y1),...,(xn,yn)

[
f

∣∣∣∣∣n∈F

∑
i=1

∣∣]
Furthermore, we defined the conditional Rademacher average for a poin

∣∣
t x = (x1, . . . , xn)

to be

∣

R̂x
n(F) = IE

[
sup
f∈F

∣∣ n
1

σif(xi)
n

i=1

∣∣]
.

Lastly, we define the ε-covering number N(

∑
F , d,

∣∣
ε) to be the m

∣∣
inimum number of balls (with

respect to the metric d) of radius ε needed to

∣
cover

∣
F . We proved the following theorem:

Theorem: Assume |f | ≤ 1 for all f ∈ F . Then

2 log(2N( , dx, ε))R̂x
n(F) +

√
F≤ inf 1

ε>0

{
ε

n

}
,

where dx1 is given by
n

dx
1

1(f, g) =
n

∑
i=1

|f(xi)− g(xi)|.

We make use of this theorem in the following example. Define Bd
p = {x ∈ IRd : |x|p ≤ 1}.

Then take f(x) = 〈a, x〉, set F = {〈a, ·〉 : a ∈ Bd }, and X = Bd
1 . By Hölder’s inequality,∞

we have
|f(x)| ≤ |a| x∞| |1 ≤ 1,

so the theorem above holds. We need to compute the covering number N(F , dx1 , ε). Note
that for all a ∈ Bd , there exists v = (v1, . . . , vn) such that vi = g(xi) and∞

n
1

n

∑
a, xi vi ε

i=1

|〈 〉 − | ≤

for some function g. For this case, we will take g(x) = 〈b, x〉, so vi = 〈b, xi〉. Now, note the
following. Given this definition of g, we have

n n

dx
1 1

1(f, g) = a, x1 b, xi = a b, xi a b
n

∑
n

i=1

|〈 〉 − 〈 〉|
∑
i=1

|〈 − 〉| ≤ | − |∞
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by Hölder’s inequality and the fact that |x|1 = 1. So if |a−b|∞ ≤ ε, we can take vi = 〈b, xi〉.
We just need to find a set of {b1, . . . , bM} ⊂ IRd such that, for any a there exists bj such
that |a − bj | < ∞. We can do this by dividing Bd into cubes with side length ε and∞ ∞
taking the b ’s to be the set of vertices of these cubes. Then any a ∈ Bd

j must land in one∞
of these cubes, so |a − bj | ≤ ε as desired. There are c/εd of such b∞ j ’s for some constant
c > 0. Thus

N(Bd , dx∞ 1 , ε) ≤ c/εd.

We now plug this value into the theorem to obtain

R̂x 2 log(c/εd)
n(F) ≤ inf .

ε

{
ε+

≥0

√
n

}

Optimizing over all choices of ε gives√
d log(n)

ε∗ = c
n

⇒ R̂x
n(F) ≤ c

√
d log(n)

.
n

Note that in this final inequality, the conditional empirical risk no longer depends on
x, since we “sup’d” x out of the bound during our computations. In general, one should
ignore x unless it has properties which will guarantee a bound which is better than the sup.
Another important thing to note is that we are only considering one granularity of F in our
final result, namely the one associated to ε∗. It is for this reason that we pick up an extra
log factor in our risk bound. In order to remove this term, we will need to use a technique
called chaining.

5.4 Chaining

We have the following theorem.

Theorem: Assume that |f | ≤ 1 for all f ∈ F . Then{
12
∫ 1

R̂x
n ≤ inf 4ε+

ε>0
√ log(N( , dx ))dt .
n 2 , t

ε

√
F

}
(Note that the integrand decays with t.)

Proof. Fix x = (x1, . . . , xn), and for all j = 1, . . . , N , let Vj be a minimal 2−j-net of F
under the dx2 metric. (The number N will be determined later.) For a fixed f ∈ F , this
process will give us a “chain” of points fi

◦ which converges to f : dx2(fi
◦, f) ≤ 2−j .

Define F = {(f(x1), . . . , f(xn))>, f ∈ F} ⊂ [−1, 1]n. Note that

R̂x 1
n(F) = IE sup

n f∈F
〈σ, f〉

where σ = (σ1, . . . , σn). Observe that for all N , we can rewrite 〈σ, f〉 as a telescoping sum:

〈σ, f〉 = 〈σ, f − fN◦ 〉+ 〈σ, fN◦ − fN◦ −1〉+ . . .+ 〈σ, f1◦ − f0◦〉
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where f0
◦ := 0. Thus

N

R̂x 1 1
n(F) ≤ IE sup |〈σ, f − fN◦ 〉|+ I f

n f∈F

∑
E sup σ,

n j
◦ fj

◦

f F
−1 .

j=1

|〈 − 〉|
∈

We can control the two terms in this inequality separately. Note first that by the Cauchy-
Schwarz inequality,

1 dx2(f, fN
◦ )

IE sup |〈σ, f − fN◦ 〉| ≤ |σ|2n f
√ .
n∈F

Since |σ|2 =
√
n and dx2(f, fN

◦ ) ≤ 2−N , we have

1
IE sup |〈σ, f − fN◦ 2

n f∈F
〉| ≤ −N .

Now we turn our attention to the second term in the inequality, that is

N

S =
∑ 1

IE sup |〈σ, fj◦ − fj◦n fj=1 ∈F
−1〉|.

Note that since fj
◦ ∈ Vj and fj

◦
−1 ∈ Vj V−1, there are at most | j ||Vj−1| possible differences

fj
◦ − fj◦ .−1 Since |V 2

j 1| ≤ |V− j |/2, |Vj ||Vj 1| ≤ |Vj | /2 and we find ourselves in the finite−
dictionary case. We employ a risk bound from earlier in the course to obtain the inequality√

2 log(2
Rn(B) ≤ max

b B
|b|2

|B|)
.

∈ n

In the present case, B = {fj◦ − fj◦−1 , f ∈ F} so that |B| ≤ |Vj |2/2. It yields

2 |2
2 log(

|Vj ) log
R 2 Vj

n(B)
|

·

√
|

≤ r = 2r
n

·
√

,
n

where r = supf∈F |fj◦ − fj◦−1|2. Next, observe that

|fj◦ − fj◦ 1|2 =
√
n d− · x

2(fj
◦, fj
◦
−1)

√ √
≤ n(dx2(fj

◦, f) + dx2(f, fj
◦ )) 3 2−j n .−1 ≤ ·

by the triangle inequality and the fact that dx(f◦, f) ≤ 2−j2 j . Substituting this back into our
bound for Rn(B), we have

log
(B)

|Vj
6 2−jn

√
|| ,

2 j ( ))≤ · = 6
n

· −
√

log(N F dx2 , 2
−j

R
n

since V j
j was chosen to be a minimal 2− -net.

The proof is almost complete. Note that 2−j = 2(2−j − 2−j−1) so that

N
6√
∑ N

12
2−j
√

log(N(F , dx2 , 2−j)) = √
∑

(2−j − 2−j−1)
√

log(N(F , dx2 , 2−j)) .n n
j=1 j=1

Next, by comparing sums and integrals (Figure 1), we see that

∑N
(2−j

j=1

− 2−j−1)
√ 1

log(N(F , dx2 , 2−j)) ≤
∫ /2

log(N( , dx2 , t))dt.
2−(N+1)

√
F
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Figure 1: A comparison of the sum and integral in question.

So we choose N such that 2−(N+2) ≤ ε ≤ 2−(N+1), and by combining our bounds we obtain

12 1/2 1

R̂x ) ≤ 2−Nn(F + √
n

∫ √
log(N(F , dx2 , t))dt

2−( +1)

≤ 4ε+
N

∫ √
log(N,

ε
F , t)dt

since the integrand is non-negative. (Note: this integral is known as the “Dudley Entropy
Integral.”)

Returning to our earlier example, since N(F , dx2 , ε) ≤ c/εd, we have

1

R̂x
n(F) ≤ inf

{
12

4ε+ √
∫ √

log((c′/t)d)dt
ε>0 n ε

}
.

Since
∫ 1√

log(c/t)dt = c̄ is finite, we then have0

R̂x
n(F) ≤ 12c̄

√
d/n.

Using chaining, we’ve been able to remove the log factor!

5.5 Back to Learning

We want to bound

n
1Rn(` ◦ F) = sup IE sup σi`(yi, f(xi)) .

(x1,y1),...,(xn,yn)

[
f∈F

∣∣∣
n

∑
i

x

∣
=1

∣∣]∣
R̂We consider n(Φ ◦ F n) = IE iΦ

∣
[
supf

∣∣ 1 ∑
i=1 σ ◦ f(x )∈F i for some Ln

∣∣
-Lipschitz function

Φ, that is |Φ(a)− Φ(b)| ≤ L|a− b| for all a, b ∈ [−1, 1]. We

∣∣]
have the following lemma.
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Theorem: (Contraction Inequality) Let Φ be L-Lipschitz and such that Φ(0) = 0,
then

R̂x
n(Φ ◦ F) ≤ R̂2L · x

n(F) .

The proof is omitted and the interested reader should take a look at [LT91, Kol11] for
example.

As a final remark, note that requiring the loss function to be Lipschitz prohibits the use
of R-valued loss functions, for example `(Y, ·) = (Y − ·)2.
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