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Recall that last lecture we talked about convex relaxation of the original problem
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h = argmin — I(h(X;) #Y;
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by considering soft classifiers (i.e. whose output is in [—1,1] rather than in {0,1}) and
convex surrogates of the loss function (e.g. hinge loss, exponential loss, logistic loss):
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f =argmin R, ,(f) = argmin — Z o(=Yif(X3))
fer fer niT

And h = sign(f) will be used as the ‘hard’ classifier.

We want to bound the quantity R@(f’) — Ry (f), where f = argmin e r Ry (f).

(1) f=argming .z Ry, (f), thus

2) Let us first focus on E[sup Ron f)— Ry(f)|]. Using the symmetrization trick as
feF |+, (2
before, we know it is upper-bounded by 2R, (¢oF), where the Rademacher complexity
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One thing to notice is that ¢(0) = 1 for the loss functions we consider (hinge loss,
exponential loss and logistic loss), but in order to apply contraction inequality later,
we require ¢(0) = 0. Let us define ¢(-) = ¢(:) — 1. Clearly ¥(0) = 0, and

n

Efsup [~ S (o(~Yif (X)) — Elp(=Yif (X))

Fn
fe i=1
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— Efsup | S (0(-Yif (X)) ~ ERb(~Yif (X))

fer M
< 2R, (Y o F)

(3) The Rademacher complexity of 1 o F is still difficult to deal with. Let us assume
that o(-) is L-Lipschitz, (as a result, ¢(-) is also L-Lipschitz), apply the contraction

inequality, we have
R, (¢ o F) <2LR,(F)



(4) Let Z; = (X;,Y;),i=1,2,...,n and

n

921, 2, Z0) = 0 R F)Rep(F)] = sup | S (oY F(X0)~Blp( Vi (X))
feF fer i

Since ¢(+) is monotonically increasing, it is not difficult to verify that V21, Zs, ..., Z,,, Z!
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The last inequality holds since g is L-Lipschitz. Apply Bounded Difference Inequality,

P(| sup [Ren(f) = Re(f)] = E[sup | R (f) = Ro(NI > £) < 2exp(— =53
feF feF > ic1(57)

Set the RHS of above equation to 4, we get:

sp () = Ro ()] < Elsp B () = R ()] + 20 2520
with probability 1 — 6.
(5) Combining (1) - (4), we have
; log(2/0)

Ry(f) < R,(f) + 8LR,(F) + 2L o

with probability 1 — 9.

1.4 Boosting

In this section, we will specialize the above analysis to a particular learning model: Boosting.
The basic idea of Boosting is to convert a set of weak learners (i.e. classifiers that do better
than random, but have high error probability) into a strong one by using the weighted
average of weak learners’ opinions. More precisely, we consider the following function class

M
F = {Z Oihi(-) 101 < 1,h; : X —[-1,1],5 € {1,2,..., M} are classifiers}
j=1
and we want to upper bound R, (F) for this choice of F.

1 n 1 M n
Rn(F)= sup Elsup|— 0:Y;f(X;)|]] = — sup E|sup 0, Yoihi(X;
(P = sy Bl | oS (X)) = 5 s, Blawp 653 Viewhy ()]

Let g(0) = |E]Ai1 0; > 1 Yioihi(X;)|. It is easy to see that g(0) is a convex function, thus
supjg|, <1 9(f) is achieved at a vertex of the unit £; ball {6 : [|f[|; < 1}. Define the finite set

Yihi(X1) Yiho(X7) Yiha (X1)
ow ] [emO) Yaha(Xs) Yahnt(Xa)
XY — : ) . Yoty .
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Then
Rn(F) = sup Rn(Bx,y) -
XY
Notice maxpepy v [bl2 < v/n and [Bx y| = 2M. Therefore, using a lemma from Lecture 5,
we get

V210g(2[Bx v[) _ \/210g(4M)

Rn(B)gy) S [ber%ax ‘b‘g] n

XY
Thus for Boosting,
log(2/5
oL % with probability 1 - &

To get some ideas of what values L usually takes, consider the following examples:

. _ 2log(4M
Ro(f) < R () + 81/ 22800
(1) for hinge loss, i.e. p(z) = (1+ )4, L =1.
(2) for exponential loss, i.e. p(z) =e€", L =e.
(3) for logistic loss, i.e. p(x) = logy(1 +€”), L = 1% logy(e) =~ 2.43

N —

Now we have bounded R,(f) — Ry(f), but this is not yet the excess risk. Excess risk is
defined as R(f) — R(f*), where f* = argming R,(f). The following theorem provides a
bound for excess risk for Boosting.

Theorem: Let F = {Z]M:1 Oih; - [|0]]1 < 1,hjs are weak classifiers} and ¢ is an L-
Lipschitz convex surrogate. Define f = argmin fer Ryn(f) and h = sign(f). Then

Y Y
R(ﬁ)—R*S20(}161]fER¢(f)—Rw(f*))7+2c<8L w> +2c<2L %)

with probability 1 — ¢

Proof.
R(h) — R* < 2¢(R,(f) — Rp(f7))

v
v

K v
< 2¢( inf Ry(f) — Ry(f*))” + 2c<8L M) + 2c<2L M)

fer 2n

Here the first inequality uses Zhang’s lemma and the last one uses the fact that for a; > 0
and v € [0,1], (a1 + a2 + a3)” < a] +aj +ai. O

1.5 Support Vector Machines

In this section, we will apply our analysis to another important learning model: Support
Vector Machines (SVMs). We will see that hinge loss ¢(x) = (1 + )4+ is used and the
associated function class is F = {f : |[fllw < A} where W is a Hilbert space. Before
analyzing SVMs, let us first introduce Reproducing Kernel Hilbert Spaces (RKHS).



1.5.1 Reproducing Kernel Hilbert Spaces (RKHS)
Definition: A function K : X x X — IR is called a positive symmetric definite kernel
(PSD kernel) if
(1) Va2’ € X, K(z,2") = K(2/, x)

(2) Vn € Zy, Va1, 72, ..., Ty, the n x n matrix with K (z;,z;) as its element in i*" row

and j* column is positive semi-definite. In other words, for any a1, as, ..., an € R,

g aa; K x,,mj )>0

Let us look at a few examples of PSD kernels.

Example 1 Let X =R, K(z,2') = (z,2')ga is a PSD kernel, since Vay,as, ...,a, € R

Zaiaj<$i,$j>Rd = Z(alznl,ajaz] Rd = Zalznl,z%xj Rd = | Zazﬂfzu]ad >0
,J

,J

2 ,) is also a PSD kernel.

Example 2 The Gaussian kernel K (z, ') = exp(— ||z — ' |l fa

Note that here and in the sequel, || - [[w and (-,-)w denote the norm and inner product

of Hilbert space W.

Definition: Let W be a Hilbert space of functions X — IR. A symmetric kernel K (-, -)
is called reproducing kernel of W if

(1) Vx € X, the function K(z,-) € W.

(2) Ve e X, feWw, <f(),K($, )>W = f(x)
If such a K (z,-) exists, W is called a reproducing kernel Hilbert space (RKHS).

Claim: If K(-,-) is a reproducing kernel for some Hilbert space W, then K(-,-) is a
PSD kernel.

Proof. Vai,as,...,a, € IR, we have

ZaiajK(:Ei,:Ej Zalaj (xi,-), K(xj4,-)) (since K(-,-) is reproducing)
Z ai kK (x5, ) Z a;K(zj,°)
= || Zaz (i, - ||W >0



In fact, the above claim holds both directions, i.e. if a kernel K(-,-) is PSD, it is also a
reproducing kernel.

A natural question to ask is, given a PSD kernel K (-, -), how can we build the corresponding
Hilbert space (for which K(-,) is a reproducing kernel)? Let us look at a few examples.

Example 3 Let @1, 99, ..., o0 be a set of orthonormal functions in Ls([0,1]), i.e. for any
Jke{l,2,..., M}

/wj(fc)(ﬁk(ﬂ?)dﬂ? = (P, Px) = Oji,

Let K(z,2') = Zj\il ©i(z)pj(z"). We claim that the Hilbert space

M
W = {Z aji(-) s a1, ag,...,apm € R}

equipped with inner product (-,)r, is a RKHS with reproducing kernel K(-,-).
Proof. (1) K(z,-) = zjj‘il ©i(z)p;() € W. (Choose a; = p;(x)).

(2) I f() = Zg 10595 ()s

(f(), K Z%@J Z Zaﬁpy (z)

(3) K(z,2') is a PSD kernel: Vaq,as,...,a, € R,

Z a;a; K(xi, ;) Z a;a;pr(x;)pr(x;) Z Z a;or(x;))
,J

1,5,k

O

Example 4 If X = R? and K(z,2') = (x,2')Ra, the corresponding Hilbert space is
W = {{w,-) : w € R} (i.e. all linear functions) equipped with the following inner product:

if f=(w,), g=(v,"), {f,9) = (w,v)pa.

Proof. (1) Yz € RY, K(x,-) = (x,-)ga € W.
(2) Vf = (w,)ra € W, Yz € RY, (f, K(2,")) = (w, 2)pe = f(2)
(3) K(x,2') is a PSD kernel: Vay,as, ...,a, € R,

ZaiajK(xi,a:j) = Zaiaj<xi,a;j> = <Z aixi,Zajxj>Rd = H ZazxZH]ZRd >0
0,J &3 g J i
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