
18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet Lecture 1
Scribe: Philippe Rigollet Sep. 9, 2015

1. WHAT IS MACHINE LEARNING (IN THIS COURSE)?

This course focuses on statistical learning theory, which roughly means understanding the
amount of data required to achieve a certain prediction accuracy. To better understand
what this means, we first focus on stating some differences between statistics and machine
learning since the two fields share common goals.

Indeed, both seem to try to use data to improve decisions. While these fields have evolved
in the same direction and currently share a lot of aspects, they were at the beginning quite
different. Statistics was around much before machine learning and statistics was already
a fully developed scientific discipline by 1920, most notably thanks to the contributions of
R. Fisher, who popularized maximum likelihood estimation (MLE) as a systematic tool for
statistical inference. However, MLE requires essentially knowing the probability distribution
from which the data is draw, up to some unknown parameter of interest. Often, the unknown
parameter has a physical meaning and its estimation is key in better understanding some
phenomena. Enabling MLE thus requires knowing a lot about the data generating process:
this is known as modeling. Modeling can be driven by physics or prior knowledge of the
problem. In any case, it requires quite a bit of domain knowledge.

More recently (examples go back to the 1960’s) new types of datasets (demographics,
social, medical,. . .) have become available. However, modeling the data that they contain
is much more hazardous since we do not understand very well the input/output process
thus requiring a distribution free approach. A typical example is image classification where
the goal is to label an image simply from a digitalization of this image. Understanding
what makes an image a cat or a dog for example is a very complicated process. However,
for the classification task, one does not need to understand the labelling process but rather
to replicate it. In that sense, machine learning favors a blackbox approach (see Figure 1).

input X output Y
blackbox y = f(x) + ε

input X output Y

Figure 1: The machine learning blackbox (left) where the goal is to replicate input/output
pairs from past observations, versus the statistical approach that opens the blackbox and
models the relationship.

These differences between statistics and machine learning have receded over the last
couple of decades. Indeed, on the one hand, statistics is more and more concerned with
finite sample analysis, model misspecification and computational considerations. On the
other hand, probabilistic modeling is now inherent to machine learning. At the intersection
of the two fields, lies statistical learning theory, a field which is primarily concerned with
sample complexity questions, some of which will be the focus of this class.

1

2. STATISTICAL LEARNING THEORY

2.1 Binary classification

A large part of this class will be devoted to one of the simplest problem of statistical learning
theory: binary classification (aka pattern recognition [DGL96]). In this problem, we observe
(X1, Y1), . . . , (Xn, Yn) that are n independent random copies of (X,Y) ∈ X ×{0, 1}. Denote
by PX,Y the joint distribution of (X,Y). The so-called feature X lives in some abstract
space X (think IRd) and Y ∈ {0, 1} is called label. For example, X can be a collection of
gene expression levels measured on a patient and Y indicates if this person suffers from
obesity. The goal of binary classification is to build a rule to predict Y given X using
only the data at hand. Such a rule is a function h : X → {0, 1} called a classifier. Some
classifiers are better than others and we will favor ones that have low classification error
R(h) = IP(h(X) = Y). Let us make some important remarks.

Fist of all, since Y ∈ {0, 1} then Y has a Bernoulli distribution: so much for distribution
free assumptions! However, we will not make assumptions on the marginal distribution of
X or, what matters for prediction, the conditional distribution of Y given X. We write,
Y |X ∼ Ber(η(X)), where η(X) = IP(Y = 1|X) = IE[Y |X] is called the regression function
of Y onto X.

Next, note that we did not write Y = η(X). Actually we have Y = η(X) + ε, where
ε = Y −η(X) is a “noise” random variable that satisfies IE[ε|X] = 0. In particular, this noise
accounts for the fact that X may not contain enough information to predict Y perfectly.
This is clearly the case in our genomic example above: it not whether there is even any
information about obesity contained in a patient’s genotype. The noise vanishes if and only
if η(x) ∈ {0, 1} for all x ∈ X . Figure 2.1 illustrates the case where there is no noise and the
the more realistic case where there is noise. When η(x) is close to .5, there is essentially no
information about Y in X as the Y is determined essentially by a toss up. In this case, it
is clear that even with an infinite amount of data to learn from, we cannot predict Y well
since there is nothing to learn. We will see what the effect of the noise also appears in the
sample complexity.

6

Figure 2: The thick black curve corresponds to the noiseless case where Y = η(X) ∈ {0, 1}
and the thin red curve corresponds to the more realistic case where η ∈ [0, 1]. In the latter
case, even full knowledge of η does not guarantee a perfect prediction of Y .

In the presence of noise, since we cannot predict Y accurately, we cannot drive the
classification error R(h) to zero, regardless of what classifier h we use. What is the smallest
value that can be achieved? As a thought experiment, assume to begin with that we have all

x

η(x)

1

.5

2

the information that we may ever hope to get, namely we know the regression function η(·).
For a given X to classify, if η(X) = 1/2 we may just toss a coin to decide our prediction
and discard X since it contains no information about Y . However, if η(X) = 1/2, we have
an edge over random guessing: if η(X) > 1/2, it means that IP(Y = 1|X) > IP(Y = 0|X)
or, in words, that 1 is more likely to be the correct label. We will see that the classifier
h∗(X) = 1I(η(X) > 1/2) (called Bayes classifier) is actually the best possible classifier in
the sense that

R(h∗) = inf R(h) ,
h(·)

where the infimum is taken over all classifiers, i.e. functions from X to {0, 1}. Note that
unless η(x) ∈ {0, 1} for all x ∈ X (noiseless case), we have R(h∗) = 0. However, we can
always look at the excess risk E(h) of a classifier h defined by

E(h) = R(h)−R(h∗) ≥ 0 .

In particular, we can hope to drive the excess risk to zero with enough observations by
mimicking h∗ accurately.

2.2 Empirical risk

The Bayes classifier h∗, while optimal, presents a major drawback: we cannot compute it
because we do not know the regression function η. Instead, we have access to the data
(X1, Y1), . . . , (Xn, Yn), which contains some (but not all) information about η and thus h∗.
In order to mimic the properties of h∗ recall that it minimizes R(h) over all h. But the
function R(·) is unknown since it depends on the unknown distribution PX,Y of (X,Y). We

ˆestimate it by the empirical classification error, or simply empirical risk Rn(·) defined for
any classifier h by

n
1

R̂n(h) =
∑

1I(h(Xi) = Yi) .
n

i=1

ˆ ˆSince IE[1I(h(Xi) = Yi)] = IP(h(Xi) = Yi) = R(h), we have IE[Rn(h)] = R(h) so Rn(h) is
an unbiased estimator of R(h). Moreover, for any h, by the law of large numbers, we have
ˆ ˆRn(h) → R(h) as n → ∞, almost surely. This indicates that if n is large enough, Rn(h)
should be close to R(h).

As a result, in order to mimic the performance of h∗, let us use the empirical risk
ˆ ˆminimizer (ERM) h defined to minimize Rn(h) over all classifiers h. This is an easy enough

ˆ ˆtask: define h such h(Xi) = Yi for all i = 1, . . . , n and h(x) = 0 if x ∈/ {X1, . . . ,Xn}. We
ˆ ˆhave Rn(h) = 0, which is clearly minimal. The problem with this classifier is obvious: it

does not generalize outside the data. Rather, it predicts the label 0 for any x that is not in
ˆ ˆthe data. We could have predicted 1 or any combination of 0 and 1 and still get Rn(h) = 0.

ˆIn particular it is unlikely that IE[R(h)] will be small.

6

6

6

6 6

3

Important Remark: Recall that R(h) = IP(h(X) 6= Y).
ˆ ˆ ˆIf h(·) = h({(X1, Y1), . . . , (Xn, Yn)} ; ·) is constructed from the data, R(h) denotes

the conditional probability

ˆ ˆR(h) = IP(h(X) 6= Y |(X1, Y1), . . . , (Xn, Yn)) .

ˆ ˆrather than IP(h(X) 6= Y). As a result R(h) is a random variable since it depends on the
randomness of the data (X1, Y1), . . . , (Xn, Yn). One way to view this is to observe that

ˆwe compute the deterministic function R(·) and then plug in the random classifier h.

This problem is inherent to any method if we are not willing to make any assumption
on the distribution of (X,Y) (again, so much for distribution freeness!). This can actually
be formalized in theorems, known as no-free-lunch theorems.

Theorem: ˆFor any integer n ≥ 1, any classifier h built from (X1, Y1), . . . , (Xn, Yn) and
any ε > 0, there exists a distribution PX,Y for (X,Y) such that R(h∗) = 0 and

ˆIER(hn) ≥ 1/2 − ε .

To be fair, note that here the distribution of the pair (X,Y) is allowed to depend on
n which is cheating a bit but there are weaker versions of the no-free-lunch theorem that
essentially imply that it is impossible to learn without further assumptions. One such
theorem is the following.

Theorem: ˆFor any classifier h built from (X1, Y1), . . . , (Xn, Yn) and any sequence
{an}n > 0 that converges to 0, there exists a distribution PX,Y for (X,Y) such that
R(h∗) = 0 and

ˆIER(hn) ≥ an , for all n ≥ 1

In the above theorem, the distribution of (X,Y) is allowed to depend on the whole sequence
{an}n > 0 but not on a specific n. The above result implies that the convergence to zero of
the classification error may be arbitrarily slow.

2.3 Generative vs discriminative approaches

Both theorems above imply that we need to restrict the distribution PX,Y of (X,Y). But
isn’t that exactly what statistical modeling is? The is answer is not so clear depending on
how we perform this restriction. There are essentially two schools: generative which is the
statistical modeling approach and discriminative which is the machine learning approach.

Generative: This approach consists in restricting the set of candidate distributions PX,Y .
This is what is done in discriminant analysis1where it is assumed that the condition dis-

1Amusingly, the generative approach is called discriminant analysis but don’t let the terminology fool

you.

4

tributions of X given Y (there are only two of them: one for Y = 0 and one for Y = 1) are
Gaussians on X = IRd (see for example [HTF09] for an overview of this approach).

Discriminative: This is the machine learning approach. Rather than making assumptions
directly on the distribution, one makes assumptions on what classifiers are likely to perform
correctly. In turn, this allows to eliminate classifiers such as the one described above and
that does not generalize well.

While it is important to understand both, we will focus on the discriminative approach
in this class. Specifically we are going to assume that we are given a class H of classifiers
such that R(h) is small for some h ∈ H.

2.4 Estimation vs. approximation

Assume that we are given a class H in which we expect to find a classifier that performs well.
This class may be constructed from domain knowledge or simply computational convenience.

ˆWe will see some examples in the class. For any candidate classifier hn built from the data,
we can decompose its excess risk as follows:

ˆ ˆ ˆE(hn) = R(hn)−R(h∗) = R(hn)− inf R(h)+ inf R(h)−R(h∗) .
h∈H h∈H

︸

estimat

︷

io

︷

n error

︸ ︸

approxim

︷

a

︷

tion error

︸

On the one hand, estimation error accounts for the fact that we only have a finite
amount of observations and thus a partial knowledge of the distribution PX,Y . Hopefully
we can drive this error to zero as n → ∞. But we already know from the no-free-lunch
theorem that this will not happen if H is the set of all classifiers. Therefore, we need to
take H small enough. On the other hand, if H is too small, it is unlikely that we will
find classifier with performance close to that of h∗. A tradeoff between estimation and
approximation can be made by letting H = Hn grow (but not too fast) with n.

For now, assume that H is fixed. The goal of statistical learning theory is to understand
how the estimation error drops to zero as a function not only of n but also of H. For the
first argument, we will use concentration inequalities such as Hoeffding’s and Bernstein’s
inequalities that allow us to control how close the empirical risk is to the classification error
by bounding the random variable

∣ n
1∣ ∑

1I(h(X (h∣ i) = Yi)− IP (X) = Y)
∣

n
∣

i=1

∣

with high probability. More generally we will be interested in results that allow to quantify
how close the average of independent and identically distributed (i.i.d) random variables is
to their common expected value.

ˆ ˆ ˆIndeed, since by definition, we have Rn(h) ≤ Rn(h) for all h ∈ H, the estimation error
¯can be controlled as follows. Define h ∈ H to be any classifier that minimizes R(·) over H

(assuming that such a classifier exist).

ˆ ˆ ¯R(hn)− inf R(h) = R(hn)−R(h)
h∈H

ˆ ˆ ˆ ¯ ˆ ˆ ¯ ¯= Rn(hn)−Rn(h)+R(hn)− R̂n(h) + R̂n n(h)−R(h)
︸

≤

︷︷

0

︸

≤
∣
∣ ˆ ˆ ˆ ˆ ¯ ¯Rn(hn)−R(hn)

∣
∣+

∣
∣Rn(h)−R(h)

∣
∣ .

6 6

5

¯ ˆ ¯ ¯Since h is deterministic, we can use a concentration inequality to control
∣
∣Rn(h) − R(h)

∣
∣.

However,
n

1ˆ ˆ ˆRn(hn) =
∑

1I(hn(Xi) = Yi)
n

i=1

is not ˆthe average of independent random variables since hn depends in a complicated
manner on all of the pairs (Xi, Yi), i = 1, . . . , n. To overcome this limitation, we often use

ˆa blunt, but surprisingly accurate tool: we “sup out” hn,

∣
∣ ˆ ˆ ˆ ˆ ˆ ˆRn(hn)−R(hn)

∣
∣ ≤ sup

∣

h∈

∣Rn(hn)−R(hn)
∣

H

∣ .

Controlling this supremum falls in the scope of suprema of empirical processes that we will
study in quite a bit of detail. Clearly the supremum is smaller as H is smaller but H should
be kept large enough to have good approximation properties. This is the tradeoff between
approximation and estimation. It is also know in statistics as the bias-variance tradeoff.

6

6

18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet Lecture 2
Scribe: Jonathan Weed Sep. 14, 2015

Part I

Statistical Learning Theory

1. BINARY CLASSIFICATION

In the last lecture, we looked broadly at the problems that machine learning seeks to solve
and the techniques we will cover in this course. Today, we will focus on one such problem,
binary classification, and review some important notions that will be foundational for the
rest of the course.

Our present focus on the problem of binary classification is justified because both binary
classification encompasses much of what we want to accomplish in practice and because the
response variables in the binary classification problem are bounded. (We will see a very
important application of this fact below.) It also happens that there are some nasty surprises
in non-binary classification, which we avoid by focusing on the binary case here.

1.1 Bayes Classifier

Recall the setup of binary classification: we observe a sequence (X1, Y1), . . . , (Xn, Yn) of n
independent draws from a joint distribution PX,Y . The variable Y (called the label) takes
values in {0, 1}, and the variable X takes values in some space X representing “features” of
the problem. We can of course speak of the marginal distribution PX of X alone; moreover,
since Y is supported on {0, 1}, the conditional random variable Y |X is distributed according
to a Bernoulli distribution. We write Y |X ∼ Bernoulli(η(X)), where

η(X) = IP(Y = 1|X) = IE[Y |X].

(The function η is called the regression function.)
We begin by defining an optimal classifier called the Bayes classifier. Intuitively, the

Bayes classifier is the classifier that “knows” η—it is the classifier we would use if we had
perfect access to the distribution Y |X.

Definition: The Bayes classifier of X given Y , denoted h∗, is the function defined by the
rule

(
h

{
1 if η x) > 1/2∗(x) =
0 if η(x) ≤ 1/2.

In other words, h∗(X) = 1 whenever IP(Y = 1|X) > IP(Y = 0|X).
Our measure of performance for any classifier h (that is, any function mapping X to

{0, 1}) will be the classification error : R(h) = IP(Y = h(X)). The Bayes risk is the value
R∗ = R(h∗) of the classification error associated with the Bayes classifier. The following
theorem establishes that the Bayes classifier is optimal with respect to this metric.

6

7

Theorem: For any classifier h, the following identity holds:

R(h)−R(h∗) =

∫
|2η(x)− 1|Px(dx) = IEX [|2η(X)− 1|1(h(X) = h∗(X))] (1.1)

h=h∗

Where h = h∗ is the (measurable) set {x ∈ X | h(x) = h∗(x)}.
In particular, since the integrand is nonnegative, the classification error R∗ of the

Bayes classifier is the minimizer of R(h) over all classifiers h.
Moreover,

1
R(h∗) = IE[min(η(X), 1− η(X))] ≤ . (1.2)

2

Proof. We begin by proving Equation (1.2). The definition of R(h) implies

R(h) = IP(Y = h(X)) = IP(Y = 1, h(X) = 0) + IP(Y = 0, h(X) = 1),

where the second equality follows since the two events are disjoint. By conditioning on X
and using the tower law, this last quantity is equal to

IE[IE[1(Y = 1, h(X) = 0)|X]] + IE[IE[1(Y = 0, h(X) = 1)|X]]

Now, h(X) is measurable with respect to X, so we can factor it out to yield

IE[1(h(X) = 0)η(X) + 1(h(X) = 1)(1− η(X))]], (1.3)

where we have replaced IE[Y |X] by η(X).
In particular, if h = h∗, then Equation 1.3 becomes

IE[1(η(X) ≤ 1/2)η(X) + 1(η(x) > 1/2)(1− η(X))].

But η(X) ≤ 1/2 implies η(X) ≤ 1− η(X) and conversely, so we finally obtain

R(h∗) = IE[1(η(X) ≤ 1/2)η(X) + 1(η(x) > 1/2)(1− η(X))]

= IE[(1(η(X) ≤ 1/2) + 1(η(x) > 1/2)) min(η(X), 1− η(X))]

= IE[min(η(X), 1− η(X))],

as claimed. Since min(η(X), 1− η(X)) ≤ 1/2, its expectation is also certainly at most 1/2
as well.

Now, given an arbitrary h, applying Equation 1.3 to both h and h∗ yields

R(h)−R(h∗) = IE[1(h(X) = 0)η(X) + 1(h(X) = 1)(1− η(X))]

−1(h∗(X) = 0)η(X) + 1(h∗(X) = 1)(1− η(X))]],

which is equal to

IE[(1(h(X) = 0)− 1(h∗(X) = 0))η(X) + (1(h(X) = 1)− 1(h∗(X) = 1))(1− η(X))].

Since h(X) takes only the values 0 and 1, the second term can be rewritten as −(1(h(X) =
0)− 1(h∗(X) = 0)). Factoring yields

IE[(2η(X)− 1)(1(h(X) = 0)− 1(h∗(X) = 0))].

6
6

6

6

8

The term 1(h(X) = 0)− 1(h∗(X) = 0) is equal to −1, 0, or 1 depending on whether h
and h∗ agree. When h(X) = h∗(X), it is zero. When h(X) = h∗(X), it equals 1 whenever
h∗(X) = 0 and −1 otherwise. Applying the definition of the Bayes classifier, we obtain

IE[(2η(X)− 1)1(h(X) = h∗(X)) sign(η − 1/2)] = IE[|2η(X)− 1|1(h(X) = h∗(X))],

as desired.

We make several remarks. First, the quantity R(h) − R(h∗) in the statement of the
theorem above is called the excess risk of h and denoted E(h). (“Excess,” that is, above
the Bayes classifier.) The theorem implies that E(h) ≥ 0.

Second, the risk of the Bayes classifier R∗ equals 1/2 if and only if η(X) = 1/2 almost
surely. This maximal risk for the Bayes classifier occurs precisely when Y “contains no
information” about the feature variable X. Equation (1.1) makes clear that the excess risk
weighs the discrepancy between h and h∗ according to how far η is from 1/2. When η is
close to 1/2, no classifier can perform well and the excess risk is low. When η is far from
1/2, the Bayes classifier performs well and we penalize classifiers that fail to do so more
heavily.

As noted last time, linear discriminant analysis attacks binary classification by putting
some model on the data. One way to achieve this is to impose some distributional assump-
tions on the conditional distributions X|Y = 0 and X|Y = 1.

We can reformulate the Bayes classifier in these terms by applying Bayes’ rule:

IP(X = x Y = 1)IP(Y = 1)
η(x) = IP(Y = 1

||X = x) = .
IP(X = x|Y = 1)IP(Y = 1) + IP(X = x|Y = 0)IP(Y = 0)

(In general, when PX is a continuous distribution, we should consider infinitesimal proba-
bilities IP(X ∈ dx).)

Assume that X|Y = 0 and X|Y = 1 have densities p0 and p1, and IP(Y = 1) = π is
some constant reflecting the underlying tendency of the label Y . (Typically, we imagine
that π is close to 1/2, but that need not be the case: in many applications, such as anomaly
detection, Y = 1 is a rare event.) Then h∗(X) = 1 whenever η(X) ≥ 1/2, or, equivalently,
whenever

p1(x) 1− π
.

p0(x)
≥

π

When π = 1/2, this rule amounts to reporting 1 or 0 by comparing the densities p1
and p0. For instance, in Figure 1, if π = 1/2 then the Bayes classifier reports 1 whenever
p1 ≥ p0, i.e., to the right of the dotted line, and 0 otherwise.

On the other hand, when π is far from 1/2, the Bayes classifier is weighed towards the
underlying bias of the label variable Y .

1.2 Empirical Risk Minimization

The above considerations are all probabilistic, in the sense that they discuss properties of
some underlying probability distribution. The statistician does not have access to the true
probability distribution PX,Y ; she only has access to i.i.d. samples (X1, Y1), . . . , (Xn, Yn).
We consider now this statistical perspective. Note that the underlying distribution PX,Y
still appears explicitly in what follows, since that is how we measure our performance: we
judge the classifiers we produced on future i.i.d. draws from PX,Y .

6

6 6

9

Figure 1: The Bayes classifier when π = 1/2.

Given data Dn = { ˆ(X1, Y1), . . . , (Xn, Yn)}, we build a classifier hn(X), which is random
in two senses: it is a function of a random variable X and also depends implicitly on the

ˆrandom data Dn. As above, we judge a classifier according to the quantity E(hn). This is
a random variable: though we have integrated out X, the excess risk still depends on the
data Dn. We therefore will consider bounds both on its expected value and bounds that

ˆhold in high probability. In any case, the bound E(hn) ≥ 0 always holds. (This inequality
does not merely hold “almost surely,” since we proved that R(h) ≥ R(h∗) uniformly over
all choices of classifier h.)

Last time, we proposed two different philosophical approaches to this problem. In
particular, generative approaches make distributional assumptions about the data, attempt
to learn parameters of these distributions, and then plug the resulting values into the model.
The discriminative approach—the one taken in machine learning—will be described in great
detail over the course of this semester. However, there is some middle ground, which is worth
mentioning briefly. This middle ground avoids making explicit distributional assumptions
about X while maintaining some of the flavor of the generative model.

The central insight of this middle approach is the following: since by definition h∗(x) =
ˆ1(η(X) > 1/2), we estimate η by some η̂n and thereby produce the estimator hn =

1(η̂n(X) > 1/2). The result is called a plug-in estimator.
Of course, achieving good performance with a plug-in estimator requires some assump-

tions. (No-free-lunch theorems imply that we can’t avoid making an assumption some-
where!) One possible assumption is that η(X) is smooth; in that case, there are many
nonparamteric regression techniques available (Nadaraya-Watson kernel regression, wavelet
bases, etc.).

We could also assume that η(X) is a function of a particular form. Since η(X) is only
supported on [0, 1], standard linear models are generally inapplicable; rather, by applying
the logit transform we obtain logistic regression, which assumes that η satisfies an identity
of the form

log

(
η(X)

1− η(X)

)
= θTX.

Plug-in estimators are called “semi-paramteric” since they avoid making any assumptions
about the distribution of X. These estimators are widely used because they perform fairly
well in practice and are very easy to compute. Nevertheless, they will not be our focus here.

In what follows, we focus here on the discriminative framework and empirical risk min-
imization. Our benchmark continues to be the risk function R(h) = IE1(Y = h(X)), which6

10

is clearly not computable based on the data alone; however, we can attempt to use a näıve
statistical “hammer” and replace the expectation with an average.

Definition: The empirical risk of a classifier h is given by

n
1

R̂n(h) =
∑

1(Yi = h(Xi)).
n
i=1

Minimizing the empirical risk over the family of all classifiers is useless, since we can
always minimize the empirical risk by mimicking the data and classifying arbitrarily other-
wise. We therefore limit our attention to classifiers in a certain family H.

ˆDefinition: The Empirical Risk Minimizer (ERM) over H is any element1 herm of the set
ˆargminh Rn(h).∈H

In order for our results to be meaningful, the class H must be much smaller than the
ˆspace of all classifiers. On the other hand, we also hope that the risk of herm will be close

to the Bayes risk, but that is unlikely if H is too small. The next section will give us tools
for quantifying this tradeoff.

1.3 Oracle Inequalities

An oracle is a mythical classifier, one that is impossible to construct from data alone but
¯whose performance we nevertheless hope to mimic. Specifically, given H we define h to be

an element of argminh R(h)—a classifier in∈H H that minimizes the true risk. Of course,
¯we cannot determine h, but we can hope to prove a bound of the form

ˆR(h) ≤ ¯R(h) + something small. (1.4)

¯Since h is the best minimizer in H given perfect knowledge of the distribution, a bound of
ˆthe form given in Equation 1.4 would imply that h has performance that is almost best-in-

class. We can also apply such an inequality in the so-called improper learning framework,
ˆwhere we allow h to lie in a slightly larger class H′

ˆ
⊃ H; in that case, we still get nontrivial

¯guarantees on the performance of h if we know how to control R(h)
There is a natural tradeoff between the two terms on the right-hand side of Equation 1.4.

When H ¯is small, we expect the performance of the oracle h to suffer, but we may hope
¯to approximate h quite closely. (Indeed, at the limit where H is a single function, the

“something small” in Equation 1.4 is equal to zero.) On the other hand, as H grows the
oracle will become more powerful but approximating it becomes more statistically difficult.
(In other words, we need a larger sample size to achieve the same measure of performance.)

ˆSince R(h) is a random variable, we ultimately want to prove a bound in expectation
or tail bound of the form

ˆIP(R(h) ≤ ¯R(h) + ∆n,δ(H)) ≥ 1− δ,

where ∆n,δ(H) is some explicit term depending on our sample size and our desired level of
confidence.

1In fact, even an approximate solution will do: our bounds will still hold whenever we produce a classifier
ˆ ˆ ˆh satisfying Rn(h) ≤ infh R∈H n(h) + ε.

6

11

In the end, we should recall that

E ˆ ˆ − ∗ ˆ − ¯ ¯(h) = R(h) R(h) = (R(h) R(h)) + (R(h)−R(h∗)).

The second term in the above equation is the approximation error, which is unavoidable
once we fix the class H. Oracle inequalities give a means of bounding the first term, the
stochastic error.

1.4 Hoeffding’s Theorem

Our primary building block is the following important result, which allows us to understand
how closely the average of random variables matches their expectation.

Theorem (Hoeffding’s Theorem): Let X1, . . . , Xn be n independent random vari-
ables such that Xi ∈ [0, 1] almost surely.

Then for any t > 0,

IP

(∣∣ n
1 ∑

Xi IEXi
n
i=1

−
∣∣∣
>

)∣ ∣∣ 2
t ≤ 2e−2nt .

In other words, deviations from

∣
the mean deca

∣
y exponentially fast in n and t.

Proof. Define centered random variables Zi = Xi − IEXi. It suffices to show that(
1 ∑)

≤ −2nt2IP Zi > t e ,
n

since the lower tail bound follows analogously. (Exercise!)
We apply Chernoff bounds. Since the exponential function is an order-preserving bijec-

tion, we have for any s > 0

IP

(
1 ∑

Z stn
i > t

)
= IP

(
exp

(
s
∑

Z stn s Zi
i]

n

)
> e

)
≤ e− IE[e

∑
(Markov)

= e−stn IE[esZi], (1.5)

where in the last equality we have used the independence of the

∏
Zi.

We therefore need to control the term IE[esZi], known as the moment-generating func-
tion of Zi. If the Zi were normally distributed, we could compute the moment-generating
function analytically. The following lemma establishes that we can do something similar
when the Zi are bounded.

Lemma (Hoeffding’s Lemma): If Z ∈ [a, b] almost surely and IEZ = 0, then

2 2

≤
s (b−a)

IEesZ e 8 .

Proof of Lemma. Consider the log-moment generating function ψ(s) = log IE[esZ], and note
that it suffices to show that ψ(s) ≤ s2(b − a)2/8. We will investigate ψ by computing the

12

first several terms of its Taylor expansion. Standard regularity conditions imply that we
can interchange the order of differentiation and integration to obtain

IE[ZesZ]
ψ′(s) = ,

IE[esZ]
2

IE[Z2esZ]IE[esZ] IE[ZesZ]2 esZ esZ
ψ′′(s) =

−
= IE

[
Z2

]
−
(

IE Z
IE[esZ]2 IE[esZ]

[
IE[esZ]

])
.

Since esZ
sZ integrates to 1, we can interpret ψ′′(s) as the variance of Z under the probability

IE[e]

measure dF = esZ
sZ dIE. We obtain

IE[e]

ψ′′(s) = varF(Z) = varF

(
a+ b

Z −
2

)
,

since the variance is unaffected under shifts. But |Z − a+b
2 | ≤

b−a almost surely since2
Z ∈ [a, b] almost surely, so

varF

(
+ b

Z −
2

)
≤ F

[(2a a+ b
Z −

2

)]
(b− a)2≤ .

4

Finally, the fundamental theorem of calculus yields

s u s2(b a)2
ψ(s) =

∫
(u du

0

∫
ψ′′)

−
.

0
≤

8

This concludes the proof of the Lemma.

Applying Hoeffding’s Lemma to Equation (1.5), we obtain

IP

(
1 ∑ 2

Z > t

)
≤ e−stn

∏
es

2/8 = ens /8 stn
i

− ,
n

for any s > 0. Plugging in s = 4t > 0 yields

IP

(
1 ∑

Zi > t

)
≤ e−2nt2 ,

n

as desired.

Hoeffding’s Theorem implies that, for any classifier h, the bound

log(2/δ)|R̂n(h)−R(h)| ≤
√

2n

holds with probability 1 − δ. We can immediately apply this formula to yield a maximal
inequality: if H is a finite family, i.e., H = {h1, . . . , hM}, then with probability 1 − δ/M
the bound

log|R̂n(hj)−R(hj)| ≤
√

(2M/δ)

2n

13

ˆholds. The event that maxj |Rn(hj)−R(hj)| ˆ> t is the union of the events |Rn(hj)−R(hj)| >
t for j = 1, . . . ,M , so the union bound immediately implies that

log(2M/δ)
max |R̂n(hj)−R(hj)
j

| ≤
√

2n

with probability 1−δ. In other words, for such a family, we can be assured that the empirical
risk and the true risk are close. Moreover, the logarithmic dependence on M implies that
we can increase the size of the family H exponentially quickly with n and maintain the
same guarantees on our estimate.

14

18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet Lecture 3
Scribe: James Hirst Sep. 16, 2015

1.5 Learning with a finite dictionary

Recall from the end of last lecture our setup: We are working with a finite dictionary
H = {h1, . . . , hM} of estimators, and we would like to understand the scaling of this problem
with respect to M and the sample size n. Given H, one idea is to simply try to minimize

ˆthe empirical risk based on the samples, and so we define the empirical risk minimizer, herm,
by

ˆ ˆherm ∈ argminRn(h).
h∈H

ˆ ˆIn what follows, we will simply write h instead of herm when possible. Also recall the
¯definition of the oracle, h, which (somehow) minimizes the true risk and is defined by

h̄ ∈ argminR(h).
h∈H

ˆ ¯The following theorem shows that, although h cannot hope to do better than h in
general, the difference should not be too large as long as the sample size is not too small
compared to M .

ˆTheorem: The estimator h satisfies

ˆ ¯R(h) ≤ R(h) +

√

2 log(2M/δ)

n

with probability at least 1− δ. In expectation, it holds that

√

2 log(2M)ˆ ¯IE[R(h)] ≤ R(h) + .
n

Proof. ˆ ˆ ˆ ˆ ¯From the definition of h, we have Rn(h) ≤ Rn(h), which gives

ˆ ¯ ˆ ¯ ¯ ˆ ˆ ˆR(h) ≤ R(h) + [Rn(h)−R(h)] + [R(h)−Rn(h)].

The only term here that we need to control is the second one, but since we don’t have
¯any real information about h, we will bound it by a maximum over H and then apply

Hoeffding:

log(2M/δ)ˆ ¯ ¯ ˆ ˆ ˆ ˆ[Rn(h)−R(h)] + [R(h)−Rn(h)] ≤ 2max |Rn(hj)−R(hj)| ≤ 2
j

√

2n

with probability at least 1− δ, which completes the first part of the proof.

15

To obtain the bound in expectation, we start with a standard trick from probability
which bounds a max by its sum in a slightly more clever way. Here, let {Zj}j be centered
random variables, then

[]
1

([
1

IE max |Zj | = log exp sIE max |Zj |

])

≤ log IE

[

exp

(

smax |Zj|
j s j s j

)]

,

where the last inequality comes from applying Jensen’s inequality to the convex function
exp(·). Now we bound the max by a sum to get

2M
1)

≤ log
∑ 1 s2 log(2M s

IE [exp(sZj)] ≤ log

(

2M exp

())

= + ,
s s 8n s 8n

j=1

ˆwhere we used Zj = Rn(hj)−R(hj) in our case and then applied Hoeffding’s Lemma. Bal-
ancing terms by minimizing over s, this gives s = 2

√

2n log(2M) and plugging in produces

[
log(2M)ˆIE max |Rn(hj)−R(hj)| ≤

j

] √

,
2n

which finishes the proof.

2. CONCENTRATION INEQUALITIES

Concentration inequalities are results that allow us to bound the deviations of a function of
random variables from its average. The first of these we will consider is a direct improvement
to Hoeffding’s Inequality that allows some dependence between the random variables.

2.1 Azuma-Hoeffding Inequality

Given a filtration {Fi}i of our underlying space X , recall that {∆i}i are called martingale
differences if, for every i, it holds that ∆i ∈ Fi and IE [∆i|Fi] = 0. The following theorem
gives a very useful concentration bound for averages of bounded martingale differences.

Theorem (Azuma-Hoeffding): Suppose that {∆i}i are margingale differences with
respect to the filtration {Fi}i, and let Ai, Bi ∈ Fi−1 satisfy Ai ≤ ∆i ≤ Bi almost surely
for every i. Then

IP

[

1 ∑ 2n
∆i > t

]
2t2

≤ exp
n

i

(

−∑n
i=1 ‖Bi −Ai‖2∞

)

.

In comparison to Hoeffding’s inequality, Azuma-Hoeffding affords not only the use of
non-uniform boundedness, but additionally requires no independence of the random vari-
ables.

Proof. We start with a typical Chernoff bound.

IP

[]
∑

∆i > t ≤ IE
[

es
∑

∆i

]

e−st = IE
i

[

IE
[

es
∑

∆i |Fn−1

]]

e−st

16

n−1 n−1 2 2

= IE
[

es
∑

∆iIE[es∆n |Fn 1] e−st
− ≤ IE[es

∑
∆i · es (Bn−An) /8]e−st,

where we have used the fact that the ∆

]

i, i < n, are all Fn measureable, and then applied
Hoeffding’s lemma on the inner expectation. Iteratively isolating each ∆i like this and
applying Hoeffding’s lemma, we get

IP

[
n∑ s2

∆ > t

]

≤ exp

(
∑

‖B −A ‖2

)

e−st
i i i

8 ∞ .
i i=1

Optimizing over s as usual then gives the result.

2.2 Bounded Differences Inequality

Although Azuma-Hoeffding is a powerful result, its full generality is often wasted and can
be cumbersome to apply to a given problem. Fortunately, there is a natural choice of the
{Fi}i and {∆i}i, giving a similarly strong result which can be much easier to apply. Before
we get to this, we need one definition.

Definition (Bounded Differences Condition): Let g : X → IR and constants ci be
given. Then g is said to satisfy the bounded differences condition (with constants ci) if

sup |g(x , . . . , x)− g(x , . . . , x′1 n 1 i, . . . , xn)| ≤ ci
x ′
1,...,xn,xi

for every i.

Intuitively, g satisfies the bounded differences condition if changing only one coordinate
of g at a time cannot make the value of g deviate too far. It should not be too surprising
that these types of functions thus concentrate somewhat strongly around their average, and
this intuition is made precise by the following theorem.

Theorem (Bounded Differences Inequality): If g : X → IR satisfies the bounded
differences condition, then

2t2
IP [|g(X1, . . . ,Xn)− IE[g(X1, . . . ,Xn)| > t] ≤ 2 exp

(

−∑
i c

2
i

)

.

Proof. Let {Fi}i be given by Fi = σ(X1, . . . ,Xi), and define the martingale differences
{∆i}i by

∆i = IE [g(X1, . . . ,Xn)|Fi]− IE [g(X1, . . . ,Xn)|Fi−1] .

Then

IP

[

|
∑

∆i| > t

]

= IP
∣

g(X1, . . . ,Xn)− IE[g(X1, . . . ,Xn)
i

∣

> t ,

exactly the quantity we want to bou

[
∣

nd. Now, note that

∣
]

∆i ≤ IE

[

sup g(X1, . . . , xi, . . . ,Xn)|Fi − IE [g(X1, . . . ,Xn)|Fi−1]
xi

]

17

= IE

[

sup g(X1, . . . , xi, . . . ,Xn)− g(X1, . . . ,Xn)|Fi−1
xi

]

=: Bi.

Similarly,

∆i ≥ IE

[

inf g(X1, . . . , xi, . . . ,Xn)− g(X1, . . . ,Xn)|Fi−1 =: Ai.
xi

]

At this point, our assumption on g implies that ‖Bi − Ai‖∞ ≤ ci for every i, and since
Ai ≤ ∆i ≤ Bi with Ai, Bi ∈ Fi−1, an application of Azuma-Hoeffding gives the result.

2.3 Bernstein’s Inequality

Hoeffding’s inequality is certainly a powerful concentration inequality for how little it as-
sumes about the random variables. However, one of the major limitations of Hoeffding is
just this: Since it only assumes boundedness of the random variables, it is completely obliv-
ious to their actual variances. When the random variables in question have some known
variance, an ideal concentration inequality should capture the idea that variance controls
concentration to some degree. Bernstein’s inequality does exactly this.

Theorem (Bernstein’s Inequality): Let X1, . . . ,Xn be independent, centered ran-
dom variables with |X | ≤ c for every i, and write σ2 = n−1

i iVar(Xi) for the average
variance. Then

∑

IP

[

1 ∑ nt2
Xi > t

]

≤ exp

(

−
n 2σ2 + 2tc

i 3

)

.

Here, one should think of t as being fixed and relatively small compared to n, so that
strength of the inequality indeed depends mostly on n and 1/σ2.

Proof. The idea of the proof is to do a Chernoff bound as usual, but to first use our
assumptions on the variance to obtain a slightly better bound on the moment generating
functions. To this end, we expand

∞
(s k ∞
X) skck−2

i
IE[esXi] = 1 + IE[sXi] + IE

[]
∑

≤ 1 + Var(Xi)
∑

,
k! k!

k=2 k=2

where we have used IE[Xk
i] ≤ IE[X2

i |Xi|
k−2] ≤ Var(X k−2

i)c . Rewriting the sum as an
exponential, we get

escsXi 2 − sc− 1
IE[e] ≤ s Var(Xi)g(s), g(s) := .

c2s2

The Chernoff bound now gives

IP

[

1 ∑
Xi > t

]

≤ exp

(

inf [s2(
∑

Var(Xi))g(s) − nst]

)

= exp

(

n · inf [s2σ2g(s)− st] ,
n s>0 s>0

i i

)

and optimizing this over s (a fun calculus exercise) gives exactly the desired result.

18

3. NOISE CONDITIONS AND FAST RATES

ˆTo measure the effectiveness of the estimator h, we would like to obtain an upper bound
ˆ ˆon the excess risk E(h) = R(h)−R(h∗). It should be clear, however, that this must depend

significantly on the amount of noise that we allow. In particular, if η(X) is identically equal
ˆto 1/2, then we should not expect to be able to say anything meaningful about E(h) in

general. Understanding this trade-off between noise and rates will be the main subject of
this chapter.

3.1 The Noiseless Case

A natural (albeit somewhat näıve) case to examine is the completely noiseless case. Here,
we will have η(X) ∈ {0, 1} everywhere, Var(Y |X) = 0, and

E(h) = R(h)−R(h∗) = IE[|2η(X) − 1|1I(h(X) = h∗(X))] = IP[h(X) = h∗(X)].

Let us now denote
¯ ˆZi = 1I(h(Xi) = Yi)− 1I(h(Xi) = Yi),

¯and write Zi = Zi − IE[Zi]. Then notice that we have

ˆ ¯|Zi| = 1I(h(Xi) = h(Xi)),

and
Var(Zi) ≤ IE[Z2 ˆ ¯

i] = IP[h(Xi) = h(Xi)].

ˆFor any classifier hj ∈ H, we can similarly define Zi(hj) (by replacing h with hj through-
out). Then, to set up an application of Bernstein’s inequality, we can compute

n
1 ∑ ¯Var(Zi(hj)) ≤ IP[hj(Xi) = h(Xi)] =: σ2

n j .
i=1

At this point, we will make a (fairly strong) assumption about our dictionary H, which
¯is that h∗ ∈ H, which further implies that h = h∗. Since the random variables Zi compare

¯ ˆto h, this will allow us to use them to bound E(h), which rather compares to h∗. Now,
¯applying Bernstein (with c = 2) to the {Zi(hj)}i for every j gives

[
n

1
]

∑ nt2 δ¯IP Zi(hj) > t ≤ exp

(

− =
2σ2

i=1 j +
4t3

)

: ,
n M

and a simple computation here shows that it is enough to take

√

2σ2
j log(M/δ) 4

t ≥ max , log(M/δ)
n 3n



 =: t0(j)

¯for this to hold. From here, we may use the assumption h = h∗ to conclude that

ˆ ˆIP
[

E(h) > t0(ĵ)
]

≤ δ, hˆ = h.j

6 6

6 6

6

6

6

19

ˆHowever, we also know that σ2
ˆ ≤ E(h), which implies that
j

√

ˆ2E(h) log(M/δ) 4ˆE(h) ≤ max , log(M/δ)
n 3n





ˆwith probability 1− δ, and solving for E(h) gives the improved rate

log(M/δ)ˆE(h) ≤ 2 .
n

20

18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet Lecture 4
Scribe: Cheng Mao Sep. 21, 2015

In this lecture, we continue to discuss the effect of noise on the rate of the excess risk
ˆ ˆ ˆE(h) = R(h) − R(h∗) where h is the empirical risk minimizer. In the binary classification

model, noise roughly means how close the regression function η is from 1
2 . In particular, if

η = 1 then we observe only noise, and if η ∈ {0, 1} we are in the noiseless case which has2

been studied last time. Especially, we achieved the fast rate logM in the noiseless case byn
¯assuming h∗ ∈ H which implies that h = h∗. This assumption was essential for the proof

and we will see why it is necessary again in the following section.

3.2 Noise conditions

The noiseless assumption is rather unrealistic, so it is natural to ask what the rate of excess
risk is when the noise is present but can be controlled. Instead of the condition η ∈ {0, 1},
we can control the noise by assuming that η is uniformly bounded away from 1

2 , which is
the motivation of the following definition.

Definition (Massart’s noise condition): The noise in binary classification is said
to satisfy Massart’s condition with constant γ ∈ (0, 12] if |η(X) − 1 | ≥ γ almost surely.2

Once uniform boundedness is assumed, the fast rate simply follows from last proof with
appropriate modification of constants.

ˆ ˆ ˆTheorem: Let cE(h) denote the excess risk of the empirical risk minimizer h = herm.
If Massart’s noise condition is satisfied with constant γ, then

log(M/δ)ˆE(h) ≤
γn

with probability at least 1− δ. (In particular γ = 1 gives exactly the noiseless case.)2

Proof. ¯ ¯Define Zi(h) = 1I(h(Xi) = Yi)− 1I(h(Xi) = Yi). By the assumption h = h∗ and the
ˆ ˆdefinition of h = herm,

ˆ ˆ ¯E(h) = R(h)−R(h)

ˆ ˆ ˆ ¯ ˆ ¯ ˆ ˆ ¯ ˆ= Rn(h)−Rn(h) +Rn(h)−Rn(h)− R(h)−R(h) (3.1)
n

1 ˆ≤)

()

∑(
ˆZi(h)− IE[Zi(h]

)
. (3.2)

n
i=1

Hence it suffices to bound the deviation of
∑

i Zi from its expectation. To this end, we
hope to apply Bernstein’s inequality. Since

Var[Zi(h)] ≤ IE[Z 2 ¯
i(h)] = IP[h(Xi) = h(Xi)],

6 6

6

21

we have that for any 1 ≤ j ≤ M ,

n
1 ∑

¯Var[Zi(hj)] ≤ IP[hj(X) = h(X)] =: σ2

n j .
i=1

Bernstein’s inequality implies that

n
[1 ∑] (nt2

IP (Zi(hj)− IE[Zi(hj)]) > t ≤ exp −
n 2σ2

i=1 j +
2
3t

) δ
=: .

M

Applying a union bound over 1 ≤ j ≤ M and taking

2σ2
j log(M/δ) 2 log(M/δ)

t = t0(j) := max

√

(
,

n 3n

)
,

we get that
n

1 ∑

(Zi(hj)− IE[Zi(hj)]) ≤ t0(j) (3.3)
n

i=1

for all 1 ≤ j ≤ M with probability at least 1− δ.
ˆSuppose h = hˆ. It follows from (3.2) and (3.3) that with probability at least 1− δ,j

ˆE(h) ≤ t ˆ
0(j).

(Note that so far the proof is exactly the same as the noiseless case.) Since |η(X)− 1
2 | ≥ γ

¯a.s. and h = h∗,

ˆ ˆ ¯E(h) = IE[|2η(X) − 1|1I(h(X) = h∗(X))] ≥ 2γIP[hˆ(X) = h(X)] = 2γσ2
ˆ .j j

Therefore,
√

ˆE(h) log(M/δ) 2 log(M/δ)ˆE(h) ≤ max , , (3.4)
γn 3n

so we conclude that with probabilit

(

y at least 1− δ,

)

log(M/δ)ˆE(h) ≤ .
γn

¯The assumption that h = h∗ was used twice in the proof. First it enables us to ignore
the approximation error and only study the stochastic error. More importantly, it makes
the excess risk appear on the right-hand side of (3.4) so that we can rearrange the excess
risk to get the fast rate.

Massart’s noise condition is still somewhat strong because it assumes uniform bounded-
ness of η from 1

2 . Instead, we can allow η to be close to 1
2 but only with small probability,

and this is the content of next definition.

6

6 6

22

Definition (Tsybakov’s noise condition or Mammen-Tsybakov noise condi-
tion): The noise in binary classification is said to satisfy Tsybakov’s condition if there
exists α ∈ (0, 1), C 1

0 > 0 and t0 ∈ (0, 2] such that

1 α

IP[|η(X) − | ≤ t] ≤ C 10t −α

2

for all t ∈ [0, t0].

α

In particular, as α → 1, t 1−α → 0
α

, so this recovers Massart’s condition with γ = t0 and
we have the fast rate. As α → 0, t 1−α → 1, so the condition is void and we have the slow
rate. In between, it is natural to expect fast rate (meaning faster than slow rate) whose
order depends on α. We will see that this is indeed the case.

Lemma: Under Tsybakov’s noise condition with constants α,C0 and t0, we have

IP[h(X) = h∗(X)] ≤ CE(h)α

for any classifier h where C = C(α,C0, t0) is a constant.

Proof. We have

E(h) = IE[|2η(X) − 1|1I(h(X) = h∗(X))]

1
≥ IE[|2η(X) − 1|1I(|η(X) − | > t)1I(h(X) = h∗(X))]

2
1

≥ 2tIP[|η(X) − | > t, h(X) = h∗(X)]
2

1
≥ 2tIP[h(X) = h∗(X)]− 2tIP[|η(X) − | ≤ t]

2
1

≥ 2tIP[h(X) = h∗(X)]− 2C0t 1−α

1

where Tsybakov’s condition was used in the last step. Take t = cIP[h(X) = h∗(X)]
−α

α for
some positive c = c(α,C0, t0) to be chosen later. We assume that c ≤ t0 to guarantee that
t ∈ [0, t0]. Since α ∈ (0, 1),

E(h) ≥ 2cIP[h(X) = h∗(X)]1/α
1

− 2C c 1−α IP[h(X) = h∗ 1
0 (X)] /α

≥ cIP[h(X) = h∗(X)]1/α

by selecting c sufficiently small depending on α and C0. Therefore

1
IP[h(X) = h∗(X)] ≤ E(h)α

cα

and choosing C = C(α,C0, t0) := c−α completes the proof.

Having established the key lemma, we are ready to prove the promised fast rate under
Tsybakov’s noise condition.

6

6

6

6

6

6

6

6 6

6

6

23

Theorem: If Tsybakov’s noise condition is satisfied with constant α,C0 and t0, then
there exists a constant C = C(α,C0, t0) such that

l)ˆE h) ≤ C
(og(M/δ

(
1

n

)
2−α

with probability at least 1− δ.

This rate of excess risk parametrized by α is indeed an interpolation of the slow (α → 0)
ˆand the fast rate (α → 1). Futhermore, note that the empirical risk minimizer h does not

depend on the parameter α at all! It automatically adjusts to the noise level, which is a
very nice feature of the empirical risk minimizer.

Proof. The majority of last proof remains valid and we will explain the difference. After
establishing that

ˆE(h) ≤ t0(ĵ),

we note that the lemma gives

ˆσ2 ¯ ˆ
ˆ = IP[h(X) 6= h(X)] ≤ CE(h)α.
j

It follows that √

ˆ(2CE(h)α log(M/δ) 2 log(M/δ)ˆE(h) ≤ max ,
n 3n

)

(2C log M 2ˆ
1

E(h) ≤ max
(

δ
)

2−α

log(M/δ)
,

)

.
n 3n

and thus

4. VAPNIK-CHERVONENKIS (VC) THEORY

The upper bounds proved so far are meaningful only for a finite dictionary H, because if
M = |H| is infinite all of the bounds we have will simply be infinity. To extend previous
results to the infinite case, we essentially need the condition that only a finite number of
elements in an infinite dictionary H really matter. This is the objective of the Vapnik-
Chervonenkis (VC) theory which was developed in 1971.

4.1 Empirical measure

Recall from previous proofs (see (3.1) for example) that the key quantity we need to control
is

ˆ2 sup
(
Rn(h)−R(h) .

h∈H

Instead of the union bound which would not work in th

)

e infinite case, we seek some bound
that potentially depends on n and the complexity of the set H. One approach is to consider
some metric structure on H and hope that if two elements in H are close, then the quantity
evaluated at these two elements are also close. On the other hand, the VC theory is more
combinatorial and does not involve any metric space structure as we will see.

24

By definition

n
1

R̂n(h)−R(h) =
∑(

1I(h(Xi) = Yi)− IE[1I(h(Xi) = Yi)]
n

i=1

)
.

Let Z = (X,Y) and Zi = (Xi, Yi), and let A denote the class of measurable sets in the
sample space X × {0, 1}. For a classifier h, define Ah ∈ A by

{Zi ∈ Ah} = {h(Xi) = Yi}.

Moreover, define measures µn and µ on A by

n
1

µn(A) =
∑

1I(Zi ∈ A) and µ(A) = IP[Zi ∈ A]
n

i=1

for A ∈ A. With this notation, the slow rate we proved is just

log(2|A|/δ)ˆsupRn(h) −R(h) = sup |µn(A)− µ(A)| ≤
h∈H A∈A

√

.
2n

Since this is not accessible in the infinite case, we hope to use one of the concentration
inequalities to give an upper bound. Note that µn(A) is a sum of random variables that may
not be independent, so the only tool we can use now is the bounded difference inequality.

If we change the value of only one zi in the function

z1, . . . , zn 7→ sup |µn(A)− µ(A)|,
A∈A

the value of the function will differ by at most 1/n. Hence it satisfies the bounded difference
assumption with ci = 1/n for all 1 ≤ i ≤ n. Applying the bounded difference inequality, we
get that

∣ log(2/δ)∣
sup |µn(A)− µ(A)| − IE[sup |µn(A)− µ(A)|] ≤
A∈A A∈A

√

2n

with probability

∣

at least 1− δ. Note that this already preclu

∣
∣

∣

des any fast rate (faster than
n−1/2). To achieve fast rate, we need Talagrand inequality and localization techniques which
are beyond the scope of this section.

It follows that with probability at least 1− δ,

log(2/δ)
sup |µn(A)− µ(A)| ≤ IE[sup |µn(A)− µ(A)|] +

A A∈A

√

.
A∈ 2n

We will now focus on bounding the first term on the right-hand side. To this end, we need
a technique called symmetrization, which is the subject of the next section.

4.2 Symmetrization and Rademacher complexity

Symmetrization is a frequently used technique in machine learning. Let D = {Z1, . . . , Zn}
be the sample set. To employ symmetrization, we take another independent copy of the
sample set D′ = {Z ′

1, . . . , Z
′
n}. This sample only exists for the proof, so it is sometimes

referred to as a ghost sample. Then we have

n n
1 1

µ(A) = IP[Z ∈ A] = IE[
∑

1I(Z ′
i ∈ A)] = IE[1I(Z ′

i ∈ A)|D] = IE[µ′

n n n(A)|D]
i=1

∑

i=1

6 6

6

25

nwhere µ′
n := 1 ∑

i=1 1I(Z
′
i ∈ A). Thus by Jensen’s inequality,n

IE[sup |µn(A)− µ(A)|] = IE
[
sup ∣

∣

µn(A)− IE[µ′
n(A)|D]

A∈A A∈A

≤ IE sup IE[|µn(A)− µ′
n(A)| |D

∣
∣

]

]

≤

[

A∈A

IE
[
sup |µ ′

n(A) − µn(A)|

]

A∈A

n
1

]

= IE
[
sup

∣ ∑(
1I(Z ′

i ∈ A)− 1I(Z
A∈A n i ∈ A)

i=1

)∣]
.

Since D′ has the same distribution of D, by sy

∣

mmetry 1I(Zi ∈ A)− 1I(Z ′

∣

i ∈ A) has the same
distribution as σi

(
1I(Zi ∈ A)− 1I(Z ′

i ∈ A)
)
where σ1, . . . , σn are i.i.d. Rad(12), i.e.

1
IP[σi = 1] = IP[σi = −1] = ,

2

and σi’s are taken to be independent of both samples. Therefore,

n

IE[sup |µn(A)− µ(A)|] ≤ IE
A A

[
sup ′

∈ A∈A

∣
∣
1 ∑

σi
(
1I(Zi ∈ A)− 1I(Z

n i ∈ A)
i=1

n

)∣]

≤ 2IE
[1

∣

sup
∣ ∑

σi1I(Zi ∈ A) .
A∈A n

i=1

∣]
(4.5)

Using symmetrization we have bounded IE[sup

∣

A∈A |µn(A)−µ(A)|

∣

] by a much nicer quantity.
Yet we still need an upper bound of the last quantity that depends only on the structure
of A but not on the random sample {Zi}. This is achieved by taking the supremum over
all zi ∈ X × {0, 1} =: Y.

Definition: The Rademacher complexity of a family of sets A in a space Y is defined
to be the quantity

n

Rn(A) = sup sup
∣ 1

IE
[∑

σi1I(zi ∈ A)
z1,...,zn∈Y A∈A n

i=1

∣]
.

The Rademacher complexity of a set B ⊂ I

∣

Rn is defined to b

∣

e

n
1

Rn(B) = IE
[
sup
b∈B

∣
∣

n

∑

σibi
i=1

∣
∣
]
.

We conclude from (4.5) and the definition that

IE[sup |µn(A)− µ(A)|] ≤ 2Rn(A).
A∈A

nIn the definition of Rademacher complexity of a set, the quantity 1 sn i=1 σibi measure
how well a vector b ∈ B correlates with a random sign pattern {σi}. The more complex
B is, the better some vector in B can replicate a sign pattern. In

∣
∣

pa

∑

rticular, i

∣
∣

f B is the
full hypercube [−1, 1]n, then Rn(B) = 1. However, if B ⊂ [−1, 1]n contains only k-sparse

26

vectors, then Rn(B) = k/n. Hence Rn(B) is indeed a measurement of the complexity of
the set B.

The set of vectors to our interest in the definition of Rademacher complexity of A is

T (z) := {(1I(z1 ∈ A), . . . , 1I(zn ∈ A))T , A ∈ A}.

Thus the key quantity here is the cardinality of T (z), i.e., the number of sign patterns these
vectors can replicate as A ranges over A. Although the cardinality of A may be infinite,
the cardinality of T (z) is bounded by 2n.

27

18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet Lecture

Scribe: Vira Semenova and Philippe Rigollet Sep. 23, 2015

In this lecture, we complete the analysis of the performance of the empirical risk mini-
mizer under a constraint on the VC dimension of the family of classifiers. To that end, we
will see how to control Rademacher complexities using shatter coefficients. Moreover, we
will see how the problem of controlling uniform deviations of the empirical measure µn from
the true measure µ as done by Vapnik and Chervonenkis relates to our original classification
problem.

4.1 Shattering

Recall from the previous lecture that we are interested in sets of the form

T (z) :=
{
(1I(z1 ∈ A), . . . , 1I(zn ∈ A)), A ∈ A , z = (z1, . . . , zn) . (4.1)

In particular, the cardinality of T (z), i.e., the numbe

}

r of binary patterns these vectors
can replicate as A ranges over A, will be of critical importance, as it will arise when
controlling the Rademacher complexity. Although the cardinality of A may be infinite, the
cardinality of T (z) is always at most 2n. When it is of the size 2n, we say that A shatters
the set z1, . . . , zn. Formally, we have the following definition.

Definition: A collection of sets A shatters the set of points {z1, z2, ..., zn}

card{(1I(z1 ∈ A), . . . , 1I(zn ∈ A)), A ∈ A} = 2n .

The sets of points {z1, z2, ..., zn} that we are interested are realizations of the pairs Z1 =
(X1, Y1), . . . , Zn = (Xn, Yn) and may, in principle take any value over the sample space.
Therefore, we define the shatter coefficient to be the largest cardinality that we may obtain.

Definition: The shatter coefficients of a class of sets A is the sequence of numbers
{SA(n)}n≥1, where for any n ≥ 1,

SA(n) = sup card (1I(z1 A), . . . , 1I(zn A)), A
z1,...,zn

{ ∈ ∈ ∈ A}

and the suprema are taken over the whole sample space.

By definition, the nth shatter coefficient SA(n) is equal to 2
n if there exists a set {z1, z2, ..., zn}

that A shatters. The largest of such sets is precisely the Vapnik-Chervonenkis or VC di-
mension.

Definition: The Vapnik-Chervonenkis dimension, or VC-dimension of
d VC

A is the largest
integer d such that SA(d) = 2 . We write (A) = d.

5

28

If SA(n) = 2n for all positive integers n, then VC(A) := ∞

In words, A shatters some set of points of cardinality d but shatters no set of points of
cardinality d+1. In particular, A also shatters no set of points of cardinality d′ > d so that
the VC dimension is well defined.

In the sequel, we will see that the VC dimension will play the role similar to of cardinality,
but on an exponential scale. For interesting classes A such that card(A) = ∞, we also may
have VC(A) < ∞. For example, assume that A is the class of half-lines, A = {(−∞, a], a ∈
IR} ∪ {[a,∞), a ∈ IR}, which is clearly infinite. Then, we can clearly shatter a set of size
2 but we for three points z1, z2, z3,∈ IR, if for example z1 < z2 < z3, we cannot create the
pattern (0, 1, 0) (see Figure 4.1). Indeed, half lines can can only create patterns with zeros
followed by ones or with ones followed by zeros but not an alternating pattern like (0, 1, 0).

00

10

01

11

000

100

110

111

001

011

101

Figure 1: If A = {halflines}, then any set of size n = 2 is shattered because we can
create all 2n = 4 0/1 patterns (left); if n = 3 the pattern (0, 1, 0) cannot be reconstructed:
SA(3) = 7 < 23 (right). Therefore, VC(A) = 2.

4.2 The VC inequality

We have now introduced all the ingredients necessary to state the main result of this section:
the VC inequality.

Theorem (VC inequality): For any family of sets A with VC dimension VC(A) = d,
it holds √

2d log(2en/d)
IE sup |µn(A)− µ(A)| ≤ 2

A∈A n

Note that this result holds even ifA is infinite as long as its VC dimension is finite. Moreover,
observe that log(|A|) has been replaced by a term of order d log 2en/d .

To prove the VC inequality, we proceed in three steps:

()

29

1. Symmetrization, to bound the quantity of interest by the Rademacher complexity:

IE[sup |µn(A)− µ(A)|] ≤ 2Rn()
A∈A

A .

We have already done this step in the previous lecture.

2. Control of the Rademacher complexity using shatter coefficients. We are going to
show that

g
R (A) ≤

√

2 lo
n

(
2SA(n)

n

)

3. We are going to need the Sauer-Shelah lemma to bound the shatter coefficients by
the VC dimension. It will yield

S (n) ≤
(en)d

, d = VCA (
d

A) .

Put together, these three steps yield the VC inequality.

Step 2: Control of the Rademacher complexity

We prove the following Lemma.

Lemma: For any B ⊂ IRn, such that |B| < ∞ :, it holds

n
[∣ 1 2

σ
∣)

B
] (

Rn() = IE max ∣
∑ log 2 B

ibi∣ ≤ max
| |

b∈B n b∈B
i=1

|b|2

√

n

where | · |2 denotes the Euclidean norm.

Proof. Note that
1

Rn(B) = IE
n

[
max Zb ,
b∈B

|

where Zb =
∑n

i=1 σibi. In particular, since

∣
∣

]

−|bi| ≤ σi|bi| ≤ |bi|, a.s., Hoeffding’s lemma
implies that the moment generating function of Zb is controlled by

n n

IE
[
exp(sZb)

]
=

∏

IE
i=1

[
exp(sσibi)

]
≤

∏

exp(s2b2i /2) = exp(s2 b 2
2/2) (4.2)

i=1

| |

Next, to control IE maxb∈B Zb| , we use the same technique as in Lecture 3, section 1.5.
¯To that end, define

[

B = B ∪

∣
∣

{−B

]

} and observe that for any s > 0,

IE

[
1

max |Zb|

]

= IE

[

maxZb

]

= log exp

(

sIE

[

maxZb

])
1

≤ log IE exp smaxZb ,
b∈B b∈B̄ s b ¯∈B s

[(

b ¯∈B

)]

where the last inequality follows from Jensen’s inequality. Now we bound the max by a
sum to get

[]
1 ∑ log |B̄| s b 2

IE max |Zb| ≤ log IE [exp(sZb)] ≤ +
| |2 ,

b∈B s s 2n
b∈B̄

where in the last inequality, we used (4.2). Optimizing over s > 0 yields the desired
result.

30

We apply this result to our problem by observing that

Rn(A) = sup (
,

Rn(T z))
z1,... zn

where T (z) is defined in (4.1). In particular, since T (z) ⊂ {0, 1}, we have |b
√

|2 ≤ n
for all b ∈ T (z). Moreover, by definition of the shatter coefficients, if B = T (z), then
|B̄| ≤ 2|T (z)| ≤ 2SA(n). Together with the above lemma, it yields the desired inequality:

√

2 log(2SA(n))
Rn(A) ≤ .

n

Step 3: Sauer-Shelah Lemma

We need to use a lemma from combinatorics to relate the shatter coefficients to the VC
dimension. A priori, it is not clear from its definition that the VC dimension may be at
all useful to get better bounds. Recall that steps 1 and 2 put together yield the following
bound

2 log(2S (n))
IE[sup n(A)

A

− µ(A)]
A∈

|µ | ≤
A

2

√

(4.3)
n

In particular, if SA(n) is exponential in n, the bound (4.3) is not informative, i.e., it does
not imply that the uniform deviations go to zero as the sample size n goes to infinity. The
VC inequality suggest that this is not the case as soon as VC(A) < ∞ but it is not clear a
priori. Indeed, it may be the case that

VC

SA(n) = 2n for n ≤ d and SA(n) = 2n− 1 for n > d,
which would imply that (A) = d < ∞ but that the right-hand side in (4.3) is larger than
2 for all n. It turns our that this can never be the case: if the VC dimension is finite, then
the shatter coefficients are at most polynomial in n. This result is captured by the Sauer-
Shelah lemma, whose proof is omitted. The reading section of the course contains pointers
to various proofs, specifically the one based on shifting which is an important technique in
enumerative combinatorics.

Lemma (Sauer-Shelah): If VC(A) = d, then ∀n ≥ 1,

d

SA(n) ≤
∑

(
n en d

.
k

)

≤
d

k=0

()

Together with (4.3), it clearly yields the VC inequality. By applying the bounded difference
inequality, we also obtain the following VC inequality that holds with high probability. This
is often the preferred from for this inequality in the literature.

Corollary (VC inequality): For any family of sets A such that VC(A) = d and any
δ ∈ (0, 1), it holds with probability at least 1− δ,

√

2d log(2en/d)
√

log(2/δ)
sup µn A)− µ(A)| ≤ 2 +
A∈A

| (.
n 2n

31

Note that the logarithmic term log(2en/d) is actually superfluous and can be replaced
by a numerical constant using a more careful bounding technique. This is beyond the scope
of this class and the interested reader should take a look at the recommending readings.

4.3 Application to ERM

The VC inequality provides an upper bound for supA∈A |µn(A)− µ(A)| in terms of the VC
dimension of the class of sets A. This result translates directly to our quantity of interest:

2VC() log 2en
)ˆsup |Rn h)−

VC(A) log(2/δ
(R(h) 2

n

)

+
h∈H

≤

√

A
|

(√

(4.4)
2n

where A = {Ah : h ∈ H} and Ah = {(x, y) ∈ X × {0, 1} : h(x) = y}. Unfortunately, the
VC dimension of this class of subsets of X × {0, 1} is not very natural. Since, a classifier h
is a {0, 1} valued function, it is more natural to consider the VC dimension of the family
A =

{
{h = 1} : h ∈ H

}
.

Definition: Let H be a collection of classifiers and define

Ā = {h = 1} : h ∈ H

We define the VC d

{

imension VC() o

}
=

{
A : ∃h ∈ H, h(·) = 1I(· ∈ A) .

H ¯f H to be the VC dimension of

}

A.

¯ ¯It is not clear how VC(A) relates to the quantity VC(A), where A = {Ah : h ∈ H} and
Ah = {(x, y) ∈ X ×{0, 1} : h(x) = y} that appears in the VC inequality. Fortunately, these
two are actually equal as indicated in the following lemma.

Lemma: Define the two families for sets: = A X×
h : h 2 {0,1} where

{ ¯
A { ∈ H} ∈

Ah = (x, y) ∈ X × {0, 1} : h(x) = y} and A =
{
{h = 1 : h 2X .

S S ≥ VC Ā
} ∈ H ∈

Then, Ā(n) = Ā(n) for all n 1. It implies () = VC(A

}

).

Proof. Fix x = (x1, ..., xn) ∈ X n and y = (y1, y2, ..., yn) ∈ {0, 1}n and define

T (x, y) = {(1I(h(x1) = y1), . . . , 1I(h(xn) = yn)), h ∈ H}

and
T̄ (x) = {(1I(h(x1) = 1), . . . , 1I(h(xn) = 1)), h ∈ H}

To that end, fix v ∈ {0, 1} and recall the XOR (exclusive OR) boolean function from {0, 1}
to {0, 1} defined by u⊕ v = 1I(u = v). It is clearly1 a bijection since (u⊕ v)⊕ v = u.

1One way to see that is to introduce the “spinned” variables ũ = 2u − 1 and ṽ = 2v − 1 that live in

˜{−1, 1}. Then u⊕ v = ũ · ṽ, and the claim follows by observing that (ũ · ṽ) · ṽ = ũ. Another way is to simply

write a truth table.

6

6

6

6 6

6

32

When applying XOR componentwise, we have


1I(h(x1) = y1)


1I(h(x1 = 1) y

 ..


) 1

 ..



 .
1I(h(xi) 


 .

 




= yi) = 1I(h(xi) = 1)



..




.
⊕

.



 .



.




1I(h(xn) = yn)




 


 

1I(h(xn) = 1)









...
 yi


 .. .

yn









¯



Since XOR is a bijection, we must have card[T (x, y)] = card[T (x)]. The lemma follows
by taking the supremum on each side of the equality.

It yields the following corollary to the VC inequality.

Corollary: Let H be a family of classifiers with VC dimension d. Then the empirical
ˆrisk classifier herm over H satisfies

erm

√

2d log(2en/d)ˆR(h) ≤ minR(h) + 4 +
h∈H n

√

log(2/δ)

2n

with probability 1− δ.

Proof. Recall from Lecture 3 that

ˆR(herm)−min) ≤ ˆR(h 2 sup
h∈H h∈H

The proof follows directly by applyi

∣
∣Rn(h)−R(h)

∣

ng (4.4) and the above lemma.

∣

6

6

6

33

18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet Lecture 6
Scribe: Ali Makhdoumi Sep. 28, 2015

5. LEARNING WITH A GENERAL LOSS FUNCTION

In the previous lectures we have focused on binary losses for the classification problem and
developed VC theory for it. In particular, the risk for a classification function h : X → {0, 1}
and binary loss function the risk was

R(h) = IP(h(X) = Y) = IE[1I(h(X) = Y)].

In this lecture we will consider a general loss function and a general regression model where
Y is not necessarily a binary variable. For the binary classification problem, we then used
the followings:

• Hoeffding’s inequality: it requires boundedness of the loss functions.

• Bounded difference inequality: again it requires boundedness of the loss functions.

• VC theory: it requires binary nature of the loss function.

Limitations of the VC theory:

• Hard to find the optimal classification: the empirical risk minimization optimization,
i.e.,

n
1

min
h n

∑

1I(h(Xi) = Yi)
i=1

is a difficult optimization. Even though it is a hard optimization, there are some
algorithms that try to optimize this function such as Perceptron and Adaboost.

• This is not suited for regression. We indeed know that classification problem is a
subset of Regression problem as in regression the goal is to find IE[Y |X] for a general
Y (not necessarily binary).

In this section, we assume that Y ∈ [−1, 1] (this is not a limiting assumption as all the
results can be derived for any bounded Y) and we have a regression problem where (X,Y) ∈
X × [−1, 1]. Most of the results that we preset here are the analogous to the results we had
in binary classification. This would be a good place to review those materials and we will
refer to the techniques we have used in classification when needed.

5.1 Empirical Risk Minimization

5.1.1 Notations

Loss function: In binary classification the loss function was 1I(h(X) = Y). Here, we
replace this loss function by ℓ(Y, f(X)) which we assume is symmetric, where f ∈ F ,
f : X → [−1, 1] is the regression functions. Examples of loss function include

6 6

6

6

34

• ℓ(a, b) = 1I(a = b) (this is the classification loss function).

• ℓ(a, b) = |a− b|.

• ℓ(a, b) = (a− b)2.

• ℓ(a, b) = |a− b|p, p ≥ 1.

We further assume that 0 ≤ ℓ(a, b) ≤ 1.
Risk: risk is the expectation of the loss function, i.e.,

R(f) = IEX,Y [ℓ(Y, f(X))],

where the joint distribution is typically unknown and it must be learned from data.
Data: we observe a sequence (X1, Y1), . . . , (Xn, Yn) of n independent draws from a joint
distribution PX,Y , where (X,Y) ∈ X × [−1, 1]. We denote the data points by Dn =
{(X1, Y1), . . . , (Xn, Yn)}.
Empirical Risk: the empirical risk is defined as

n
1

R̂n(f) =
n

∑

ℓ(Yi, f(Xi)),
i=1

ˆ ˆand the empirical risk minimizer denoted by f erm (or f) is defined as the minimizer of
empirical risk, i.e.,

ˆargminRn(f).
f∈F

ˆIn order to control the risk of f we shall compare its performance with the following oracle:

f̄ ∈ argminR(f).
f∈F

Note that this is an oracle as in order to find it one need to have access to PXY and then
ˆoptimize R(f) (we only observe the data Dn). Since f is the minimizer of the empirical

ˆ ˆ ˆ ¯risk minimizer, we have that Rn(f) ≤ Rn(f), which leads to

ˆR(f) ≤ ˆR(f)− ˆ ˆ ˆ ˆ ˆ ¯ ˆ ¯ ¯ ¯Rn(f) +Rn(f)−Rn(f) +Rn(f)−R(f) +R(f)

≤ ¯ ˆ ˆ ˆ ˆ ¯ ¯ ¯ ˆR(f) +R(f)−Rn(f) +Rn(f)−R(f) ≤ R(f) + 2 sup
f∈F

|Rn(f)−R(f)|.

Therefore, the quantity of interest that we need to bound is

sup |R̂n(f)−R(f)
f∈F

|.

Moreover, from the bounded difference inequality, we know that since the loss function ℓ(·, ·)
ˆis bounded by 1, supf∈F |Rn(f) − R(f)| has the bounded difference property with ci =

1
n

for i = 1, . . . , n, and the bounded difference inequality establishes

P

[

2t2
sup | ˆ ˆRn(f)−R(f) | − IE

[

sup |Rn(f)−R(f)
f∈F

|

]

≥ t
f∈F

]

−
≤ exp

(

x2
i i

)

= e p
c

−2nt2 ,

which in turn yields

()
∑

log (1/delta)
| ˆsup Rn(f)−R(f)| ≤ I | ˆE

[

sup Rn(f)−R(f) δ
f∈F f

|

]

+
∈

√

, w.p. 1
F 2n

− .

ˆAs a result we only need to bound the expectation IE[supf∈F |Rn(f)−R(f)|].

6

35

5.1.2 Symmetrization and Rademacher Complexity

Similar to the binary loss case we first use symmetrization technique and then intro-
duce Rademacher random variables. Let Dn = {(X1, Y1), . . . (Xn, Yn)} be the sample set
and define an independent sample (ghost sample) with the same distribution denoted by
D′

n = {(X ′
1, Y

′
1), . . . (X

′
n, Y

′
n)}(for each i, (X ′

i, Y
′
i) is independent from Dn with the same

distribution as of (Xi, Yi)). Also, let σi ∈ {−1,+1} be i.i.d. Rad(1) random variables2
independent of Dn and D′

n. We have

IE

[
n

1
sup | ℓ i
f∈F n

∑

(Yi, f(X))
i=1

− IE [ℓ(Yi, f(Xi))] |

]

n n
1 1

= IE

[

sup ℓ(Yi, f(X ℓ(Y ′
i)) IE i , f(X

′
i)) Dn

f∈F
|
n

∑

i=1

−

[

n

∑

i=1

|

]

|

]

n n
1 1

= IE

[

sup |IE

[
∑

ℓ(Yi, f(X
′

i)) ℓ(Yi , f(X
′
i)) Dn

f∈F n
i=1

−
n

∑

i=1

|

]

|

]

n(a)

≤ IE

[
n

1 1
sup IE

[

|
∑

ℓ(Yi, f(X
′

i))−
∑

ℓ(Y , f(X ′
i i))| |Dn

f∈F n n
i=1 i=1

]]

≤ IE

[
n n

1
sup |

∑ 1
ℓ(Yi, f(Xi)) ℓ(Y ′

i , f(X
′

f∈F n n i))
i=1

−
∑

i=1

|

]

(b) 1
= IE

[
n

sup |
∑

σi
(
ℓ(Yi, f(Xi))− ℓ(Y ′ X

f F n i , f(
′
i))

∈ i=1

)
|

]

n(c) 1
≤ 2IE

[

sup
f∈F

|
n

∑

σiℓ(Yi, f(Xi))
i=1

|

]

n

≤ 2 sup IE

[

1
sup |

∑

σiℓ(yi, f(xi))
Dn f∈F n

i=1

|

]

.

where (a) follows from Jensen’s inequality with convex function f(x) = x , (b) follows from
the fact that (X ,Y) and (X ′ ′

| |

i i i, Yi) has the same distributions, and (c) follows from triangle
inequality.
Rademacher complexity: of a class F of functions for a given loss function ℓ(·, ·) and
samples Dn is defined as

n
1

Rn(ℓ ◦ F) = sup IE

[

sup |
∑

σiℓ(yi, f(xi)) .
Dn f∈F n

i=1

|

]

Therefore, we have

IE

[
n

1
sup |

∑

ℓ(Yi, f(Xi))
f∈F n

i=1

− IE[ℓ(Yi, f(Xi))]|

]

≤ 2Rn(ℓ ◦ F)

and we only require to bound the Rademacher complexity.

5.1.3 Finite Class of functions

Suppose that the class of functions F is finite. We have the following bound.

36

Theorem: Assume that F is finite and that ℓ takes values in [0, 1]. We have

√

2 log(2
Rn(ℓ ◦ F)

|F|)
≤ .

n

Proof. From the previous lecture, for B ⊆ n
R , we have that

n
1 2 log(2 B)

Rn(B) = IE

[

max
b∈B

|
n

∑

σibi
i=1

|

]

| |
≤ max

b∈B
|b|2

√

.
n

Here, we have 
ℓ(y (x 1, f 1))

 .B = . ,.



ℓ(yn, f(xn)


f ∈ F





.

)



Since ℓ takes values in [0, 1], this



im



plies B



⊆ {b : |b|2
√

≤



n}. Plugging this bound in the
previous inequality completes the proof.

5.2 The General Case

Recall that for the classification problem, we had F ⊂ {0, 1}X . We have seen that the
cardinality of the set {(f(x1), . . . , f(xn)), f

êrm
∈ F} plays an important role in bounding the

risk of f (this is not exactly what we used but the XOR argument of the previous lecture
allows us to show that the cardinality of this set is the same as the cardinality of the set
that interests us). In this lecture, this set might be uncountable. Therefore, we need to
introduce a metric on this set so that we can treat the close points in the same manner. To
this end we will define covering numbers (which basically plays the role of VC dimension
in the classification).

5.2.1 Covering Numbers

Definition: Given a set of functions F and a pseudo metric d on F ((F , d) is a metric
space) and ε > 0. An ε-net of (F , d) is a set V such that for any f ∈ F , there exists
g ∈ V such that d(f, g) ≤ ε. Moreover, the covering numbers of (F , d) are defined by

N(F , d, ε) = inf{|V | : V is an ε-net}.

For instance, for the F shown in the Figure 5.2.1 the set of points {1, 2, 3, 4, 5, 6} is a
covering. However, the covering number is 5 as point 6 can be removed from V and the
resulting points are still a covering.

Definition: Given x = (x1, . . . , xn), the conditional Rademacher average of a class of

37

functions F is defined as

R̂x
n = IE

[
n

1
sup σ
f∈F

∣
∣

n

∑

if(xi)
i=1

]

∣
∣ .

Note that in what follows we consider a general class of functions F . However, for
applying the results in order to bound empirical risk minimization, we take xi to be (xi, yi)
and F to be ℓ ◦ F . We define the empirical l1 distance as

n

dx
1

1(f, g) = n

∑

i

=1

|f(x)
i

− g(xi)|.

Theorem: If 0 ≤ f ≤ 1 for all f ∈ F , then for any x = (x1, . . . , xn), we have

R̂x
n(F) ≤ inf

ε≥0

√
x{ 2 log (2N(F , d

ε+ 1 , ε))

n

}
.

Proof. Fix x = (x1, . . . , xn) and ε > 0. Let V be a minimal ε-net of (F , dx1). Thus,
by definition we have that |V | = N(F , dx1 , ε). For any f ∈ F , define f◦ ∈ V such that

6

5 4

3

21 F

ǫ

38

dx1(f, f
◦) ≤ ε. We have that

n
1

Rx
n(F) = IE

[

sup σif(xi)
f∈F

|
n

∑

i=1

|

]

≤ IE

[
n n

1 1
sup |

∑

σi(f(xi) f◦(xi)) + IE sup σif
◦(xi)

f∈F n f∈F n
i=1

− |

] [

|
∑

i=1

|

]

≤ ε+ IE

[
n

1
max σif(xi)
f∈V

|
n

∑

i=1

|

]

√

2 log(2
≤ ε+

|V |)

n
√

2 log(2N(
= ε+

F , dx1 , ε)) .
n

Since the previous bound holds for any ε, we can take the infimum over all ε ≥ 0 to obtain

x

√
{ 2 log(2N(F , dx

Rn(F) ≤ inf ε+ 1 , ε))

ε≥0 n

}
.

The previous bound clearly establishes a trade-off because as ε decreases N(F , dx1 , ε) in-
creases.

5.2.2 Computing Covering Numbers

As a warm-up, we will compute the covering number of the ℓ2 ball of radius 1 in d
R denoted

by B2. We will show that the covering is at most (3ε)
d. There are several techniques to

prove this result: one is based on a probabilistic method argument and one is based on
greedily finding an ε-net. We will describe the later approach here. We select points in V
one after another so that at step k, we have uk ∈ B2 \ ∪

k
j=1B(uj , ε). We will continue this

procedure until we run out of points. Let it be step N . This means that V = {u1, . . . , uN}
is an ε-net. We claim that the balls B(ui,

ε) and B(uj ,
ε) for any i, j 12 2 ∈ { , . . . , N} are

disjoint. The reason is that if v ∈ B(ui,
ε) ∩B(uj,

ε), then we would have2 2

ε ε
‖ui − uj‖2 ≤ ‖ui − v‖2 + ‖v − uj‖2 ≤ + = ε,

2 2

which contradicts the way we have chosen the points. On the other hand, we have that
∪N
j=1B(uj ,

ε) ⊆ (1 + ε)B2. Comparing the volume of these two sets leads to2 2

ε ε
|V |()dvol(B2) ≤ (1 +)dvol(B2) ,

2 2

where vol(B2) denotes the volume of the unit Euclidean ball in d dimensions. It yields,

|V | ≤

(
1 + ε d

2 2 d 3 d

= + 1 .(
ε ε
2

))

)d

(

≤

(

ε

)

39

For any p ≥ 1, define
1

dxp(f, g) =

(
n

1 p∑

|f(xi) g(x) p
i ,

n
i=1

− |

)

and for p = ∞, define
dx∞(f, g) = max |f(xi)− g(xi)

i
|.

ˆUsing the previous theorem, in order to bound Rx
n we need to bound the covering number

with dx1 norm. We claim that it is sufficient to bound the covering number for the infinity-
norm. In order to show this, we will compare the covering number of the norms dxp(f, g) =

1(
1
n

∑n
i=1 |f(x

p
i)− g(xi)|

)
p for p ≥ 1 and conclude that a bound on N(F , dx∞, ε) implies a

bound on N(F , dxp , ε) for any p ≥ 1.

Proposition: For any 1 ≤ p ≤ q and ε > 0, we have that

N(F , dxp , ε) ≤ N(F , dxq , ε).

Proof. First note that if q = ∞, then the inequality evidently holds. Because, we have

n
1

(
∑ 1

|zi|
p) p ≤ max

n i
i=1

|zi|,

which leads to B(f, dx∞, ε) ⊆ B(f, dxp, ε) and N(f, d∞, ε) ≥ N(f, dp, ε). Now suppose that
1 ≤ p ≤ q < ∞. Using Hölder’s inequality with r = q

p ≥ 1 we obtain

() 1 ()(1 1) 1 () 1 () 1−n n n
1 p r p pr n

1 q

1
n

∑ 1

|z |pi ≤
−

n p

∑

i 1

∑

i=1

|zi|
pr =

n
i=1 =

∑

.
i

|zi|
q

=1

This inequality yeilds

B(f, dxq , ε) = {g : dxq (f, g) ≤ ε} ⊆ B(f, dxp , ε),

which leads to N(f, dq, ε) ≥ N(f, dp, ε).

Using this propositions we only need to bound N(F , dx∞, ε).
Let the function class be F = {f(x) = 〈f, x〉, f ∈ Bd, x ∈ Bd}, where 1 1

p q + = 1. Thisp q
leads to |f | ≤ 1.
Claim: N(F , dx∞, ε) ≤ (2)d.ε
This leads to

x

√

2d log(4/ε)
R̂n(F) ≤ inf

0
{ε+ .

ε> n
}

Taking ε = O(
√

d logn), we obtainn

R̂x d
n(F) ≤ O(

√

log n
).

n

40

18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet Lecture 7
Scribe: Zach Izzo Sep. 30, 2015

In this lecture, we continue our discussion of covering numbers and compute upper
ˆbounds for specific conditional Rademacher averages Rx
n(F). We then discuss chaining and

conclude by applying it to learning.
Recall the following definitions. We define the risk function

R(f) = IE[`(X, f(X))], (X,Y) ∈ X × [−1, 1] ,

for some loss function `(·, ·). The conditiona Rademacher average that we need to control
is

n
1R(`l ◦ F) = sup IE sup σi`(yi, f(xi)) .

(x1,y1),...,(xn,yn)

[
f

∣∣∣∣∣n∈F

∑
i=1

∣∣]
Furthermore, we defined the conditional Rademacher average for a poin

∣∣
t x = (x1, . . . , xn)

to be

∣

R̂x
n(F) = IE

[
sup
f∈F

∣∣ n
1

σif(xi)
n

i=1

∣∣]
.

Lastly, we define the ε-covering number N(

∑
F , d,

∣∣
ε) to be the m

∣∣
inimum number of balls (with

respect to the metric d) of radius ε needed to

∣
cover

∣
F . We proved the following theorem:

Theorem: Assume |f | ≤ 1 for all f ∈ F . Then

2 log(2N(, dx, ε))R̂x
n(F) +

√
F≤ inf 1

ε>0

{
ε

n

}
,

where dx1 is given by
n

dx
1

1(f, g) =
n

∑
i=1

|f(xi)− g(xi)|.

We make use of this theorem in the following example. Define Bd
p = {x ∈ IRd : |x|p ≤ 1}.

Then take f(x) = 〈a, x〉, set F = {〈a, ·〉 : a ∈ Bd }, and X = Bd
1 . By Hölder’s inequality,∞

we have
|f(x)| ≤ |a| x∞| |1 ≤ 1,

so the theorem above holds. We need to compute the covering number N(F , dx1 , ε). Note
that for all a ∈ Bd , there exists v = (v1, . . . , vn) such that vi = g(xi) and∞

n
1

n

∑
a, xi vi ε

i=1

|〈 〉 − | ≤

for some function g. For this case, we will take g(x) = 〈b, x〉, so vi = 〈b, xi〉. Now, note the
following. Given this definition of g, we have

n n

dx
1 1

1(f, g) = a, x1 b, xi = a b, xi a b
n

∑
n

i=1

|〈 〉 − 〈 〉|
∑
i=1

|〈 − 〉| ≤ | − |∞

41

by Hölder’s inequality and the fact that |x|1 = 1. So if |a−b|∞ ≤ ε, we can take vi = 〈b, xi〉.
We just need to find a set of {b1, . . . , bM} ⊂ IRd such that, for any a there exists bj such
that |a − bj | < ∞. We can do this by dividing Bd into cubes with side length ε and∞ ∞
taking the b ’s to be the set of vertices of these cubes. Then any a ∈ Bd

j must land in one∞
of these cubes, so |a − bj | ≤ ε as desired. There are c/εd of such b∞ j ’s for some constant
c > 0. Thus

N(Bd , dx∞ 1 , ε) ≤ c/εd.

We now plug this value into the theorem to obtain

R̂x 2 log(c/εd)
n(F) ≤ inf .

ε

{
ε+

≥0

√
n

}

Optimizing over all choices of ε gives√
d log(n)

ε∗ = c
n

⇒ R̂x
n(F) ≤ c

√
d log(n)

.
n

Note that in this final inequality, the conditional empirical risk no longer depends on
x, since we “sup’d” x out of the bound during our computations. In general, one should
ignore x unless it has properties which will guarantee a bound which is better than the sup.
Another important thing to note is that we are only considering one granularity of F in our
final result, namely the one associated to ε∗. It is for this reason that we pick up an extra
log factor in our risk bound. In order to remove this term, we will need to use a technique
called chaining.

5.4 Chaining

We have the following theorem.

Theorem: Assume that |f | ≤ 1 for all f ∈ F . Then{
12
∫ 1

R̂x
n ≤ inf 4ε+

ε>0
√ log(N(, dx))dt .
n 2 , t

ε

√
F

}
(Note that the integrand decays with t.)

Proof. Fix x = (x1, . . . , xn), and for all j = 1, . . . , N , let Vj be a minimal 2−j-net of F
under the dx2 metric. (The number N will be determined later.) For a fixed f ∈ F , this
process will give us a “chain” of points fi

◦ which converges to f : dx2(fi
◦, f) ≤ 2−j .

Define F = {(f(x1), . . . , f(xn))>, f ∈ F} ⊂ [−1, 1]n. Note that

R̂x 1
n(F) = IE sup

n f∈F
〈σ, f〉

where σ = (σ1, . . . , σn). Observe that for all N , we can rewrite 〈σ, f〉 as a telescoping sum:

〈σ, f〉 = 〈σ, f − fN◦ 〉+ 〈σ, fN◦ − fN◦ −1〉+ . . .+ 〈σ, f1◦ − f0◦〉

42

where f0
◦ := 0. Thus

N

R̂x 1 1
n(F) ≤ IE sup |〈σ, f − fN◦ 〉|+ I f

n f∈F

∑
E sup σ,

n j
◦ fj

◦

f F
−1 .

j=1

|〈 − 〉|
∈

We can control the two terms in this inequality separately. Note first that by the Cauchy-
Schwarz inequality,

1 dx2(f, fN
◦)

IE sup |〈σ, f − fN◦ 〉| ≤ |σ|2n f
√ .
n∈F

Since |σ|2 =
√
n and dx2(f, fN

◦) ≤ 2−N , we have

1
IE sup |〈σ, f − fN◦ 2

n f∈F
〉| ≤ −N .

Now we turn our attention to the second term in the inequality, that is

N

S =
∑ 1

IE sup |〈σ, fj◦ − fj◦n fj=1 ∈F
−1〉|.

Note that since fj
◦ ∈ Vj and fj

◦
−1 ∈ Vj V−1, there are at most | j ||Vj−1| possible differences

fj
◦ − fj◦ .−1 Since |V 2

j 1| ≤ |V− j |/2, |Vj ||Vj 1| ≤ |Vj | /2 and we find ourselves in the finite−
dictionary case. We employ a risk bound from earlier in the course to obtain the inequality√

2 log(2
Rn(B) ≤ max

b B
|b|2

|B|)
.

∈ n

In the present case, B = {fj◦ − fj◦−1 , f ∈ F} so that |B| ≤ |Vj |2/2. It yields

2 |2
2 log(

|Vj) log
R 2 Vj

n(B)
|

·

√
|

≤ r = 2r
n

·
√

,
n

where r = supf∈F |fj◦ − fj◦−1|2. Next, observe that

|fj◦ − fj◦ 1|2 =
√
n d− · x

2(fj
◦, fj
◦
−1)

√ √
≤ n(dx2(fj

◦, f) + dx2(f, fj
◦)) 3 2−j n .−1 ≤ ·

by the triangle inequality and the fact that dx(f◦, f) ≤ 2−j2 j . Substituting this back into our
bound for Rn(B), we have

log
(B)

|Vj
6 2−jn

√
|| ,

2 j ())≤ · = 6
n

· −
√

log(N F dx2 , 2
−j

R
n

since V j
j was chosen to be a minimal 2− -net.

The proof is almost complete. Note that 2−j = 2(2−j − 2−j−1) so that

N
6√
∑ N

12
2−j
√

log(N(F , dx2 , 2−j)) = √
∑

(2−j − 2−j−1)
√

log(N(F , dx2 , 2−j)) .n n
j=1 j=1

Next, by comparing sums and integrals (Figure 1), we see that

∑N
(2−j

j=1

− 2−j−1)
√ 1

log(N(F , dx2 , 2−j)) ≤
∫ /2

log(N(, dx2 , t))dt.
2−(N+1)

√
F

43

Figure 1: A comparison of the sum and integral in question.

So we choose N such that 2−(N+2) ≤ ε ≤ 2−(N+1), and by combining our bounds we obtain

12 1/2 1

R̂x) ≤ 2−Nn(F + √
n

∫ √
log(N(F , dx2 , t))dt

2−(+1)

≤ 4ε+
N

∫ √
log(N,

ε
F , t)dt

since the integrand is non-negative. (Note: this integral is known as the “Dudley Entropy
Integral.”)

Returning to our earlier example, since N(F , dx2 , ε) ≤ c/εd, we have

1

R̂x
n(F) ≤ inf

{
12

4ε+ √
∫ √

log((c′/t)d)dt
ε>0 n ε

}
.

Since
∫ 1√

log(c/t)dt = c̄ is finite, we then have0

R̂x
n(F) ≤ 12c̄

√
d/n.

Using chaining, we’ve been able to remove the log factor!

5.5 Back to Learning

We want to bound

n
1Rn(` ◦ F) = sup IE sup σi`(yi, f(xi)) .

(x1,y1),...,(xn,yn)

[
f∈F

∣∣∣
n

∑
i

x

∣
=1

∣∣]∣
R̂We consider n(Φ ◦ F n) = IE iΦ

∣
[
supf

∣∣ 1 ∑
i=1 σ ◦ f(x)∈F i for some Ln

∣∣
-Lipschitz function

Φ, that is |Φ(a)− Φ(b)| ≤ L|a− b| for all a, b ∈ [−1, 1]. We

∣∣]
have the following lemma.

44

Theorem: (Contraction Inequality) Let Φ be L-Lipschitz and such that Φ(0) = 0,
then

R̂x
n(Φ ◦ F) ≤ R̂2L · x

n(F) .

The proof is omitted and the interested reader should take a look at [LT91, Kol11] for
example.

As a final remark, note that requiring the loss function to be Lipschitz prohibits the use
of R-valued loss functions, for example `(Y, ·) = (Y − ·)2.

45

18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet Lecture 8
Scribe: Quan Li Oct. 5, 2015

Part II

Convexity

1. CONVEX RELAXATION OF THE EMPIRICAL RISK MINIMIZATION

ˆIn the previous lectures, we have proved upper bounds on the excess risk R(herm)−R(h∗)
of the Empirical Risk Minimizer

ĥerm
1

= argmin
h∈H

n

1I(Yi = h(Xi)). (1.1)
n

∑

i=1

6

However due to the nonconvexity of the objective function, the optimization problem
(1.1) in general can not be solved efficiently. For some choices of H and the classification
error function (e.g. 1I(·)), the optimization problem can be NP-hard. However, the problem
we deal with has some special features:

1. Since the upper bound we obtained on the excess risk is O(
√

d logn), we only need ton

approximate the optimization problem with error up to O(
√

d logn
n).

2. The optimization problem corresponds to the average case problem where the data
i.i.d

(Xi, Yi) ∼ PX,Y .

3. H can be chosen to be some ’natural’ classifiers, e.g. H = {half spaces}.

These special features might help us bypass the computational issue. Computational
issue in machine learning have been studied for quite some time (see, e.g. [Kea90]), especially
in the context of PAC learning. However, many of these problems are somewhat abstract
and do not shed much light on the practical performance of machine learning algorithms.

To avoid the computational problem, the basic idea is to minimize a convex upper bound
of the classification error function 1I(·) in (1.1). For the purpose of computation, we shall
also require that the function class H be a convex set. Hence the resulting minimization
becomes a convex optimization problem which can be solved efficiently.

1.1 Convexity

Definition: A set C is convex if for all x, y ∈ C and λ ∈ [0, 1], λx+ (1− λ)y ∈ C.

46

Definition: A function f : D → IR on a convex domain D is convex if it satisfies

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀x, y ∈ D, and λ ∈ [0, 1].

1.2 Convex relaxation

The convex relaxation takes three steps.

Step 1: Spinning.
Using a mapping Y 7→ 2Y −1, the i.i.d. data (X1, Y1), (X2, Y2), . . . , (Xn, Yn) is transformed
to lie in X ×{−1, 1}. These new labels are called spinned labels. Correspondingly, the task
becomes to find a classifier h : X 7→ {−1, 1}. By the relation

h(X) 6= Y ⇔ −h(X)Y > 0,

we can rewrite the objective function in (1.1) by

n n
1 ∑ 1

1I(h(Xi) = Yi) =
∑

ϕ1I(h
n n

i=1 i=1

− (Xi)Yi) (1.2)

where ϕ1I(z) = 1I(z > 0).

Step 2: Soft classifiers.
The set H of classifiers in (1.1) contains only functions taking values in {−1, 1}. As a result,
it is non convex if it contains at least two distinct classifiers. Soft classifiers provide a way
to remedy this nuisance.

Definition: A soft classifier is any measurable function f : X → [−1, 1]. The hard
classifier (or simply “classifier”) associated to a soft classifier f is given by h = sign(f).

Let F ⊂ IRX be a convex set soft classifiers. Several popular choices for F are:

• Linear functions:
F := {〈a, x〉 : a ∈ A}.

for some convex set A ∈ IRd. The associated hard classifier h = sign(f) splits IRd into
two half spaces.

• Majority votes: given weak classifiers h1, . . . , hM ,

M M

F :=
{∑

λjhj(x) : λj

j=

≥ 0,
∑

λj = 1
}

.
1 j=1

• Let ϕj , j = 1, 2, . . . a family of functions, e.g., Fourier basis or Wavelet basis. Define

∞

F := {
∑

θjϕj(x) : (θ1, θ2, . . .)
j=1

∈ Θ},

where Θ is some convex set.

6

47

Step 3: Convex surrogate.
Given a convex set F of soft classifiers, using the rewriting in (1.2), we need to solve that
minimizes the empirical classification error

1
min
f∈F

n

ϕ1I(f(Xi)Yi),
n

∑

i=1

−

However, while we are now working with a convex constraint, our objective is still not
convex: we need a surrogate for the classification error.

Definition: A function ϕ : IR 7→ IR+ is called a convex surrogate if it is a convex
non-decreasing function such that ϕ(0) = 1 and ϕ(z) ≥ ϕ1I(z) for all z ∈ IR.

The following is a list of convex surrogates of loss functions.

• Hinge loss: ϕ(z) = max(1 + z, 0).

• Exponential loss: ϕ(z) = exp(z).

• Logistic loss: ϕ(z) = log2(1 + exp(z)).

To bypass the nonconvexity of ϕ1I(·), we may use a convex surrogate ϕ(·) in place of
ˆϕ1I(·) and consider the minimizing the empirical ϕ-risk Rn,ϕ defined by

1
R̂n,ϕ(f) =

n

n∑

i=1

ϕ(−Yif(Xi))

It is the empirical counterpart of the ϕ-risk Rϕ defined by

Rϕ(f) = IE[ϕ(−Y f(X))].

1.3 ϕ-risk minimization

In this section, we will derive the relation between the ϕ-risk Rϕ(f) of a soft classifier f and
the classification error R(h) = IP(h(X) = Y) of its associated hard classifier h = sign(f)

Let
f∗
ϕ = argminE[ϕ(Y

f∈IRX

− f(X))]

where the infimum is taken over all measurable functions f : X → IR.
To verify that minimizing the ϕ serves our purpose, we will first show that if the convex

surrogate ϕ(·) is differentiable, then sign(f∗
ϕ(X)) ≥ 0 is equivalent to η(X) ≥ 1/2 where

η(X) = IP(Y = 1 | X). Conditional on {X = x}, we have

IE[ϕ(−Y f(X)) | X = x] = η(x)ϕ(−f(x)) + (1− η(x))ϕ(f(x)).

Let

Hη(α) = η(x)ϕ(−α) + (1− η(x))ϕ(α) (1.3)

6

48

so that

f∗
ϕ(x) = argminH ∗

η(α) , and Rϕ = min Rϕ(f) = minHη)
α f∈IRX

(x)(α .
α∈IR∈IR

Since ϕ(·) is differentiable, setting the derivative of H ∗
η(α) to zero gives fϕ(x) = ᾱ, where

H ′
η(ᾱ) = −η(x)ϕ′(−ᾱ) + (1− η(x))ϕ′(ᾱ) = 0,

which gives
η(x) ϕ′(ᾱ)

=
1− η(x) ϕ′(−ᾱ)

Since ϕ(·) is a convex function, its derivative ϕ′(·) is non-decreasing. Then from the equation
above, we have the following equivalence relation

1
η(x) ≥ ⇔ ᾱ ≥ 0 ⇔ sign(f∗

2 ϕ(x)) ≥ 0. (1.4)

Since the equivalence relation holds for all x ∈ X ,

1
η(X) ≥ ⇔ sign(f∗

ϕ(X))
2

≥ 0.

The following lemma shows that if the excess ϕ-risk R (f)−R∗
ϕ ϕ of a soft classifier f is

small, then the excess-risk of its associated hard classifier sign(f) is also small.

Lemma (Zhang’s Lemma [Zha04]): Let ϕ : IR 7→ IR+ be a convex non-decreasing
function such that ϕ(0) = 1. Define for any η ∈ [0, 1],

τ(η) := inf Hη(α).
α∈IR

If there exists c > 0 and γ ∈ [0, 1] such that

1
|η − c

2
| ≤ (1 − τ(η))γ , ∀η ∈ [0, 1] , (1.5)

then
R(sign(f))−R∗ ≤ 2c(Rϕ(f)−R∗

ϕ)
γ

Proof. Note first that τ(η) ≤ Hη(0) = ϕ(0) = 1 so that condition (2.5) is well defined.
Next, let h∗ = argminh∈{−1,1}X IP[h(X) = Y] = sign(η−1/2) denote the Bayes classifier,

where η = IP[Y = 1|X = x], . Then it is easy to verify that

R(sign(f))−R∗ = IE[|2η(X) − 1|1I(sign(f(X)) = h∗(X))]

= IE[|2η(X) − 1|1I(f(X)(η(X) − 1/2) < 0)]

≤ 2cIE[((1− τ(η(X)))1I(f(X)(η(X) − 1/2) < 0))γ]

≤ 2c (IE[(1− τ(η(X)))1I(f(X)(η(X) − 1/2) < 0)])γ ,

where the last inequality above follows from Jensen’s inequality.

6

6

49

We are going to show that for any x ∈ X , it holds

(1− τ(η))1I(f(x)(η(x) − 1/2) < 0)] ≤ IE[ϕ(−Y f(x)) | X = x]−R∗
ϕ . (1.6)

This will clearly imply the result by integrating with respect to x.
Recall first that

IE[ϕ(−Y f(x)) | X = x] = Hη(x)(f(x)) and R∗
ϕ = minHη(x)(α) = τ(η(x)) .

α∈IR

so that (2.6) is equivalent to

(1− τ(η))1I(f(x)(η(x) − 1/2) < 0)] ≤ Hη(x)(α) − τ(η(x))

Since the right-hand side above is nonnegative, the case where f(x)(η(x)− 1/2) ≥ 0 follows
trivially. If f(x)(η(x)−1/2) < 0, (2.6) follows if we prove that Hη(x)(α) ≥ 1. The convexity
of ϕ(·) gives

Hη(x)(α) = η(x)ϕ(−f(x)) + (1− η(x))ϕ(f(x))

≥ ϕ(−η(x)f(x) + (1− η(x))f(x))

= ϕ((1− 2η(x))f(x))

≥ ϕ(0) = 1 ,

where the last inequality follows from the fact that ϕ is non decreasing and f(x)(η(x) −
1/2) < 0. This completes the proof of (2.6) and thus of the Lemma.

IT is not hard to check the following values for the quantities τ(η), c and γ for the three
losses introduced above:

• Hinge loss: τ(η) = 1− |1− 2η| with c = 1/2 and γ = 1.

• Exponential loss: τ(η) = 2
√

η(1− η) with c = 1/
√
2 and γ = 1/2.

• Logistic loss: τ(η) = −η log η − (1− η) log(1− η) with c = 1/
√
2 and γ = 1/2.

50

18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet Lecture 9
Scribe: Xuhong Zhang Oct. 7, 2015

Recall that last lecture we talked about convex relaxation of the original problem

n
1

ĥ = argmin 1I(h(Xi) = Yi)
h∈H n

∑

i=1

by considering soft classifiers (i.e. whose output is in [−1, 1] rather than in {0, 1}) and
convex surrogates of the loss function (e.g. hinge loss, exponential loss, logistic loss):

n
1ˆ ˆf = argminRϕ,n(f) = argmin ϕ(Yif(Xi))

f∈F f∈F n

∑

i=1

−

ˆ ˆAnd h = sign(f) will be used as the ‘hard’ classifier.

ˆ ¯ ¯We want to bound the quantity Rϕ(f)−Rϕ(f), where f = argminf∈F Rϕ(f).

ˆ ˆ(1) f = argminf∈F Rϕ,n(f), thus

ˆ ¯ ˆ ¯ ˆ ¯ ˆ ˆ ˆ ˆ ˆ ¯Rϕ(f) = Rϕ(f) +Rϕ,n(f)−Rϕ,n(f) +Rϕ,n(f)−Rϕ,n(f) +Rϕ(f)−Rϕ(f)

≤ ¯ ˆ ¯ ˆ ˆ ˆ ¯Rϕ(f) +Rϕ,n(f)−Rϕ,n(f) +Rϕ(f)−Rϕ(f)

≤ ¯ ˆRϕ(f) + 2 sup |Rϕ,n(f)−Rϕ(f)
f∈F

|

ˆ(2) Let us first focus on E[supf∈F |Rϕ,n(f)−Rϕ(f)|]. Using the symmetrization trick as
before, we know it is upper-bounded by 2Rn(ϕ◦F), where the Rademacher complexity

n
1

Rn(ϕ ◦ F) = sup E[sup |
∑

σiϕ(−Yif(Xi))]
X1,...,Xn,Y1,...,Yn f∈F n

i=1

|

One thing to notice is that ϕ(0) = 1 for the loss functions we consider (hinge loss,
exponential loss and logistic loss), but in order to apply contraction inequality later,
we require ϕ(0) = 0. Let us define ψ(·) = ϕ(·) − 1. Clearly ψ(0) = 0, and

n
1

E[sup |
∑

(ϕ(−Yif(Xi))− E[ϕ(−Yif(Xi))])]
f∈F n

i=1

|

n
1

= E[sup |
∑

(ψ(−Yif(X) − Ei) [ψ(i

1

−Yif(X))])
f∈F n

i=

|]

≤ 2Rn(ψ ◦ F)

(3) The Rademacher complexity of ψ ◦ F is still difficult to deal with. Let us assume
that ϕ(·) is L-Lipschitz, (as a result, ψ(·) is also L-Lipschitz), apply the contraction
inequality, we have

Rn(ψ ◦ F) ≤ 2LRn(F)

6

51

(4) Let Zi = (Xi, Yi), i = 1, 2, ..., n and

n
1

g(Z1, Z2
ˆ, ..., Zn) = sup |Rϕ,n(f)−Rϕ(f) =

f
| sup

∈F f∈F
|
n

∑

(ϕ(
i=1

−Yif(Xi))−E[ϕ(−Yif(Xi))])|

Since ϕ(·) is monotonically increasing, it is not difficult to verify that ∀Z1, Z2, ..., Zn, Z
′
i

1 2L
|g(Z1, ..., Zi, ..., Zn)− g(Z1, ..., Z

′
i, ..., Zn)| ≤ (ϕ(1) − ϕ(

n
−1)) ≤

n

The last inequality holds since g is L-Lipschitz. Apply Bounded Difference Inequality,

2t2
P(| s | ˆ ˆup Rϕ,n(f)−Rϕ(f)| − E[sup |Rϕ,n(f)−Rϕ(f)|] >

F ∈F

| t) ≤ 2 exp(
∈

−)
f

∑n
f i= (2L)2

1 n

Set the RHS of above equation to δ, we get:

log(2/δ)ˆ ˆsup R Eϕ,n(f) Rϕ(f) [sup Rϕ,n(f)
f∈F

| − | ≤
f∈F

| −Rϕ(f)|] + 2L

√

2n

with probability 1− δ.

(5) Combining (1) - (4), we have

ˆ ¯Rϕ(f) ≤ Rϕ(f) + 8LRn(F) + 2L

√

log(2/δ)

2n

with probability 1− δ.

1.4 Boosting

In this section, we will specialize the above analysis to a particular learning model: Boosting.
The basic idea of Boosting is to convert a set of weak learners (i.e. classifiers that do better
than random, but have high error probability) into a strong one by using the weighted
average of weak learners’ opinions. More precisely, we consider the following function class

M

F = {
∑

θjhj(·) : |θ|1 ≤ 1, hj : X 7→ [−1, 1], j ∈ {1, 2, ...,M a
j=1

} re classifiers}

and we want to upper bound Rn(F) for this choice of F .

n M n
1 1

Rn(F) = sup E[sup σiYif(Xi)] = sup E[sup θj Yiσihj(Xi)]
Z1,...,Zn f∈F

|
n

∑

n Z |θ|1≤11

|
1,...,Zi= n

|
∑

j=1

∑

i=1

|

Let g(θ) = |
∑M

j=1
θj
∑n

i=1
Yiσihj(Xi)|. It is easy to see that g(θ) is a convex function, thus

sup|θ|1≤1 g(θ) is achieved at a vertex of the unit ℓ1 ball {θ : ‖θ‖1 ≤ 1}. Define the finite set


Y1h1(X1)

 
Y1h2(X1)

 
Y1hM (X1){

Y2h1(X2) Y2h2(X2) Y2hM (X2)
BX,Y ,


. , , . . . ,
.



±



.
± ±

}

Ynh1(Xn)





 




. ..

Ynh2(Xn)










.. .
YnhM (Xn)





52

Then
Rn(F) = supRn(BX,Y) .

X,Y

Notice maxb∈BX,Y
b

√
| |2 ≤ n and |BX,Y| = 2M . Therefore, using a lemma from Lecture 5,

we get

2 log(2 B 2 4
R

X,Y) log(M)
n(BX,Y) ≤ max

b∈BX,Y

|b|2

√
| |

n
≤

√

n

Thus for Boosting,

[]

2 log(4M) log(2/δ)ˆ ¯Rϕ(f) ≤ Rϕ(f) + 8L

√

+ 2L

√

with probability 1 - δ
n 2n

To get some ideas of what values L usually takes, consider the following examples:

(1) for hinge loss, i.e. ϕ(x) = (1 + x)+, L = 1.

(2) for exponential loss, i.e. ϕ(x) = ex, L = e.

(3) for logistic loss, i.e. ϕ(x) = log2(1 + ex), L = e
1+e log2(e) ≈ 2.43

ˆ ¯Now we have bounded Rϕ(f) − Rϕ(f), but this is not yet the excess risk. Excess risk is
ˆdefined as R(f) − R(f∗), where f∗ = argminf Rϕ(f). The following theorem provides a

bound for excess risk for Boosting.

Theorem: Let F = {
∑M

j=1
θjhj : ‖θ‖1 ≤ 1, hjs are weak classifiers} and ϕ is an L-

ˆ ˆ ˆLipschitz convex surrogate. Define f = argminf∈F Rϕ,n(f) and h = sign(f). Then

γ γ

∗
(

∗
)γ

(

2 log(4M) log(2/δ)ˆR(h)−R ≤ 2c inf Rϕ(f)−Rϕ(f) +2c 8L +
f∈F

√

n

)

2c

(

2L

√

2n

)

with probability 1− δ

Proof.

ˆR(h)−R∗ ≤ 2c
(γ
Rϕ(f)−Rϕ(f

∗)
)

(γ

∗ 2 log(4M) log(2/δ)
≤ 2c inf Rϕ(f) Rϕ(f) + 8L + 2L

f∈F
−

√

n

√

2n

)

γ

∗ γ 2 log(4M) log(2/δ)
≤ 2c inf Rϕ(f)−Rϕ(f) + 2c

f∈F

(

8L

√

n

)

+ 2c

(

2L

√

2n

)γ
()

Here the first inequality uses Zhang’s lemma and the last one uses the fact that for ai ≥ 0
and γ ∈ [0, 1], (a1 + a γ

2 + a3) ≤ aγ1 + aγ2 + aγ3 .

1.5 Support Vector Machines

In this section, we will apply our analysis to another important learning model: Support
Vector Machines (SVMs). We will see that hinge loss ϕ(x) = (1 + x)+ is used and the
associated function class is F = {f : ‖f‖W ≤ λ} where W is a Hilbert space. Before
analyzing SVMs, let us first introduce Reproducing Kernel Hilbert Spaces (RKHS).

53

1.5.1 Reproducing Kernel Hilbert Spaces (RKHS)

Definition: A function K : X × X 7→ IR is called a positive symmetric definite kernel
(PSD kernel) if

(1) ∀x, x′ ∈ X , K(x, x′) = K(x′, x)

(2) ∀n ∈ Z+, ∀x1, x2, ..., xn, the n
th

× n matrix with K(xi, xj) as its element in ith row
and j column is positive semi-definite. In other words, for any a1, a2, ..., an ∈ IR,

∑

aiajK(xi, xj) 0
i,j

≥

Let us look at a few examples of PSD kernels.

Example 1 Let X = IR, K(x, x′) = 〈x, x′〉IRd is a PSD kernel, since ∀a1, a2, ..., an ∈ IR
∑

aiaj〈xi, xj〉IRd =
∑

〈aixi, ajxj〉IRd = 〈
∑

aixi,
∑

ajxj〉IRd = ‖
∑

a 2
ixi‖IRd 0

i,j i,j i j i

≥

Example 2 The Gaussian kernel K(x, x′) = exp(− 1 2

2
‖ ′

2 x− x ‖
IRd) is also a PSD kernel.

σ

Note that here and in the sequel, ‖ · ‖W and 〈·, ·〉W denote the norm and inner product
of Hilbert space W .

Definition: LetW be a Hilbert space of functions X 7→ IR. A symmetric kernel K(·, ·)
is called reproducing kernel of W if

(1) ∀x ∈ X , the function K(x, ·) ∈W .

(2) ∀x ∈ X , f ∈W , 〈f(·),K(x, ·)〉W = f(x).

If such a K(x, ·) exists, W is called a reproducing kernel Hilbert space (RKHS).

Claim: If K(·, ·) is a reproducing kernel for some Hilbert space W , then K(·, ·) is a
PSD kernel.

Proof. ∀a1, a2, ..., an ∈ IR, we have
∑

aiajK(xi, xj) =
∑

aiaj〈K(xi, ·),K(xj , ·)〉 (since K(,) is reproducing)
i,j i,j

· ·

= 〈
∑

aiK(xi,), ajK(xj ,) W

i

·
∑

j

· 〉

= ‖
∑

aiK(xi,
i

·)‖2W ≥ 0

54

In fact, the above claim holds both directions, i.e. if a kernel K(·, ·) is PSD, it is also a
reproducing kernel.

A natural question to ask is, given a PSD kernel K(·, ·), how can we build the corresponding
Hilbert space (for which K(·, ·) is a reproducing kernel)? Let us look at a few examples.

Example 3 Let ϕ1, ϕ2, ..., ϕM be a set of orthonormal functions in L2([0, 1]), i.e. for any
j, k ∈ {1, 2, ...,M}

∫

ϕj(x)ϕk(x)dx =
x

〈ϕj , ϕk〉 = δjk

Let K(x, x′) =
∑M

j=1
ϕj(x)ϕj(x

′). We claim that the Hilbert space

M

W = {
∑

ajϕj(:
=1

·) a1, a2, ..., aM
j

∈ IR}

equipped with inner product 〈·, ·〉L2
is a RKHS with reproducing kernel K(·, ·).

MProof. (1) K(x, ·) = j=1
ϕj(x)ϕj(·) ∈W . (Choose aj = ϕj(x)).

(2) If f(·) =
∑M

j=1
aj

∑

ϕj(·),

M M M

〈f(·),K(x, ·)〉L2
= 〈
∑

ajϕj(·),
∑

ϕk(x)ϕk(·)〉L2
=
∑

ajϕj(x) = f(x)
j=1 k=1 j=1

(3) K(x, x′) is a PSD kernel: ∀a1, a2, ..., an ∈ IR,

∑

aiajK(x 2
i, xj) =

∑

aiajϕk(xi)ϕk(xj) =
∑

(
∑

aiϕk(xi))
i,j i,j,k k i

≥ 0

Example 4 If X = IRd, and K(x, x′) = 〈x, x′〉IRd , the corresponding Hilbert space is
W = {〈w, ·〉 : w ∈ IRd} (i.e. all linear functions) equipped with the following inner product:
if f = 〈w, ·〉, g = 〈v, ·〉, 〈f, g〉 , 〈w, v〉IRd .

Proof. (1) ∀x ∈ IRd, K(x, ·) = 〈x, ·〉IRd ∈W .

(2) ∀f = 〈w, ·〉IRd ∈W , ∀x ∈ IRd, 〈f,K(x, ·)〉 = 〈w, x〉IRd = f(x)

(3) K(x, x′) is a PSD kernel: ∀a1, a2, ..., an ∈ IR,

∑

aiajK(xi, xj) =
∑

aiaj ,
,j i,j

〈xi xj
i

〉 = 〈
∑

aixi,
i

∑

ajxj
j

〉IRd = ‖
∑

aix
2

i IRd 0
i

‖ ≥

55

18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet Lecture 10
Scribe: Aden Forrow Oct. 13, 2015

Recall the following definitions from last time:

Definition: A function K : X × X 7→ R is called a positive symmetric definite kernel
(PSD kernel) if

1. ∀x, x′ ∈ X ,K(x, x′) = K(x′, x)

2. ∀n ∈ Z+,∀x1, x2, . . . , xn, the n× n matrix with entries K(xi, xj) is positive defi-
nite. Equivalently, ∀a R1, a2, . . . , an ∈ ,

n∑

aiajK(xi, xj)
i,j=1

≥ 0

Definition: Let W be a Hilbert space of functions X 7→ R. A symmetric kernel K(·, ·)
is called a reproducing kernel of W if

1. ∀x ∈ X , the function K(x, ·) ∈ W .

2. ∀x ∈ X , ∀f ∈ W , 〈f(·),K(x, ·)〉W = f(x).

If such a K(x, ·) exists, W is called a reproducing kernel Hilbert space (RKHS).

As before, 〈·, ·〉W and ‖ · ‖W respectively denote the inner product and norm of W . The
subscript W will occasionally be omitted. We can think of the elements of W as infinite
linear combinations of functions of the form K(x, ·). Also note that

〈K(x, ·),K(y, ·)〉W = K(x, y)

Since so many of our tools rely on functions being bounded, we’d like to be able to
bound the functions in W . We can do this uniformly over x ∈ X if the diagonal K(x, x) is
bounded.

Proposition: Let W be a RKHS with PSD K such that supx∈X K(x, x) = kmax is
finite. Then ∀f ∈ W ,

sup |f(x)| ≤ ‖f‖W
√

kmax
x∈X

.

Proof. We rewrite f(x) as an inner product and apply Cauchy-Schwartz.

f(x) = 〈f,K(x, ·)〉W ≤ ‖f‖W‖K(x, ·)‖W

Now ‖K(x, ·)‖2W = 〈K(x, ·),K(x, ·)〉W = K(x, x) ≤ kmax. The result follows immediately.

56

1.5.2 Risk Bounds for SVM

We now analyze support vector machines (SVM) the same way we analyzed boosting. The
general idea is to choose a linear classifier that maximizes the margin (distance to classifiers)
while minimizing empirical risk. Classes that are not linearly separable can be embedded
in a higher dimensional space so that they are linearly separable. We won’t go into that,
however; we’ll just consider the abstract optimization over a RKHS W .

Explicitly, we minimize the empirical ϕ-risk over a ball in W with radius λ:

ˆ ˆf = min Rn,ϕ(f)
f∈W,‖f‖W≤λ

ˆ ˆ ˆThe soft classifier f is then turned into a hard classifier h = sign(f). Typically in SVM ϕ
is the hinge loss, though all our convex surrogates behave similarly. To choose W (the only
other free parameter), we choose a PSD K(x1, x2) that measures the similarity between two
points x1 and x2.

As written, this is an intractable minimum over an infinite dimensional ball {f, ‖f‖W ≤
λ}. The minimizers, however, will all be contained in a finite dimensional subset.

Theorem: Representer Theorem. Let W be a RKHS with PSD K and let G :
n

R 7→ R be any function. Then

min G(f(x1), . . . , f(xn)) = min G(f(x1), . . . , f(xn))
f∈W,‖f‖≤λ ∈ ¯f Wn, ‖f‖≤λ

= min G(gα(x1), . . . , gα(xn)),
α∈Rn, α⊤IKα≤λ2

where
n

W̄n = {f ∈ W |f(·) = gα(·) =
∑

αiK(xi,
i=1

·)}

and IKij = K(xi, xj).

Proof. ¯Since Wn is a linear subspace of W , we can decompose any f W uniquely as
¯ ⊥ ¯∈ ¯ ⊥

∈
f = f + f with f Wn and f ∈ W̄⊥

n . The Pythagorean theorem then gives

‖f‖2W = ‖f̄‖2W + ‖f⊥‖2W

¯Moreover, since K(xi, ·) ∈ Wn,

f⊥(xi) = 〈f⊥,K(xi, ·)〉W = 0

¯So f(xi) = f(xi) and

G(f(x1 ¯ ¯), . . . , f(xn)) = G(f(x1), . . . , f(xn)).

Because f⊥ does not contribute to G, we can remove it from the constraint:

¯ ¯min G(f(x1), . . . , f(xn)) = min G(f(x1), . . . , f(xn)).
¯f∈W,‖f‖2+‖f⊥‖2≤λ2 f∈ ‖ ¯W, f‖2≤λ2

57

¯Restricting to f ∈ Wn now does not change the minimum, which gives us the first equality.
For the second, we need to show that ‖gα‖W ≤ λ is equivalent to α⊤IKα ≤ λ2.

‖gα‖
2 = 〈gα, gα

n

〉
n

= 〈
∑

αiK(xi,
i=1

·),

n

∑

αjK(xj ,
=1

·)
j

〉

=
∑

αiαj〈K(xi, (
,j=1

·),K xj ,
i

·)〉

n

=
∑

αiαjK(xi, xj)
i,j=1

= α⊤IKα

We’ve reduced the infinite dimensional problem to a minimization over α ∈ n
R . This

works because we’re only interested in G evaluated at a finite set of points. The matrix
IK here is a Gram matrix, though we will not not use that. IK should be a measure of the
similarity of the points xi. For example, we could have W = {〈x, ·〉

Rd , x ∈ d
R } with K(x, y

the usual inner product K(x, y) = 〈x, y〉Rd .
ˆ ˆWe’ve shown that f only depends on K through IK, but does Rn,ϕ depend on K(x, y)

for x, y ∈/ {xi}? It turns out not to:

n n n
1

R̂n,ϕ =
∑ 1

ϕ(−Yigα(xi)) =
∑

ϕ(−Yi

∑

αjK(xj , xi)).
n n

i=1 i=1 j=1

The last expression only involves IK. This makes it easy to encode all the knowledge about
our problem that we need. The hard classifier is

n

ˆ ˆh(x) = sign(f(x)) = sign(gα̂(x)) = sign(
∑

α̂jK(xj, x))
j=1

If we are given a new point xn+1, we need to compute a new column for IK. Note that
xn+1 must be in some way comparable or similar to the previous {xi} for the whole idea of
extrapolating from data to make sense.

The expensive part of SVMs is calculating the n × n matrix IK. In some applications,
IK may be sparse; this is faster, but still not as fast as deep learning. The minimization
over the ellipsoid α⊤IKα requires quadratic programming, which is also relatively slow. In
practice, it’s easier to solve the Lagrangian form of the problem

n
1

α̂ = argmin
∑

ϕ(−Yigα(x
′ ⊤

i)) + λ α IKα
α∈Rn n

i=1

This formulation is equivalent to the constrained one. Note that λ and λ′ are different.
SVMs have few tuning parameters and so have less flexibility than other methods.
We now turn to analyzing the performance of SVM.

58

Theorem: Excess Risk for SVM. Let ϕ be an L-Lipschitz convex surrogate and
ˆ ˆW a RKHS with PSD K such that maxx |K(x, x)| = kmax < ∞. Let hn,ϕ = sign fn,ϕ,

ˆwhere fn,ϕ is the empirical ϕ-risk minimizer over F = {f
ˆ ˆ ˆ

∈ W.‖f‖W ≤ λ} (that is,

Rn,ϕ(fn,ϕ) ≤ Rn,ϕ(f)∀f ∈ F). Suppose λ
√
kmax ≤ 1. Then

ˆR(hn,ϕ)−R∗ ≤ 2c

(γ γγ kmax 2 log(2/δ)
inf (Rϕ(f)−R∗

ϕ)

)

+2c

(

8Lλ +
f∈

√

2L
F n

)

2c

(√

n

)

with probability 1− δ. The constants c and γ are those from Zhang’s lemma. For the
hinge loss, c = 1

2 and γ = 1.

Proof. The first term comes from optimizing over a restricted set F instead of all classifiers.
The third term comes from applying the bounded difference inequality. These arise in
exactly the same way as they do for boosting, so we will omit the proof for those parts. For

the middle term, we need to show that Rn,ϕ(F) ≤ λ kmax

n .

First, |f(x)| ≤ ‖f‖W
√
kmax ≤ λ

√
kmax ≤ 1 for all

√

f ∈ F , so we can use the contraction
inequality to replace Rn,ϕ(F) with Rn(F). Next we’ll expand f(xi) inside the Rademacher
complexity and bound inner products using Cauchy-Schwartz.

n
1

Rn(F) = sup E sup σif(xi)
x1,...,xn

[

f∈F

∣
∣

∣

n
i=1

∣
∣]

∑

∣
∣

∣

n
1

= sup E

[

sup
∣
∣

∣
∑

σ

∣

i K(x

∣

〈 i, ·), f
n x1,...,xn f∈F i=1

〉

∣
∣
]

n
1

∣

= sup E

∣
∣

[

sup

∣
∣
∣
〈
∑

σiK(xi, ·), f

∣

n

∣

x1,...,xn f∈F i=1

〉

∣
∣
]

∣

λ

∣
∣ ∣

≤ sup

√

√
√

√E

[
n

‖
∑

σiK(x 2
i,

∣

n x1,...,xn i=1

·)‖W

]

Now,

n n n
2

E

[

‖
∑

σiK(xi, ·)‖W

]

= E



〈
∑

σiK(xi, ·),
∑

σjK(xj,
i=1 i=1 j=1

·)〉W



n



=
∑

〈K(x Ei, ·),K(xj , ·)〉 [σiσj]
i,j=1

n

=
i

∑

K(xi, xj)δij
,j=1

≤ nkmax

SoRn(F) ≤ λ kmax

n and we are done with the new parts of the proof. The remainder follows

as with boosti

√

ng, using symmetrization, contraction, the bounded difference inequality, and
Zhang’s lemma.

59

18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet Lecture 11
Scribe: Kevin Li Oct. 14, 2015

2. CONVEX OPTIMIZATION FOR MACHINE LEARNING

In this lecture, we will cover the basics of convex optimization as it applies to machine
learning. There is much more to this topic than will be covered in this class so you may be
interested in the following books.

Convex Optimization by Boyd and Vandenberghe
Lecture notes on Convex Optimization by Nesterov
Convex Optimization: Algorithms and Complexity by Bubeck
Online Convex Optimization by Hazan

The last two are drafts and can be obtained online.

2.1 Convex Problems

A convex problem is an optimization problem of the form min f(x) where f and are
x∈C

C
convex. First, we will debunk the idea that convex problems are easy by showing that
virtually all optimization problems can be written as a convex problem. We can rewrite an
optimization problem as follows.

min f(x) , min t , min t
X∈X t≥f(x),x∈X (x,t)∈epi(f)

where the epigraph of a function is defined by

epi(f) = f(x, t) 2 X � IR : t � f(x)g

⇔ ⇔

{ ∈ × ≥ }

Figure 1: An example of an epigraph.
Source: https://en.wikipedia.org/wiki/Epigraph_(mathematics)

60

https://en.wikipedia.org/wiki/Epigraph_(mathematics)

Now we observe that for linear functions,

min c>x = min c>x
x∈D x∈conv(D)

where the convex hull is defined

N N

conv(D) = fy : 9N 2 Z+, x1, . . . , xN 2 D,αi � 0,
∑

αi = 1, y =
i=1

∑
αixi

i=1

g

To prove this, we know that the left side is a least as big as the right side since D � conv(D).
For the other direction, we have

N

min c>x = min min min c> αixi
x∈conv(D) N x1,...,xN∈D α1,...,αN

N

∑
i=1

= min min min αic
>xi min c>x

N x1,...,xN∈D α1,...,αN

∑
=1

�
x∈D

i

N

� min min min αi min c>x
N x1,...,xN∈D α1,...,αN

∑
x

i=1
∈D

= min c>x
x∈D

Therefore we have
min f(x) min
x∈X

, t
(x,t)∈conv(epi(f))

which is a convex problem.
Why do we want convexity? As we will show, convexity allows us to infer global infor-

mation from local information. First, we must define the notion of subgradient.

Definition (Subgradient): Let C � IRd, f : C ! IR. A vector g 2 IRd is called a
subgradient of f at x 2 C if

f(x)� f(y) � g>(x� y) 8y 2 C .

The set of such vectors g is denoted by ∂f(x).

Subgradients essentially correspond to gradients but unlike gradients, they always ex-
ist for convex functions, even when they are not differentiable as illustrated by the next
theorem.

Theorem: If f : C ! IR is convex, then for all x, ∂f(x) = ;. In addition, if f is
differentiable at x, then ∂f(x) = frf(x)g.

Proof. Omitted. Requires separating hyperplanes for convex sets.

6

{ ∃ ∈ ∈ ≥ }

⊂

≥

≥

⇔

⊂ → ∈
∈

− ≤ − ∈

→ 6= ∅
{∇ }

∀

6

61

Theorem: Let f, C be convex. If x is a local minimum of f on C, then it is also global
minimum. Furthermore this happens if and only if 0 2 ∂f(x).

Proof. 0 2 ∂f(x) if and only if f(x) − f(y) � 0 for all y 2 C. This is clearly equivalent to
x being a global minimizer.

Next assume(x is a local minimum. Then for all y 2 C there exists ε small enough such

that f(x) � f (1− ε)x+ εy
)
� (1− ε)f(x) + εf(y) =) f(x) � f(y) for all y 2 C.

Not only do we know that local minimums are global minimums, looking at the subgra-
dient also tells us where the minimum can be. If g>(x − y) < 0 then f(x) < f(y). This
means f(y) cannot possibly be a minimum so we can narrow our search to ys such that
g>(x− y). In one dimension, this corresponds to the half line fy 2 IR : y � xg if g > 0 and
the half line fy 2 IR : y � xg if g < 0 . This concept leads to the idea of gradient descent.

2.2 Gradient Descent

y � x and f differentiable the first order Taylor expansion of f at x yields f(y) � f(x) +
g>(y − x). This means that

min f(x+ εµ̂) � min f(x) + g>(εµ̂)
|µ̂|2=1

gwhich is minimized at µ̂ = − . Therefore to minimizes the linear approximation of f at|g|2
x, one should move in direction opposite to the gradient.

Gradient descent is an algorithm that produces a sequence of points fxjgj≥1 such that
(hopefully) f(xj+1) < f(xj).

∈

∈ ≤ ∈

∈
≤ ≤ ⇒ ≤ ∈

{ ∈ ≤ }
{ ∈ ≥ }

≈ ≈

≈

{ }

Figure 2: Example where the subgradient of x1 is a singleton and and the subgradient of
x2 contains multiple elements.

Source: https://optimization.mccormick.northwestern.edu/index.php/
Subgradient_optimization

62

https://optimization.mccormick.northwestern.edu/index.php/Subgradient_optimization
https://optimization.mccormick.northwestern.edu/index.php/Subgradient_optimization

Algorithm 1 Gradient Descent algorithm

Input: x1 2 C, positive sequence fηsgs≥1
for s = 1 to k � 1 do
xs+1 = xs � ηsgs , gs 2 ∂f(xs)

end for
k

1
return Either x̄ =

k

∑
xs or x◦

s=1

2 argmin f(x)
x∈{x1,...,xk}

Theorem: Let f be a convex L-Lipschitz function on IRd such that x∗ 2 argminIRd f(x)
exists. Assume that jx1 � x∗j2 � R. Then if η R

s = η =
L
√ for all s
k

� 1, then

k
1 LR

f(
k

∑
xs)

s=1

� f(x∗) � p
k

and
LR

min f(xs)
1 s k

� f(x∗) � p
≤ ≤ k

Proof. Using the fact that gs = 1 (x 2
s+1 +η �xs) and the equality 2a>b = kak kbk2�ka�bk2,

1
f(xs)� f(x∗) � gs>(xs � x∗) = (xs

η
� xs+1)

>(xs � x∗)

1
= x 2

s xs+1 + x x∗ 2 x 2
s s+1 x∗

2η

[
k � k k � k � k � k

η 1

]
=

2
kg 2
sk + (δ2

2η s � δ2s+1)

where we have defined δs = kxs � x∗k. Using the Lipschitz condition

η 1
f(xs)� f(x∗) � L2 + (δ2

2 2η s � δ2s+1)

Taking the average from 1, to k we get

k
1 ∑ η η 1 R2

f(xs) f(x∗) � L2 1 η� + (δ2
k 1 � δ2k s)

η
� L2

+1 + δ2
2 2 2kη 1 � L2 +

2 2 2kη
s=1

Taking η = R
L
√ to minimize the expression, we obtain
k

k
1

k

∑ LR
f(xs)

s=1

� f(x∗) � p
k

k

Noticing that the left-hand side of the inequality is larger than both f(
∑

xs) � f(x∗) by
s=1

Jensen’s inequality and min f(xs)
1≤s≤k

� f(x∗) respectively, completes the proof.

∈ { }
−
− ∈

∈

∈
| − | ≤ ≥

− ≤

− ≤ √

− ‖ ‖ ‖ ‖ ‖ ‖

− ≤ − − −

‖ − ‖ ‖ − ‖ − ‖ − ‖

‖ ‖ −

‖ − ‖

− ≤ −

− ≤ − ≤ ≤

− ≤ √

−

−

√

− −

63

One flaw with this theorem is that the step size depends on k. We would rather have
step sizes ηs that does not depend on k so the inequalities hold for all k. With the new step
sizes,

∑k ∑k k k
η2s 2 1

[
∑ R2

ηs f(x)� f x∗)] � L δ2
L

s (+ (δ2s � s+1) η2 +
2 2 s 2 2

s=1 s=1 s=1

�
(∑
s=1

)
After dividing by

∑k∑ s=1 ηs, we∑would like the right-hand side to approach 0. For this to
η2happen we need ∑ s ! 0 and ηs !1. One candidate for the step size is ηs = G
ηs

√ since
s

k

then
∑ k

η2s � c1G2 log(k) and ηs c2G
p
k. So we get

s=1 s

∑
=1

�

(∑k c1
ηs

) k−1∑ GL log k R2

ηs[f(xs) f(x∗)]
2c2
p +
k 2c2G

p
ks=1 s=1

� �

Choosing G appropriately, the right-hand side approaches 0 at the rate of LR log k . Notice
p k

that we get an extra factor of log k. However, if we look at the sum from k/

√
2 to k instead

k

of 1 to k,
∑ k

η2s � c′1G2 and
∑

ηs � c′2G
p
k. Now we have

= k s=1s
2

k k−1 cLR
min f(xs) f(x∗) min f(xs) f(x∗) ηs ηs[f(xs) f(x∗)]
1≤s≤k

� �
k s k
2

� �
(∑

k

) ∑
k

� � p
≤ ≤ k

s= s=
2 2

which is the same rate as in the theorem and the step sizes are independent of k.

Important Remark: Note this rate only holds if we can ensure that jxk/2 � x∗j2 � R
since we have replaced x1 by xk/2 in the telescoping sum. In general, this is not true for
gradient descent, but it will be true for projected gradient descent in the next lecture.

One final remark is that the dimension d does not appear anywhere in the proof. How-
ever, the dimension does have an effect because for larger dimensions, the conditions f is
L-Lipschitz and jx1 � x∗j2 � R are stronger conditions in higher dimensions.

− ≤ − ≤

→ →∞

≤ ≥
√

− ≤ √ √

√

≤ ≥
√

− ≤ − ≤ − ≤ √

| − | ≤

| | ≤−

64

18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet Lecture 12

Scribe: Michael Traub Oct. 19, 2015

2.3 Projected Gradient Descent

In the original gradient descent formulation, we hope to optimize minx f(x) where nC C a d∈

f are convex, but we did not constrain the intermediate xk. Projected gradient descent will
incorporate this condition.

2.3.1 Projection onto Closed Convex Set

First we must establish that it is possible to always be able to keep xk in the convex set C.
One approach is to take the closest point π(xk) ∈ C.

Definition: Let C be a closed convex subset of IRd. Then ∀x ∈ IRd, let π(x) ∈ C be
the minimizer of

‖x− π(x)‖ = min x z
z∈C

‖ − ‖

where ‖ · ‖ denotes the Euclidean norm. Then π(x) is unique and,

〈π(x)− x, π(x) − z〉 ≤ 0 ∀ z ∈ C (2.1)

Proof. From the definition of π := π(x), we have ‖x− π‖2 ≤ ‖x− v‖2 for any v ∈ C. Fix
w ∈ C and define v = (1 − t)π + tw for t ∈ (0, 1]. Observe that since C is convex we have
v ∈ C so that

‖ − ‖2 ≤ ‖ − ‖2 2x π x v = ‖x− π − t(w − π)‖

Expanding the right-hand side yields

‖ 2 2 2x− π‖ ≤ ‖x− π‖ − 2t 〈x− π,w − π〉+ t2 ‖w − π‖

This is equivalent to
〈x− π,w − 〉 ≤ 2π t ‖w − π‖

Since this is valid for all t ∈ (0, 1), letting t → 0 yields (2.1).

Proof of Uniqueness. Assume π1, π2 ∈ C satisfy

〈π1 − x, π1 − z〉 ≤ 0 ∀ z ∈ C

〈π2 − x, π2 − z〉 ≤ 0 ∀ z ∈ C

Taking z = π2 in the first inequality and z = π1 in the second, we get

〈π1 − x, π1 − π2〉 ≤ 0

〈x− π2, π1 − π2〉 ≤ 0

Adding these two inequalities yields ‖π1 − π2‖
2 ≤ 0 so that π1 = π2.

65

2.3.2 Projected Gradient Descent

Algorithm 1 Projected Gradient Descent algorithm

Input: x1 ∈ C, positive sequence {ηs}s≥1

for s = 1 to k − 1 do
ys+1 = xs − ηsgs , gs ∈ ∂f(xs)
xs+1 = π(ys+1)

end for
k

1
return Either x̄ =

∑

xs or x◦ ∈ argmin f(x)
k xs= {x1,...,x1 ∈ k}

Theorem: Let C be a closed, nonempty convex subset of IRd such that diam(C) ≤ R.
Let f be a convex L-Lipschitz function on

R
C such that x∗ ∈ argminx f(x) exists.∈C

Then if ηs ≡ η =
L
√ then
k

LR LR
f(x̄)− f(x∗) ≤ √ and f(x̄◦)− f(x∗)

k
≤ √

k

Moreover, if ηs =
R√ , then ∃c > 0 such that

L s

LR LR
f(x̄)− f(x∗) ≤ c√ and f(x̄◦) f(x∗)

k
− ≤ c√

k

Proof. Again we will use the identity that 2a⊤b = ‖a‖2 + ‖b‖2 − ‖ 2a− b‖ .
By convexity, we have

f(xs)− f(x∗) ≤ gs
⊤(xs − x∗)

1
= (xs − ys+1)

⊤(xs
η

− x∗)

1
=

2η

[

‖ 2xs − ys+1‖ + ‖xs − x∗‖2 − ‖ys+1 − x∗‖2
]

Next,

‖ys+1 − x∗‖2 = ‖ 2ys+1 − xs+1‖ + ‖xs+1 − x∗‖2 + 2 〈ys+1

2

− xs+1, xs+1 − x∗〉

= ‖ys+1 − xs+1‖ + ‖ 2xs+1 − x∗‖ + 2 〈ys+1 − π(ys+1), π(ys+1)− x∗〉

≥ ‖xs+1 − x∗‖2

where we used that 〈x− π(x), π(x) − z〉 ≥ 0 ∀ z ∈ C, and x∗
2 2

∈ C. Also notice that
‖xs −

2y 2 2
s+1‖ = η ‖gs‖ ≤ η L since f is L-Lipschitz with respect to ‖·‖. Using this

we find

k k
1

k

∑ 1 1
()− (∗) ≤

∑
2 2 + ∗ 2 ∗ 2f xs f x η L xs x xs+1 x

k 2η
s=1 s=1

[

‖ − ‖ − ‖ − ‖
]

ηL2 1 2 ηL2 R2

≤ + x
2 k

‖ 1 − x∗
2 η

‖ ≤ +
2 2ηk

66

2 2

Minimizing over η we get L = R
2 =⇒ η = R√ , completing the proof2 2η k L k

RL
f(x̄)− f(x∗) ≤ √

k

2
Moreover, the proof of the bound for f(

∑k
k xs)−f(x∗) is identical because x k x

s=

∥
∥

2

− ∗

2

∥
∥

≤

R2 as well.

∥ ∥

2.3.3 Examples

Support Vector Machines
The SVM minimization as we have shown before is

n
1

min
n

∑

max (0, 1 Yifα(Xi))
α R

⊤

∈I n
≤ 2 i=1

−

α IKα C

where fα(Xi) = α⊤IKei =
∑n

=1 αjK(X ,j j Xi). For convenience, call gi(α) = max (0, 1 − Yifα(Xi)).

In this case executing the projection onto the ellipsoid {α : α⊤IKα ≤ C2} is not too hard,
but we do not know about C, R, or L. We must determine these we can know that our
bound is not exponential with respect to n. First we find L and start with the gradient of
gi(α):

∇gi(α) = 1I(1− Yifα(Xi) ≥ 0)YiIKei

ˆWith this we bound the gradient of the ϕ-risk Rn,ϕ(fα) =
1
n

n n

∑n
=1 gi(αi).

∥
∥ ∂ 1 1
∥ R̂n,ϕ(fα)

∥
∥ ∑
∥ =

∥
∥
∥

∇gi(α)
∂α ∥ ∥

n

∥

∥
i=1

∥
∥
≤

∑

IKe
∥ ∥ i

n 2
i=1

‖ ‖

by the triangle inequality and the fact that that 1I(1

∥

− Yifα(Xi) ≥ 0)Yi ≤ 1. We can now
use the properties of our kernel K. Notice that ‖IKei

1

2

‖ is the ℓ2 norm of the ith column so

‖IKei‖
n

2 =
(
∑

j=1K(Xj ,Xi)
2
)

. We also know that

K(Xj ,Xi)
2 = 〈K(X 2

j , ·),K(Xi, ·)〉 ≤ ‖K(Xj , ·)‖ KH ‖ (Xi, ·)‖H ≤ kmax

Combining all of these we get

1

∥ n n 2

∥ ∂ 1
∥ R̂n,ϕ(fα)

∥


≤ max



∑ ∑
∥
∥

 k2  = kmax

√
n = L

∥∂α ∥ n
i=1 j=1

To find R we try to evaluate diam{α⊤IKα ≤ C2} = 2 max
√
α

α⊤

⊤α. We can use the
IKα≤C2

condition to put bounds on the diameter

C2 2C
≥ α⊤IKα ≥ λmin(IK)α⊤α =⇒ diam{α⊤IKα ≤ C2} ≤ √

λmin(IK)

We need to understand how small λmin can get. While it is true that these exist random
samples selected by an adversary that make λmin = 0, we will consider a random sample of

67

i.i.d
X1, . . . ,Xn ∼ N (0, Id). This we can write these d-dimensional samples as a d× n matrix
X. We can rewrite the matrix IK with entries IKij = K(Xi,Xj) = 〈Xi,Xj〉IRd as a Wishart
matrix IK = X

⊤
X (in particular, 1

Xd
⊤
X is Wishart). Using results from random matrix

theory, if we take n, d → ∞ but hold n as a constant γ, then λ (IK 2
min) (d → 1

√
− γ) . Takingd

an approximation since we cannot take n, d to infinity, we get

λmin(IK) ≃ d

(
n d

1− 2

√

d

)

≥
2

using the fact that d ≫ n. This means that λmin becoming too small is not a problem when
we model our samples as coming from multivariate Gaussians.

Now we turn our focus to the number of iterations k. Looking at our bound on the
excess risk

n
R̂n,ϕ(f ˆ

α◦

R
) ≤ min Rn,ϕ(fα) + C

√

kmax
α⊤IKα≤C2 kλmin(IK)

we notice that our all of the constants in our stochastic term can be computed given the
number of points and the kernel. Since statistical error is often √1 , to be generous we want

n

to have precision up to 1
n to allow for fast rates in special cases. This gives us

n3k2 C2

k ≥ max

λmin(IK)

which is not bad since n is often not very big.
In [Bub15], the rates for many a wide rage of problems with various assumptions are

available. For example, if we assume strong convexity and Lipschitz we can get an exponen-
tial rate so k ∼ log n. If gradient is Lipschitz, then we get get 1

k instead of √1 in the bound.
k

However, often times we are not optimizing over functions with these nice properties.

Boosting
We already know that ϕ is L-Lipschitz for boosting because we required it before.

Remember that our optimization problem is

n
1

min
∑

ϕ(−Yifα(Xi))
α RN n
|α
∈I
|1≤

i=11

where fα = N
j=1 αjfj and fj is the j

th weak classifier. Remember before we had some rate

like
√

logNc

∑

n and we would hope to get some other rate that grows with logN since N can

be very large. Taking the gradient of the ϕ-loss in this case we find

N
1

∇R̂n,ϕ(fα) =
∑

ϕ′(−Yifα(Xi))(−Yi)F (Xi)
n

i=1

where F (x) is the column vector [f1(x), . . . , fN (x)]⊤. Since |Yi| ≤ 1 and ϕ′ ≤ L, we can
bound the ℓ2 norm of the gradient as

∥ n
L∥

∇R̂∥ n,ϕ(fα)
∥
∥
∥
2
≤

n

∥ ∥
∥
∥
∑

F (X∥ i)
∥
i=1

∥

n

∥

L

∥
∥

≤
n

∑

)
i=

‖F (Xi

1

‖ ≤ L
√
N

68

using triangle inequality and the fact that F (Xi) is a N -dimensional vector with each
component bounded in absolute value by 1.

Using the fact th√at the diameter of the ℓ1 ball is 2, R = 2 and the Lipschitz associated
with our ϕ-risk is L N where L is the Lipschitz constant for ϕ. Our stochastic term R√L

k

becomes 2L
√

N
k . Imposing the same 1

n error as before we find that k ∼ N2n, which is very

bad especially since we want logN .

2.4 Mirror Descent

Boosting is an example of when we want to do gradient descent on a non-Euclidean space,
in particular a ℓ1 space. While the dual of the ℓ2-norm is itself, the dual of the ℓ1 norm is
the ℓ or sup norm. We want this appear if we have an ℓ1 constraint. The reason for this∞

is not intuitive because we are taking about measures on the same space IRd, but when we
consider optimizations on other spaces we want a procedure that does is not indifferent to
the measure we use. Mirror descent accomplishes this.

2.4.1 Bregman Projections

Definition: If ‖·‖ is some norm on IRd, then ‖·‖ is its dual norm.∗

Example: If dual norm of the ℓp norm ‖·‖p is the ℓq norm ‖·‖q, then
1
p +

1
q = 1. This is the

limiting case of Hölder’s inequality.
In general we can also refine our bounds on inner products in IRd to x⊤y ≤ ‖x‖ ‖y‖ if∗

we consider x to be the primal and y to be the dual. Thinking like this, gradients live in
the dual space, e.g. in gs

⊤(x − x∗), x− x∗ is in the primal space, so gs is in the dual. The
transpose of the vectors suggest that these vectors come from spaces with different measure,
even though all the vectors are in IRd.

Definition: Convex function Φ on a convex set D is said to be
(i) L-Lipschitz with respect to ‖·‖ if ‖g‖∗ ≤ L ∀ g ∈ ∂Φ(x) ∀x ∈ D
(ii) α-strongly convex with respect to ‖·‖ if

α
Φ(y) ≥ Φ(x) + g⊤(y − x) +

2
‖y − x‖2

for all x, y ∈ D and for g ∈ ∂f(x)

Example: If Φ is twice differentiable with Hessian H and ‖·‖ is the ℓ2 norm, then all
eig(H) ≥ α.

Definition (Bregman divergence): For a given convex function Φ on a convex set
D with x, y ∈ D, the Bregman divergence of y from x is defined as

DΦ(y, x) = Φ(y)− Φ(x)−∇Φ(x)⊤(y − x)

69

This divergence is the error of the function Φ(y) from the linear approximation at x.
Also note that this quantity is not symmetric with respect to x and y. If Φ is convex then
DΦ(y, x) ≥ 0 because the Hessian is positive semi-definite. If Φ is α-strongly convex then
DΦ(y, x) ≥

α
2 ‖y − x‖2 and if the quadratic approximation is good then this approximately

holds in equality and this divergence behaves like Euclidean norm.

Proposition: Given convex function Φ on D with x, y, z ∈ D

(∇Φ(x)−∇Φ(y))⊤ (x− z) = DΦ(x, y) +DΦ(z, x) −DΦ(z, y)

Proof. Looking at the right hand side

= Φ(x)− Φ(y)−∇Φ(y)⊤(x− y) + Φ(z)− Φ(x)−∇Φ(x)⊤(z − x)

−
[

Φ(z)− Φ(y)−∇Φ(y)⊤(z − y)
]

= ∇Φ(y)⊤(y − x+ z − y)−∇Φ(x)⊤(z − x)

= (∇Φ(x)−∇Φ(y))⊤ (x− z)

Definition (Bregman projection): Given x ∈ IRd, Φ a convex differentiable function
on D ⊂ D̄IRd and convex C ⊂ , the Bregman projection of x with respect to Φ is

πΦ(x) ∈ argminDφ(x, z)
z∈C

70

18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet Lecture 13
Scribe: Mina Karzand Oct. 21, 2015

Previously, we analyzed the convergence of the projected gradient descent algorithm.
We proved that optimizing the convex L-Lipschitz function f on a closed, convex set C with
diam(C) ≤ R with step sizes ηs =

R√ would give us accuracy of f(x) ≤ f(x∗) + LR
L k

√ after
k

k iterations.
Although it might seem that projected gradient descent algorithm provides dimension-

free convergence rate, it is not always true. Reviewing the proof of convergence rate, we
realize that dimension-free convergence is possible when the objective function f and the
constraint set C are well-behaved in Euclidean norm (i.e., for all x ∈ C and g ∈ ∂f(x), we
have that |x|2 and |g|2 are independent of the ambient dimension). We provide an examples
of the cases that these assumptions are not satisfied.

• Consider the differentiable, convex function f on the Euclidean ball B2,n such that
‖∇f(x)‖ ≤ 1, ∀x ∈ B2,n. This implies that f(x)

√
n and the projected∞ |∇ |2 ≤

gradient descent converges to the minimum of f in B n
2,
√
n at rate k . Using the

log(n)method of mirror descent we can get convergence rate of

√

k

To get better rates of convergence in the optimization problem, we can use the Mirror
Descent algorithm. The idea is to change the Euclidean geometry to a more pertinent
geometry to a problem at hand. We will define a new geometry by using a function which
is sometimes called potential function Φ(x). We will use Bregman projection based on
Bregman divergence to define this geometry.

The geometric intuition behind the mirror Descent algorithm is the following: The
projected gradient described in previous lecture works in any arbitrary Hilbert space H so
that the norm of vectors is associated with an inner product. Now, suppose we are interested
in optimization in a Banach space D. In other words, the norm (or the measure of distance)
that we use does not derive from an inner product. In this case, the gradient descent does
not even make sense since the gradient ∇f(x) are elements of dual space. Thus, the term
x − η∇f(x) cannot be performed. (Note that in Hilbert space used in projected gradient
descent, the dual space of H is isometric to H. Thus, we didn’t have any such problems.)

The geometric insight of the Mirror Descent algorithm is that to perform the optimiza-
tion in the primal space D, one can first map the point x ∈ D in primal space to the dual
space D∗, then perform the gradient update in the dual space and finally map the optimal
point back to the primal space. Note that at each update step, the new point in the primal
space D might be outside of the constraint set C ⊂ D, in which case it should be projected
into the constraint set C. The projection associate with the Mirror Descent algorithm is
Bergman Projection defined based on the notion of Bergman divergence.

Definition (Bregman Divergence): For given differentiable, α-strongly convex func-
tion Φ(x) : D → R, we define the Bregman divergence associated with Φ to be:

DΦ(y, x) = Φ(y)− Φ(x)−∇Φ(x)T (y − x)

71

We will use the convex open set D ⊂ n
R whose closure contains the constraint set C ⊂ D.

Bregman divergence is the error term of the first order Taylor expansion of the function Φ
in D.

Also, note that the function Φ(x) is said to be α-strongly convex w.r.t. a norm ‖.‖ if

Φ(y)− Φ(x)−∇Φ(x)T
α

(y − x) ≥
2
‖y − x‖2 .

We used the following property of the Euclidean norm:

2a⊤b = ‖a‖2 + ‖b‖2 − ‖a− b‖2

in the proof of convergence of projected gradient descent, where we chose a = xs−ys+1 and
b = xs − x∗.

To prove the convergence of the Mirror descent algorithm, we use the following property
of the Bregman divergence in a similar fashion. This proposition shows that the Bregman di-
vergence essentially behaves as the Euclidean norm squared in terms of projections:

Proposition: Given α-strongly differentiable convex function Φ : D → R, for all
x, y, z ∈ D,

[∇Φ(x)−∇Φ(y)]⊤ (x− z) = DΦ(x, y) +DΦ(z, x) −DΦ(z, y) .

As described previously, the Bregman divergence is used in each step of the Mirror descent
algorithm to project the updated value into the constraint set.

Definition (Bregman Projection): Given α-strongly differentiable convex function
Φ : D → R and for all x ∈ D and closed convex set C ⊂ D

ΠΦ(x) = argminDC Φ(z, x)
z∈C∩D

2.4.2 Mirror Descent Algorithm

Algorithm 1 Mirror Descent algorithm

Input: x1 ∈ argmin Φ(x), ζ : d d
R R such that ζ(x) = Φ(x)C∩D → ∇

for s = 1, · · · , k do
ζ(ys+1) = ζ(xs)− ηgs for gs ∈ ∂f(xs)
xs+1 = ΠΦ(yC s+1)

end for
return Either x = 1

k

∑k
s=1 xs or x◦ ∈ argminx x1, ,xk

f(x)∈{ ··· }

Proposition: Let z ∈ C ∩ D, then ∀y ∈ D,

(∇Φ(π(y)−∇Φ(y))⊤ (π(y) − z) ≤ 0

72

Moreover, DΦ(z, π(y)) ≤ DΦ(z, y).

Proof. Define π = ΠΦ(y) and h(t) = DΦ(π + t(z − π), y) . Since h(t) is minimized at t = 0C

(due to the definition of projection), we have

h′(0) = ∇xDΦ(x, y)|x=π(z − π) ≥ 0

where suing the definition of Bregman divergence,

∇xDΦ(x, y) = ∇Φ(x)−∇Φ(y)

Thus,
(∇Φ(π)−∇Φ(y))⊤ (π − z) ≤ 0 .

Using proposition 1, we know that

(∇Φ(π)−∇Φ(y))⊤ (π − z) = DΦ(π, y) +DΦ(z, π)−DΦ(z, y) ≤ 0 ,

and since DΦ(π, y) ≥ 0, we would have DΦ(z, π) ≤ DΦ(z, y).

Theorem: Assume that f is convex and L-Lipschitz w.r.t. ‖.‖. Assume that Φ is
α-strongly convex on C ∩ D w.r.t. ‖.‖ and

R2 = sup Φ(x) m
x

− in Φ(x)
∈C∩D x∈C∩D

ta
√
ke x1 = argminx Φ(x) (assume that it exists). Then, Mirror Descent with η =∈C∩D

R 2α
L R gives,

2 2
f(x)− f(x∗) ≤ RL

√

and f(x◦)
αk

− f(x∗) ≤ RL

√

,
αk

Proof. Take x♯ ∈ C ∩ D. Similar to the proof of the projected gradient descent, we have:

(i)

f(xs)− f(x♯) ≤ gs
⊤(xs − x♯)

(ii) 1
= (ζ(x ♯

s)− ζ(ys+1))
⊤ (xs)

η
− x

(iii) 1
= (Φ(xs) Φ(ys+1))

⊤ (xs x♯)
η

∇ −∇ −

(iv) 1
=

[

D ♯
Φ(xs, ys+1) +D ♯

Φ(x , xs)
η

−DΦ(x , ys+1)
]

(v) 1
≤

[

DΦ(xs, ys+1) +DΦ(x
♯, xs)−DΦ(x

♯, xs+1)
η

]

(vi) ηL2 1
≤ +

[

DΦ(x
♯, xs)

2α2 η
−DΦ(x

♯, xs+1)
]

Where (i) is due to convexity of the function f .

73

Equations (ii) and (iii) are direct results of Mirror descent algorithm.
Equation (iv) is the result of applying proposition 1.
Inequality (v) is a result of the fact that x = ΠΦ ♯

s+1 (yC s+1), thus for x
♯ ♯

∈ C ∩ D, we have
DΦ(x , ys+1) ≥ DΦ(x , xs+1).
We will justify the following derivations to prove inequality (vi):

(a)
DΦ(xs, ys+1) = Φ(xs)− Φ(ys+1)−∇Φ(ys+1)

⊤(xs − ys+1)

(b) α
≤ [∇Φ(x 2

s)−∇Φ(ys+1)]
⊤ (xs − ys+1)−

2
‖ys+1 − xs‖

(c) α
≤ η‖gs‖∗‖xs − ys+1‖ −

2
‖ys+1 − xs‖

2

(d) η2L2

≤ .
2α

Equation (a) is the definition of Bregman divergence.
To show inequality (b), we used the fact that Φ is α-strongly convex which implies that
Φ(ys+1)− Φ(xs) ≥ ∇Φ(xs)

T (ys+1 − xs)
α
2 ‖y

2
s+1 − xs‖ .

According to the Mirror descent algorithm, ∇Φ(xs) − ∇Φ(ys+1) = ηgs. We use Hölder’s
inequality to show that gs

⊤(xs − ys+1) ≤ ‖gs‖∗‖xs − ys+1‖ and derive inequality (c).
Looking at the quadratic term ax−bx2 for a, b > 0 , it is not hard to show that max ax
a

− bx2 =
2

. We use this statement with x = ‖ys+1 − xs‖ , a = η gb ‖ s‖ L4 ∗ ≤ and b = α to derive2
inequality (d).

Again, we use telescopic sum to get

k
1 ∑ ηL2 D (x♯Φ , x1)

[f(xs) f(x♯)] + . (2.1)
k 2α kη

s=1

− ≤

We use the definition of Bregman divergence to get

DΦ(x
♯, x1) = Φ(x♯)− Φ(x1)−∇Φ(x1)(x

♯ − x1)

≤ Φ(x♯)− Φ(x1)

≤ sup Φ(x) min Φ(x)
xx

−
∈C∩D ∈C∩D

≤ R2 .

Where we used the fact x1 ∈ argmin Φ(x) in the description of the Mirror Descent
♯

C∩D

algorithm to prove ∇Φ(x1)(x − x1) ≥ 0. We optimize the right hand side of equation (2.1)
for η to get

k
1 ∑

(x♯
2

[f(xs)− f)]
k

s=

≤ RL
1

√

.
αk

To conclude the proof, let x♯ → x∗ ∈ C.

Note that with the right geometry, we can get projected gradient descent as an instance
the Mirror descent algorithm.

74

2.4.3 Remarks

The Mirror Descent is sometimes called Mirror Prox. We can write xs+1 as

xs+1 = argminDΦ(x, ys+1)
x∈C∩D

= argminΦ(x)
x

−∇Φ⊤(ys+1)x
∈C∩D

= argminΦ(x) xs
x

− [∇Φ()− ηgs]
⊤x

∈C∩D

= argmin η(gs
⊤x) + Φ(x)

x
−∇Φ⊤(xs)x

∈C∩D

= argmin η(gs
⊤x) +DΦ(x, xs)

x∈C∩D

Thus, we have
xs+1 = argmin η(gs

⊤x) +DΦ(x, xs) .
x∈C∩D

To get xs+1, in the first term on the right hand side we look at linear approximations
close to xs in the direction determined by the subgradient gs. If the function is linear, we
would just look at the linear approximation term. But if the function is not linear, the
linear approximation is only valid in a small neighborhood around xs. Thus, we penalized
by adding the term DΦ(x, xs). We can penalized by the square norm when we choose
DΦ(x, xs) = ‖x − xs‖

2. In this case we get back the projected gradient descent algorithm
as an instance of Mirror descent algorithm.

But if we choose a different divergence DΦ(x, xs), we are changing the geometry and we
can penalize differently in different directions depending on the geometry.

Thus, using the Mirror descent algorithm, we could replace the 2-norm in projected
gradient descent algorithm by another norm, hoping to get less constraining Lipschitz con-
stant. On the other hand, the norm is a lower bound on the strong convexity parameter.
Thus, there is trade off in improvement of rate of convergence.

2.4.4 Examples

Euclidean Setup:
Φ(x) = 1 x 2, = d

R , Φ(x) = ζ(x) = x. Thus, the updates will be similar to2‖ ‖ D ∇
the gradient descent.

1
DΦ(y, x) = ‖y‖2

1
− ‖x 2

2
‖2 x

2
− ⊤y + ‖x‖

1
= ‖x− y‖2 .

2

Thus, Bregman projection with this potential function Φ(x) is the same as the usual Eu-
clidean projection and the Mirror descent algorithm is exactly the same as the projected
descent algorithm since it has the same update and same projection operator.

Note that α = 1 since D 1
Φ(y, x) ≥ 2‖x− y‖2.

ℓ1 Setup:
We look at D = d

R+ \ {0}.

75

Define Φ(x) to be the negative entropy so that:

d

Φ(x) =
∑

xi log(xi), ζ(x) = ∇Φ(x) = {1 + log(x d
i)

i=1

}i=1

(s+1) ∇ (s) −
(s+1)

Thus, looking at the update function y = Φ(x) ηgs, we get log(yi) =
(s)

log(xi)−
(s) (s+1) (s) (s)

ηgi and for all i = 1, · · · , d, we have yi = xi exp(−ηgi). Thus,

y(s) = x(s) exp(−ηg(s)) .

We call this setup exponential Gradient Descent or Mirror Descent with multiplicative
weights.

The Bregman divergence of this mirror map is given by

DΦ(y, x) = Φ(y)− Φ(x)−∇Φ⊤(x)(y − x)

∑d ∑d d

= yi log(yi)− xi log(xi) (1 + log(xi))(yi xi)
i 1

∑

i

−
=1 i

−
= =1

∑d yi
= yi log() +

xii=1

∑d

(yi
i=1

− xi)

Note that
∑d

i=1 yi log(
yi
i

) is call the Kullback-Leibler divergence (KL-div) between yx
and x.

We show that the projection with respect to this Bregman divergence on the simplex
∆d = {x ∈ d

R : d
i=1 xi = 1, xi ≥ 0} amounts to a simple renormalization y 7→ y/|y|1. To

prove so, we prov

∑

ide the Lagrangian:

∑d ∑d d
y

L
i

= yi log() + (xi
xii=1 i=

− yi) + λ(
1

∑

xi
i=1

− 1) .

To find the Bregman projection, for all i = 1, · · · , d we write

∂ y
L −

i
= + 1 + λ = 0

∂xi xi

Thus, for all i, we have xi = γyi. We know that
∑d

i=1 xi = 1. Thus, γ = 1∑
yi
.

Thus, we have ΠΦ y
∆d

(y) =
1

. The Mirror Descent algorithm with this update and
|y|

projection would be:

ys+1 = xs exp(−ηgs)
y

xs+1 = .
|y|1

To analyze the rate of convergence, we want to study the ℓ1 norm on ∆d. Thus, we have
to show that for some α, Φ is α-strongly convex w.r.t | · |1 on ∆d.

76

DΦ(y, x) = KL(y, x) +
∑

(xi
i

− yi)

= KL(y, x)

1
≥

2
|x− y|21

Where we used the fact that x, y ∈ ∆d to show i(xi − yi) = 0 and used Pinsker
inequality show the result. Thu

∑
s, Φ is 1-strongly conve

∑

x w.r.t. | · |1 on ∆d.
Remembering that Φ(x) = d

i=1 xi log(xi) was defined to be negative entropy, we know
that − log(d) ≤ Φ(x) ≤ 0 for x ∈ ∆d. Thus,

R2 = max Φ(x)
x∈∆d

− min Φ(x) = log(d) .
x∈∆d

Corollary: Let f be a convex function on ∆d such that

‖g‖∞ ≤ L, ∀g ∈ ∂f(x), ∀x ∈ ∆d .

2 log(d)Then, Mirror descent with η = 1
√

givesL k

2 log(d) 2 log(d)
f(xk)− f(x∗) ≤ L

√

, f(x◦k)− f(x∗)
k

≤ L

√

k

Boosting: For weak classifiers f1(x), · · · , fN (x) and α ∈ ∆n, we define

N f1(x)
.fα =



∑

αjfj and F (x) =



j=1


 ..
fN (x)




so that fα(x) is the weighted majority vote classifier. Note that |F |∞ ≤ 1.
As shown before, in boosting, we have:

n

g = ∇R̂
1

n,φ(fα) =
∑

φ′(−yifα(xi))(−yi)F (xi) ,
n

i=1

Since |F | ≤ 1 and |y| ≤ 1, then |g| ≤ L where L is the Lipschitz constant of φ∞ ∞ ∞

(e.g., a constant like e or 2).

√

̂ ̂
2 log(N)

Rn,φ(fα◦

k
)− min Rn,φ(fα) L

α∈∆n

≤
k

We need the number of iterations k ≈ n2 log(N).
The functions fj’s could hit all the vertices. Thus, if we want to fit them in a ball, the

√
ball has to be radius

√
N . This is why the projected gradient descent would give the rate of

N
k . But by looking at the gradient we can determine the right geometry. In this case, the

gradient is bounded by sup-norm which is usually the most constraining norm in projected

77

gradient descent. Thus, using Mirror descent would be most beneficial.

Other Potential Functions:
There are other potential functions which are strongly convex w.r.t ℓ1 norm. In partic-

ular, for

1
Φ(x) = |x|p

1
p, p = 1 +

p log(d)

then Φ is c
√

log(d)-strongly convex w.r.t ℓ1 norm.

78

18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet Lecture 14
Scribe: Sylvain Carpentier Oct. 26, 2015

In this lecture we will wrap up the study of optimization techniques with stochastic
optimization. The tools that we are going to develop will turn out to be very efficient in
minimizing the ϕ-risk when we can bound the noise on the gradient.

3. STOCHASTIC OPTIMIZATION

3.1 Stochastic convex optimization

We are considering random functions x 7→ ℓ(x,Z) where x is the optimization parameter and
Z a random variable. Let PZ be the distribution of Z and let us assume that x 7→ ℓ(x,Z) is
convex PZ a.s. In particular, IE[ℓ(x,Z)] will also be convex. The goal of stochastic convex
optimization is to approach minx IE[ℓ(x,Z)] when is convex. For our purposes, will∈C C C
be a deterministic convex set. However, stochastic convex optimization can be defined more
broadly. The constraint can be itself stochastic :

C = {x, IE[g(x,Z)] ≤ 0}, g convex PZ a.s.

C = {x, IP[g(x,Z) ≤ 0] ≥ 1− ε}, “chance constraint”

The second constraint is not convex a priori but remedies are possible (see [NS06, Nem12]).
In the following, we will stick to the case where X is deterministic. A few optimization
problems we tackled can be interpreted in this new framework.

3.1.1 Examples

Boosting. Recall that the goal in Boosting is to minimize the ϕ-risk:

min IE[ϕ(f
∈Λ

−Y α(X))] ,
α

where Λ is the simplex of IRd. Define Z = (X,Y) and the random function ℓ(α,Z) =
ϕ(−Y fα(X)), convex PZ a.s.

Linear regression. Here the goal is the minimize the ℓ2 risk:

min IE[(Y − f 2
α(X))] .

α∈IRd

Define Z = (X,Y) and the random function ℓ(α,Z) = (Y − fα(X))2, convex PZ a.s.

Maximum likelihood. We consider samples Z1, . . . , Zn iid with density pθ, θ ∈ Θ. For
instance, Z N (θ, 1). The likelihood functions associated to this set of samples is θ∼ 7→
∏n

=1 pθ(Zi). Let p
∗(Z) denote the true density of Zi (it does not have to be of the form pθ

for some θ ∈ Θ. Then

n
1 ∏

∫
p∗(z)

IE[log pθ(Zi)] = − log()p∗(z)dz + C =
n pθ(z)i=1

−KL(p∗, pθ) + C

79

where C is a constant in θ. Hence maximizing the expected log-likelihood is equivalent to
minimizing the expected Kullback-Leibler divergence:

n

maxIE[log
∏

pθ(Zi)]
θ

i=1

⇐⇒ KL(p∗, pθ)

External randomization. Assume that we want to minimize a function of the form

1
f(x) =

n∑

fi(x) ,
n

i=1

where the functions f1, . . . , fn are convex. As we have seen, this arises a lot in empirical
risk minimization. In this case, we treat this problem as deterministic problem but inject
artificial randomness as follows. Let I be a random variable uniformly distributed on
[n] =: {1, . . . , n}. We have the representation f(x) = IE[fI(x)], which falls into the context
of stochastic convex optimization with Z = I and ℓ(x, I) = fI(x).

Important Remark: There is a key difference between the case where we assume that
we are given independent random variables and the case where we generate artificial ran-
domness. Let us illustrate this difference for Boosting. We are given (X1, Y1), . . . , (Xn, Yn)
i.i.d from some unknown distribution. In the first example, our aim is to minimize
IE[ϕ(−Y fα(X))] based on these n observations and we will that the stochastic gradient
allows to do that by take one pair (Xi, Yi) in each iteration. In particular, we can use
each pair at most once. We say that we do one pass on the data.

We could also leverage our statistical analysis of the empirical risk minimizer from
previous lectures and try to minimize the empirical ϕ-risk

1
R̂n,ϕ(fα) =

n∑

ϕ(α

i=1

−Yif (Xi))
n

by generating k independent random variables I1, . . . , Ik uniform over [n] and run the
stochastic gradient descent to us one random variable Ij in each iteration. The difference
here is that k can be arbitrary large, regardless of the number n of observations (we make
multiple passes on the data). However, minimizing IEI [ϕ(−YIfα(XI))|X1, Y1, . . . ,Xn, Yn]
will perform no better than the empirical risk minimizer whose statistical performance
is limited by the number n of observations.

3.2 Stochastic gradient descent

If the distribution of Z was known, then the function x 7→ IE[ℓ(x,Z)] would be known and
we could apply gradient descent, projected gradient descent or any other optimization tool
seen before in the deterministic setup. However this is not the case in reality where the
true distribution PZ is unknown and we are only given the samples Z1, . . . , Zn and the
random function ℓ(x,Z). In what follows, we denote by ∂ℓ(x,Z) the set of subgradients of
the function y 7→ ℓ(y, Z) at point x.

80

Algorithm 1 Stochastic Gradient Descent algorithm

Input: x1 ∈ C, positive sequence {ηs}s 1, independent random variables Z , . . . , Z≥ 1 k

with distribution PZ .
for s = 1 to k − 1 do

ys+1 = xs − ηsg̃s , g̃s ∈ ∂ℓ(xs, Zs)
xs+1 = π (yC s+1)

end for

1
return x̄k =

k

k

∑

xs
s=1

Note the difference here with the deterministic gradient descent which returns either
x̄k or x◦k = argmin f(x). In the stochastic framework, the function f(x) = IE[ℓ(x, ξ)] is

x1,...,xn

typically unknown and x̊k cannot be computed.

Theorem: Let C be a closed convex subset of IRd such that diam(C) ≤ R. Assume that
he convex function f(x) = IE[ℓ(x,Z)] attains its minimum on C at x∗ ∈ IRd. Assume
that ℓ(x,Z) is convex PZ a.s. and that IE‖g̃‖2 ≤ L2 for all g̃ ∈ ∂ℓ(x,Z) for all x. Then
if ηs ≡ η = R

L
√ ,
k

LR
IE[f(x̄k)]− f(x∗) ≤ √

k

Proof.

f xs f x gs xs x

= IE[g̃s
⊤(xs − x∗)|xs]

1
= IE[(ys+1 xs)

⊤(xs x∗) xs]
η

− − |

1
= IE[‖x 2 2

s − y 2
s+1‖ +

η
‖xs − x∗

2
‖ − ‖ys+1 − x∗‖ |xs]

1
≤ (η2IE[‖g̃s‖

2|xs] + IE[‖x 2
s − x∗‖ |xs]− IE[‖xs+1 − x∗ x

η
‖2

2
| s]

Taking expectations and summing over s we get

k
1 ∑ ηL2 R2

f(xs) (
s=1

− f x∗)
k

≤ + .
2 2ηk

Using Jensen’s inequality and chosing η = R
L
√ , we get
k

LR
IE[f(x̄k)]− f(x∗) ≤ √

k

()− (∗) ≤ ⊤(− ∗)

81

3.3 Stochastic Mirror Descent

We can also extend the Mirror Descent to a stochastic version as follows.

Algorithm 2 Mirror Descent algorithm

Input: x1 ∈ argmin Φ(x), ζ : d
R → d

R such that ζ(x) = ∇Φ(x), independentC∩D

random variables Z1, . . . , Zk with distribution PZ .
for s = 1, · · · , k do

ζ(ys+1) = ζ(xs)− ηg̃s for g̃s ∈ ∂ℓ(xs, Zs)
x Φ
s+1 = Π (yC s+1)

end for

return x = 1 k
k

∑

s=1 xs

Theorem: Assume that Φ is α-strongly convex on C ∩ D w.r.t. ‖ · ‖ and

R2 = sup Φ(x) Φ x)
x

− min (
∈C∩D x∈C∩D

take x1 = argminx Φ(x) (assume that it exists). Then, Stochastic Mirror Descent∈C∩D

with η = R
L

√
2α xR outputs ¯k, such that

IE[f(x̄k)]− f(x∗) ≤ RL

√

2
.

αk

Proof. We essentially reproduce the proof for the Mirror Descent algorithm.
Take x♯ ∈ C ∩ D. We have

f(xs s s

IE[g̃s
⊤(xs − x∗)|xs]

1
= IE[(ζ(xs)

η
− ζ(ys+1))

⊤ (xs − x♯)|xs]

1
= IE[(∇Φ(xs)−∇Φ(ys+1))

⊤ (xs
η

− x♯)|xs]

1
= IE

[

D ♯
Φ(xs, ys+1) +DΦ(x

♯, xs)−DΦ(x , ys+1)
η

∣
∣xs

]

1
≤ IE

[

DΦ(x
♯

s, ys+1) +DΦ(x , xs)−DΦ(x
♯, xs+1) x

η

∣
∣

s

]

η
≤

2
IE[‖g̃s‖

2 1
|xs] + IE

2α ∗ η

[

DΦ(x
♯, xs)−DΦ(x

♯, xs+1)
∣
∣xs

]

)− f(x♯) ≤ g⊤(x − x♯)

82

where the last inequality comes from

DΦ(xs, ys+1) = Φ(xs)− Φ(ys+1)−∇Φ(ys+1)
⊤(xs − ys+1)

α
≤ [∇Φ(x 2

s)−∇Φ(ys+1)]
⊤ (xs − ys+1)−

2
‖ys+1 − xs‖

α
≤ η‖g̃s‖ x y y x 2

∗‖ s − s+1‖ −
2
‖ s+1 − s‖

η2‖g̃
≤

s‖
2
∗ .

2α

Summing and taking expectations, we get

k
1 ∑ ηL2 DΦ(x

♯, x1)
[f(x ♯

s)]
s=1

≤ +
k

− f(x) . (3.1)
2α kη

We conclude as in the previous lecture.

3.4 Stochastic coordinate descent

Let f be a convex L-Lipschitz and differentiable function on IRd. Let us denote by ∇if the
partial derivative of f in the direction ei. One drawback of the Gradient Descent Algorithm
is that at each step one has to update every coordinate ∇if of the gradient. The idea of
the stochastic coordinate descent is to pick at each step a direction ej uniformly and to
choose that ej to be the direction of the descent at that step. More precisely, of I is drawn
uniformly on [d], then IE[d∇If(x)eI] = ∇f(x). Therefore, the vector d∇If(x)eI that has
only one nonzero coordinate is an unbiased estimate of the gradient ∇f(x). We can use
this estimate to perform stochastic gradient descent.

Algorithm 3 Stochastic Coordinate Descent algorithm

Input: x1 ∈ C, positive sequence {ηs}s 1, independent random variables I , . . . , I≥ 1 k

uniform over [d].
for s = 1 to k − 1 do

ys+1 = xs − ηsd∇If(x)eI , g̃s ∈ ∂ℓ(xs, Zs)
xs+1 = π (ys+1)C

end for
k

1
return x̄k =

k

∑

xs
s=1

If we apply Stochastic Gradient Descent to this problem for η = R
√

2 , we directlyL dk

obtain
2d

IE[f(x̄k)]− f(x∗) ≤ RL

√

k

We are in a trade-off situation where the updates are much easier to implement but where
we need more steps to reach the same precision as the gradient descent alogrithm.

83

18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet Lecture 15
Scribe: Zach Izzo Oct. 27, 2015

Part III

Online Learning

It is often the case that we will be asked to make a sequence of predictions, rather
than just one prediction given a large number of data points. In particular, this situa-
tion will arise whenever we need to perform online classification: at time t, we have
(X1, Y1), . . . , (Xt−1, Yt−1) iid random variables, and given Xt, we are asked to predict
Yt ∈ {0, 1}. Consider the following examples.

Online Shortest Path: We have a graph G = (V,E) with two distinguished vertices
s and t, and we wish to find the shortest path from s to t. However, the edge weights
E1, . . . , Et change with time t. Our observations after time t may be all of the edge weights
E1, . . . , Et; or our observations may only be the weights of edges through which our path
traverses; or our observation may only be the sum of the weights of the edges we’ve traversed.

Dynamic Pricing: We have a sequence of customers, each of which places a value vt
on some product. Our goal is to set a price pt for the tth customer, and our reward for
doing so is pt if pt ≤ vt (in which case the customer buys the product at our price) or 0
otherwise (in which case the customer chooses not to buy the product). Our observations
after time t may be v1, . . . , vt; or, perhaps more realistically, our observations may only be
1I(p1 < v1), . . . , 1I(pt < vt). (In this case, we only know whether or not the customer bought
the product.)

Sequential Investment: Given N assets, a portfolio is ω ∈ ∆N = {x ∈ IRn : xi ≥
0,
∑N xi=1 i = 1}. (ω tells what percentage of our funds to invest in each stock. We could

also allow for negative weights, which would correspond to shorting a stock.) At each time
t, we wish to create a portfolio ωt ∈ ∆N to maximize ωT

t zt, where zt ∈ IRN is a random
variable which specifies the return of each asset at time t.

There are two general modelling approaches we can take: statistical or adversarial.
Statistical methods typically require that the observations are iid, and that we can learn
something about future points from past data. For example, in the dynamic pricing example,
we could assume vt ∼ N(v, 1). Another example is the Markowitz model for the sequential
investment example, in which we assume that log(zt) ∼ N (µ,Σ).

In this lecture, we will focus on adversarial models. We assume that zt can be any
bounded sequence of numbers, and we will compare our predictions to the performance of
some benchmark. In these types of models, one can imagine that we are playing a game
against an opponent, and we are trying to minimize our losses regardless of the moves he
plays. In this setting, we will frequently use optimization techniques such as mirror descent,
as well as approaches from game theory and information theory.

84

1. PREDICTION WITH EXPERT ADVICE

1.1 Cumulative Regret

Let A be a convex set of actions we can take. For example, in the sequential investment
example, A = ∆N . If our options are discrete–for instance, choosing edges in a graph–then
think of A as the convex hull of these options, and we can play one of the choices randomly
according to some distribution. We will denote our adversary’s moves by Z. At time t,
we simultaneously reveal at ∈ A and zt ∈ Z. Denote by ℓ(at, zt) the loss associated to the
player/decision maker taking action at and his adversary playing zt.

In the general case,
∑n

t ℓ=1 (at, zt) can be arbitrarily large. Therefore, rather than looking
at the absolute loss for a series of n steps, we will compare our loss to the loss of a benchmark
called an expert. An expert is simply some vector b ∈ An, b = (b1, . . . , bt, . . . , b

T
n) . If we

choose K experts b(1), . . . , b(K), then our benchmark value will be the minimum cumulative
loss amongst of all the experts:

n
(j)

benchmark = min
≤j≤K

∑

ℓ(bt , zt).
1

t=1

The cumulative regret is then defined as

n n

Rn =
∑

(j)
ℓ(at, zt)− min ℓ(bt , zt).

1≤j≤K
t=1

∑

t=1

At time t, we have access to the following information:

1. All of our previous moves, i.e. a1, . . . , at−1,

2. all of our adversary’s previous moves, i.e. z1, . . . , zt−1, and

3. All of the experts’ strategies, i.e. b(1), . . . , b(K).

Naively, one might try a strategy which chooses a = b∗ ∗
t t , where b is the expert which

has incurred minimal total loss for times 1, . . . , t− 1. Unfortunately, this strategy is easily
exploitable by the adversary: he can simply choose an action which maximizes the loss for
that move at each step. To modify our approach, we will instead take a convex combination
of the experts’ suggested moves, weighting each according to the performance of that expert
thus far. To that end, we will replace ℓ(at, zt) by ℓ(p, (bt, zt)), where p ∈ ∆K denotes a

(1) (K)
convex combination, bt = (bt , . . . , bt)T ∈ AK is the vector of the experts’ moves at time
t, and zt ∈ Z is our adversary’s move. Then

n n

Rn =
∑

ℓ(pt, zt)− min ℓ(ej , zt)
1≤j≤K

t=1

∑

t=1

where ej is the vector whose jth entry is 1 and the rest of the entries are 0. Since we are
restricting ourselves to convex combinations of the experts’ moves, we can write A = ∆K .
We can now reduce our goal to an optimization problem:

K n

min
∈∆K

∑

θj
θ

j=1

∑

ℓ(ej , zt).
t=1

85

From here, one option would be to use a projected gradient descent type algorithm: we
define

qt+1 = pt − η(ℓ(e T
1, zt), . . . , ℓ(eK , zT))

K

and then p ∆
t+1 = π (pt) to be the projection of qt+1 onto the simplex.

1.2 Exponential Weights

Suppose we instead use stochastic mirror descent with Φ = negative entropy. Then

qt
qt+1,j = pt+1,j exp(−ηℓ(ej , zt)), pt+1,j = ,∑K

l q=1 t+1,l

where we have defined

K
(

wt,j
pt = ej , exp

K wj=1 l=1 ,l

)

wt,j =
t

(
t−1∑

−η
∑

ℓ(ej , zs)
s=1

)

.

This process looks at the los

∑

s from each expert and downweights it exponentially according
to the fraction of total loss incurred. For this reason, this method is called an exponential
weighting (EW) strategy.

Recall the definition of the cumulative regret Rn:

n n

Rn =
∑

ℓ(pt, zt)− min
1≤j≤K

t=1

∑

ℓ(ej , zt).
t=1

Then we have the following theorem.

Theorem: Assume ℓ(·, z) is convex for all z ∈ Z and that ℓ(p, z) ∈ [0, 1] for all p ∈
∆K , z ∈ Z. Then the EW strategy has regret

logK ηn
Rn ≤ + .

η 2

In particular, for η =
√

2 logK ,n

Rn ≤
√

2n logK.

Proof. We will recycle much of the mirror descent proof. Define

K

ft(p) =
∑

pjℓ(ej , zt).
j=1

Denote ‖ · ‖ := | · |1. Then

n n
1 ∑ η 1 ‖g ‖2t logK

ft((∗pt)− f ∗
t) ≤ n

∑

t=1p + ,
n 2 ηn

t=1

86

where gt ∈ ∂ft(pt) and ‖ · ‖∗ is the dual norm (in this case ‖ · ‖∗ = | · |∞). The 2 in the
denominator of the first term of this sum comes from setting α = 1 in the mirror descent
proof. Now,

gt ∈ ∂ft(pt) ⇒ gt = (ℓ(e1, zt), . . . , ℓ(e
T

K , zt)) .

Furthermore, since ℓ(p, z) ∈ [0, 1], we have ‖gt‖∗ = |gt|∞ ≤ 1 for all t. Thus

nη 1
n

∑

t=1 ‖gt‖
2
∗ logK η logK
+ ≤ + .

2 nη 2 ηn

Substituting for ft yields

n K K n∑∑ ηn logK
pt,jℓ(ej , zt)− min

∑

pjℓ(ej , zt) ≤ + .
p∈∆K 2 η

t=1 j=1 j=1

∑

t=1

Note that the boxed term is actually min1≤j≤K
∑n ℓt=1 (ej , zt). Furthermore, applying

Jensen’s to the unboxed term gives

n K n∑∑

pt,jℓ(ej , zt) ≥
∑

ℓ(pt, zt).
t=1 j=1 t=1

Substituting these expressions then yields

ηn logK
Rn ≤ + .

2 η

We optimize over η to reach the desired conclusion.

We now offer a different proof of the same theorem which will give us the optimal
constant in the error bound. Define

(
t−1

)
K K

∑ ∑
∑

wt,jej=1 j
wt,j = exp −η ℓ(ej , zs) , Wt = wt,j , pt = .

Wts=1 j=1

For t = 1, we initialize w1,j = 1, so W1 = K. It should be noted that the starting values for
w1,j are uniform, so we’re starting at the correct point (i.e. maximal entropy) for mirrored
descent. Now we have

(K exp − t−1η ℓ , zW j=1 s=1 (ej s) exp(−ηℓ(ej , zt))t+1
log g

W

∑


K tt

)

= lo

(

·∑ −1
l ℓ e= e

∑

xp
(

−η1

∑

j , z=1

)

(l s)



= log (IEJ∼pt [exp(−ηℓ(eJ , zt))])

) 

1 2

Hoeffding’s lemma ⇒ ≤ log
(

η IEe e−η J J8
ℓ(e ,zt)

η2

)

= − ηIEJℓ(eJ , zt)
8
η2 η2

Jensen’s ⇒ ≤ − ηℓ(IEJeJ , zt) = − ηℓ(pt, zt)
8 8

87

since IEJej =
∑K pj=1 t,jej . If we sum over t, the sum telescopes. Since W1 = K, we are left

with
n

nη2
log(Wn+1)− log(K) ≤ − η

∑

ℓ(pt, zt).
8

t=1

We have
K n

log(Wn+1) = log



∑

exp

(

−η
∑

ℓ(ej , zs)
j=1 s=1

)

,

so setting nj∗ = argmin1≤j≤K

∑
ℓ(e

 

t=1 j , zt), we obtain

n n

log(Wn+1) ≥ log

(

exp

(

−η

))
∑

ℓ(ej∗, zs) = −η
∑

ℓ(ej∗ , zt).
s=1 t=1

Rearranging, we have

n n∑ ηn logK
ℓ(pt, zt)− ℓ

t=

∑

(ej∗ , zt) ≤ + .
8 η

1 t=1

Finally, we optimize over η to arrive at

η =

√

8 logK o
Rn ≤

n

√

n l gK
⇒ .

2

The improved constant comes from the assumption that our loss lies in an interval of size
1 (namely [0, 1]) rather than in an interval of size 2 (namely [−1, 1]).

88

18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet Lecture 16
Scribe: Haihao (Sean) Lu Nov. 2, 2015

Recall that in last lecture, we talked about prediction with expert advice. Remember
that l(ej , zt) means the loss of expert j at time t, where zt is one adversary’s move. In this
lecture, for simplexity we replace the notation zt and denote by zt the loss associated to all
experts at time t:

zt =


ℓ(e1, zt)



 ... ,

ℓ(eK , zt)



whereby for p ∈ ∆K , p

 

⊤zt =
K p ej=1 jℓ(j , zt). This gives an alternative definition of ft(p)

in last lecture. Actually it is easy to check ft(p) = p⊤zt, thus we can rewrite the theorem
for exponential weighting(EW

∑

) strategy as

n n

Rn ≤
∑

p⊤t zt − min p
p

t=1
∈∆k

∑
⊤zt 2n logK,

t=1

≤
√

where the first inequality is Jensen inequality:

n n∑

p⊤z zt
t=1

≥
∑

ℓ(pz, zt) .
t=1

We consider EW strategy for bounded convex losses. Without loss of generality, we
assume ℓ(p, z) ∈ [0, 1], for all (p, z) ∈ ∆K × Z, thus in notation here, we expect pt ∈ ∆K

and z K ¯
t ∈ [0, 1] . Indeed if ℓ(p, z) ∈ [m,M] then one can work with a rescaled loss ℓ(a, z) =

ℓ(a,z)−m . Note that now we have bounded gradient on pt, since zt is bounded.M−m

2. FOLLOW THE PERTURBED LEADER (FPL)

In this section, we consider a different strategy, called Follow the Perturbed Leader.
At first, we introduce Follow the Leader strategy, and give an example to show that

Follow the Leader can be hazardous sometimes. At time t, assume that choose

t−1

pt = argmin
p∈∆K

∑

p⊤zs.
s=1

Note that the function to be optimized is linear in p, whereby the optimal solution should
be a vertex of the simplex. This method can be viewed as a greedy algorithm, however, it
might not be a good strategy.

Consider the following example. Let K = 2, z1 = (0, ε)⊤, z2 = (0, 1)⊤, z3 = (1, 0)⊤,
z4 = (0, 1)⊤ and so on (alternatively having (0, 1)⊤ and (1, 0)⊤ when t ≥ 2), where ε is small
enough. Then with Following the Leader Strategy, we have that p1 is arbitrary and in the
best case p1 = (1, 0)⊤, and p2 = (1, 0)⊤, p3 = (0, 1)⊤, p4 = (1, 0)⊤ and so on (alternatively
having (0, 1)⊤ and (1, 0)⊤ when t ≥ 2).

89

In the above example, we have

n n∑ n n
p⊤t zt min p⊤zt n 1 1 ,

p ∆k 2 2
t=1

− ≤ − − ≤
∈

∑

t=1

−

which gives raise to linear regret.
Now let’s consider FPL. FPL regularizes FL by adding a small amount of noise, which

can guarantee square root regret under oblivious adversary situation.

Algorithm 1 Follow the Perturbed Leader (FPL)

Input: Let ξ be a random variables uniformly drawn on [0, 1]K .η
for t = 1 to n do

t−1

pt = argmin
p∈∆K

∑

s=1

(
p⊤zs + ξ

)
.

end for

We analyze this strategy in oblivious adversaries, which means the sequence zt is chosen
ahead of time, rather than adaptively given. The following theorem gives a bound for regret
of FPL:

Theorem: FPL with η = √1 yields expected regret:
kn

IEξ[Rn] ≤ 2
√
2nK .

Before proving the theorem, we introduce the so-called Be-The-Leader Lemma at first.

Lemma: (Be-The-Leader)
For all loss function ℓ(p, z), let

t

p∗t = arg min ℓ(p, zs) ,
p∈∆K

∑

s=1

then we have
n n∑

ℓ(p∗t , zt)
t=1

≤
∑

ℓ(pn
∗ , zt)

t=1

Proof. The proof goes by induction on n. For n = 1, it is clearly true. From n to n+ 1, it

90

follows from:

n+1 n∑

ℓ(pt
∗, zt) =

∑

ℓ(p∗t , zt) + ℓ(pn
∗
+1, zn+1)

t=1 i=1
n

≤
∑

ℓ(p∗n, zt) + ℓ(p∗n+1, zn+1)
i=1
n

≤
∑

ℓ(p∗n+1, zt) + ℓ(p∗n+1, zn+1) ,
i=1

where the first inequality uses induction and the second inequality follows from the definition
of p∗n.

Proof of Theorem. Define
t

qt = argmin p⊤(ξ +
p∈∆K

∑

zs) .
s=1

Using the Be-The-Leader Lemma with
{

pT (ξ + z1) if t = 1
ℓ(p, zt) = pT zt if t > 1 ,

we have
n n

q1
⊤ξ +

∑

qt
⊤zt ≤ min q⊤(ξ +

q
t=

∈∆K

1

∑

zt) ,
t=1

whereby for any q ∈ ∆K ,

n∑(2
qt
⊤zt − q⊤zt

)

≤
(

q⊤ − q1
⊤
)

ξ ≤ ‖q 1

i

− q1
=1

‖ ‖ξ‖∞ ≤ ,
η

where the second inequality uses Hölder’s inequality and the third inequality is from the
fact that q and q1 are on the simplex and ξ is in the box.

Now let
t

qt = arg min p⊤

(

ξ + zt +
∑

zs
p∈∆K

s=1

)

and
t

pt = arg min p⊤ +
∈∆

(

ξ + 0
p K

∑

zs
s=1

)

.

Therefore,

n n

IE[Rn] ≤
∑

p⊤t zt
i

− min p⊤zt
p∈∆k

=1

∑

i=1
n () n

≤
∑

qt
⊤zt − p∗T zt +

∑

IE[(pt t

i=1 =1

− q)⊤zt]
i

n
2

≤ +
∑

IE[(pt − qt)
⊤zt] , (2.1)

η
i=1

91

where p∗ = argminp∈∆K

∑n p zt=1
⊤

t.
Now let

t−1

h(ξ) = zt
⊤

(

arg min p⊤[ξ +
p∈∆K

∑

zs] ,
s=1

)

then we have a easy observation that

IE[zt
⊤(pt − qt)] = IE[h(ξ)] − IE[h(ξ + zt)] .

Hence,

IE[zt
⊤(pt − q K K

t)] = η

∫

h(ξ)dξ − η

∫

h(ξ)dξ
ξ∈[0, 1]K ξ∈z +[0, 1]Kt

η η

≤ ηK
∫

h(ξ)dξ
ξ∈[0, 1]K

η
\

{
z , 1]Kt+[0

η

}

≤ ηK
∫

1dξ
ξ∈[0, 1]K\

{
zt+[0, 1]K

η η

}

= IP (∃i ∈ [K], ξ(i) ≤ zt(i))

K

≤
∑

IP

(

Unif

(
1

[0,]

)

≤ zt(i)
η

i=1

)

≤ ηKzt(i) ≤ ηK , (2.2)

where the first inequality is from the fact that h(ξ) ≥ 0, the second inequality uses
h(ξ) ≤ 1, the second equation is just geometry and the last inequality is due to zt(i) ≤ 1.

Combining (2.1) and (2.2) together, we have

2
IE[Rn] ≤ + ηKn .

η

In particular, with η =
√

2 , we haveKn

IE[Rn] ≤ 2
√
2Kn ,

which completes the proof.

92

online learning with structured experts–a biased
survey

Gábor Lugosi

ICREA and Pompeu Fabra University, Barcelona

93

on-line prediction

A repeated game between forecaster and environment.

At each round t,

the forecaster chooses an action t 2 {1, . . . , };
(actions are often called experts)

the environment chooses losses `t(1), . . . , `t(N) 2 [0, 1];

the forecaster su↵ers loss `t(It).

The goal is to minimize the regret

Rn =

Xn n

`t(It) � min

i
t

N
=1

X
`t(i)

t=1

!
.

7

I N

94

simplest example

Is it possible to make (1/n)Rn ! 0 for all loss assignments?

Let N = 2 and define, for all t = 1, . . . , n,

`t(1) =

⇢
0 if It = 2

1 if It = 1

and `t(2) = 1 � `t(1).

Then
Xn n n

`t(It) = n and min `
i=1 2

t=1

X
t(i)

,


t=1

2

so
1 1

Rnn
� .

2

95

randomized prediction

Key to solution: randomization.

At time t, the forecaster chooses a probability distribution
pt�1

= (p
1,t�1

, . . . , pN,t�1

)

and chooses action i with probability pi ,t�1

.

Simplest model: all losses `s(i), i = 1, . . . ,N , s < t, are
observed: full information.

12

96

Hannan and Blackwell

Hannan (1957) and Blackwell (1956) showed that the forecaster
has a strategy such that

1

Xn n

`t(It)n
� min

i
t

N
=1

X
`t(i)

t=1

!
! 0

almost surely for all strategies of the environment.

13

97

basic ideas

expected loss of the forecaster:

N

`t(pt�1

) =

X
pi ,t (�1

`t i) = Et`t(It)
i=1

By martingale convergence,

Xn n

1

` ` 1 2

t(It) �
X

/
t(pn t�1

) = OP(n�
)

t=1 t=1

so it su�ces to study

1

n

Xn n

`t(pt) min ` (i)�1

�
N

=1

X
t

i
t t=1

!

!

98

weighted average prediction

Idea: assign a higher probability to better-performing actions.
Vovk (1990), Littlestone and Warmuth (1989).

A popular choice is

exp

⇣
�⌘

Pt�1

=1

` (s s i)
pi ,t =�1

⌘

P = 1

N
=1

exp

⇣
�⌘

P i , . . . ,N .
t�1

=1

`s()k s k

where ⌘ > 0. Then

⌘

1

Xn

n

 n

`t(pt�1

) � min

i
t=1

N

X
`t(i)

t=1

!
=

r
lnN
2n

with ⌘ =

p
8 lnN/n.

99

proof

tLet Li ,t =

P
s=1

`s(i) and

N

Wt =

X XN
wi ,t = e�⌘Li ,t

i=1 i=1

for t � 1, and W
0

= N . First observe that

Wn
ln e

W

XN
= ln

,

0

�⌘Li n

i=1

!
� lnN

� ln

✓
max e�⌘Li ,n

ln

i=1,...,N

◆
� N

= �⌘ min Li ,n
i=1,...,N

� lnN .

100

proof

On the other hand, for each t = 1, . . . , n

Wt
PN

i=1

wi ,t 1

e�⌘`t(i)
ln = ln

�
Wt�1

PN

P
j=1

wj ,t�1

N
=1

w
P

i ,t�1

` (

� i t i) ⌘2
 ⌘ +N

8j=1

wj ,t�1

⌘2
= �⌘`t(pt�1

) +

8

by Hoe↵ding’s inequality.

Hoe↵ding (1963): if X 2 [0, 1],

lnEe�⌘ ⌘2X  �⌘EX +

8101

proof

for each t = 1, . . . , n

W 2

t ⌘
ln  �⌘`t(p) +

W t
t�1

�1

8

Summing over t = 1, . . . , n,

W n
n ⌘

ln  �⌘
X 2

`t(pt 1

) + n .
W

0

�
8

t=1

Combining these, we get

Xn
lnN ⌘

`t(pt 1

)  min Li ,n + + n� i=1,...,N ⌘ 8

t=1

102

lower bound

The upper bound is optimal: for all predictors,
Pn

=1

`t(Itp
� n

) mint iN `t
sup

=1

t(i)
1 .

n,N,`t(i) (n/2) lnN

P
�

Idea: choose `t(i) to be i.i.d. symmetric Bernoulli coin flips.

n

sup

Xn

`t(It)
t(i)

� min

` i
t=1

N

X
`t(i)

" t=1

!

n

� E
X

`t(It) � min

i
t=1

N

n

Xn

`t(i)
t=1

#

=

2

� minBi
iN

Where B
1

, . . . ,BN are independent Binomial (n, 1/2).
Use the central limit theorem. 103

follow the perturbed leader

t�1

It = argmin
X

`s(i) + Zi ,t
i=1,...,N s=1

where the Zi ,t are random noise variables.

The original forecaster of Hannan (1957) is based on this idea.

104

follow the perturbed leader

If the Zi ,t are i.i.d. uniform [0,
p

nN], then

1 N
Rnn

 2

r
+ Op(n�1/2

) .
n

If the Z z
i ,t are i.i.d. with density (⌘/2)e�⌘| |, then for

⌘ ⇡
p
logN/n,

1 logN
R 1/2

n  c
r

+ Op(n�
) .

n n

Kalai and Vempala (2003).

105

combinatorial experts

Often the class of experts is very large but has some combinatorial
structure. Can the structure be exploited?

path planning. At each time
instance, the forecaster chooses a
path in a graph between two
fixed nodes. Each edge has an
associated loss. Loss of a path is
the sum of the losses over the
edges in the path.

N is huge!!!

© Google. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
http://ocw.mit.edu/fairuse.

106

http://ocw.mit.edu/fairuse

assignments: learning permutations

Given a complete
bipartite graph
Km,m, the
forecaster chooses a
perfect matching.
The loss is the sum
of the losses over
the edges.

Helmbold and Warmuth (2007): full information case.

This image has been removed due to copyright restrictions.
Please see the image at
http://38.media.tumblr.com/tumblr_m0ol5tggjZ1qir7tc.gif

107

http://38.media.tumblr.com/tumblr_m0ol5tggjZ1qir7tc.gif

spanning trees

The forecaster chooses a
spanning tree in the complete
graph Km. The cost is the sum
of the losses over the edges.

108

combinatorial experts

dFormally, the class of experts is a set S ⇢ {0, 1} of cardinality
|S| = N .

t 2 RdAt each time , a loss is assigned to each component: `t .

Loss of expert v 2 S is `t(v) = `>t v .

Forecaster chooses It 2 S.

The goal is to control the regret

Xn Xn

`t(It) � min `t(k) .
k=1,...,N

t=1 t=1

109

computing the exponentially weighted average forecaster

One needs to draw a random element of S with distribution
proportional to

wt(v) = exp

� t

�⌘ Lt(v)
�
= exp

 �1

�⌘
X

`>t v .
s=1

!

t

exp

j

Yd
=

=1

 �1

�⌘
X

`t,jvj
s=1

!
.

110

computing the exponentially weighted average forecaster

path planning: Sampling may be done by dynamic programming.

assignments: Sum of weights (partition function) is the permanent
of a non-negative matrix. Sampling may be done by a FPAS of
Jerrum, Sinclair, and Vigoda (2004).

spanning trees: Propp and Wilson (1998) define an exact sampling
algorithm. Expected running time is the average hitting time of
the Markov chain defined by the edge weights wt(v).

111

computing the follow-the-perturbed leader forecaster

In general, much easier. One only needs to solve a linear
optimization problem over S. This may be hard but it is well
understood.

In our examples it becomes either a shortest path problem, or an
assignment problem, or a minimum spanning tree problem.

112

follow the leader: random walk perturbation

Suppose N experts, no structure. Define

t

It = argmin (`i ,s 1

+ Xs)
i=1,...,N

X
�

s=1

where the Xs are either i.i.d. normal or ±1 coinflips.

This is like follow-the-perturbed-leader but with random walk
tperturbation: s=1

Xt .

Advantage: fo

P

recaster rarely changes actions!

113

follow the leader: random walk perturbation

If Rn is the regret and Cn is the number of times It 6= It�1

, then

ERn  2ECn  8

p
2n logN + 16 log n + 16 .

Devroye, Lugosi, and Neu (2015).

Key tool: number of leader changes in N independent random
walks with drift.

114

follow the leader: random walk perturbation

This also works in the “combinatorial” setting: just add an
independent N(0, d) at each time to every component.

ERn = Oe(B3/2
p

n log d)

and
ECn = O(B

p
n log d) ,

where B = maxv2S kvk
1

.

115

why exponentially weighted averages?

May be adapted to many di↵erent variants of the problem,
including bandits, tracking, etc.

116

multi-armed bandits

The forecaster only observes `t(It) but not `t(i) for i 6= It .

Herbert Robbins (1952).

This image has been removed due to copyright restrictions. Please see the image at
https://en.wikipedia.org/wiki/Herbert_Robbins#/media/File:1966-HerbertRobbins.jpg

117

https://en.wikipedia.org/wiki/Herbert_Robbins#/media/File:1966-HerbertRobbins.jpg

multi-armed bandits

Trick: estimate `t(i) by

è `t(It)
t(i

I =i
) =

{ t }
pIt ,t�1

This is an unbiased estimate:

e XN `t(j)Et`t(i) = pj ,t 1

{j=i}
= `t(i)�

jj ,
=1

p t�1

Use the estimated losses to define exponential weights and mix
with uniform (Auer, Cesa-Bianchi, Freund, and Schapire, 2002):

⇣
�

Pt
exp ⌘ �1 ` ()

P ⇣ s=1

pi ,t 1 � �
es i

1

= ()� N
k=1

exp

⌘
�

�⌘
P +

t�1

s=1

`s(k)
⌘

N
exploration

e
| {z }

exploitation

|{z}

118

multi-armed bandits

Xn
1

E

`t(pt 1

) � min

Xn

`t(i)

!
= O

 r
N lnN

!
,

n � i
t=1

N
t=1

n

119

multi-armed bandits

Lower bound:

n
1 N

sup E

Xn

`t(pt 1

) � min

X
`t(i) ,

`t(i) n � i N
=1


=1

!
� C

r

n
t t

Dependence on N is not logarithmic anymore!

Audibert and Bubeck (2009) constructed a forecaster with

n n
1 N

maxE `t(pti �1

) `t(i) = O ,
N n

�

t=1 t=1

! r

n

!
X X

120

calibration

Sequential probability assignment.

A binary sequence x
1

, x
2

, . . . is revealed one by one.

After observing x
1

, . . . , xt�1

, the forecaster issues prediction
It 2 {0, 1, . . . ,N}.
Meaning: “chance of rain is It/N”.

Forecast is calibrated if
��P� n

� t=1

xt

�
{It=i}Pn

t=1

{It=i}
�

i
N

����� 
1

2N
+ o(1)

whenever lim supn(1/n)
Pn

t=1

0{It=i > .}

Is there a forecaster that is calibrated for all possible sequences?
NO. (Dawid, 1985). 121

randomized calibration

However, if the forecaster is allowed to randomize then it is
possible! (Foster and Vohra, 1997).

This can be achieved by a simple modification of any regret
minimization procedure.

Set of actions (experts): {0, 1, . . . ,N}.
At time t, assign loss `t(i) = (xt � i/N)

2 to action i .

One can now define a forecaster. Minimizing regret is not
su�cient.

122

internal regret

Recall that the (expected) regret is

Xn

`t(pt

Xn n

1

) � min `t(i) = max� i i
t=1 t=1

X
pj ,t (`t(j) � `t(i))

t=1

X

j

The internal regret is defined by

n

max

X
pj ,t (`t(j) � `t(i))

i ,j
t=1

pj ,t (`t(j) � `t(i)) = Et `{It=j (} t(j) � `t(i))

is the expected regret of having taken action j instead of action i .
123

internal regret and calibration

By guaranteeing small internal regret, one obtains a calibrated
forecaster.

This can be achieved by an exponentially weighted average
forecaster defined over N2 actions.

Can be extended even for calibration with checking rules.

124

prediction with partial monitoring

For each round t = 1, . . . , n,

the environment chooses the next outcome Jt 2 {1, . . . ,M}
without revealing it;

the forecaster chooses a probability distribution pt and�1

draws an action It 2 {1, . . . ,N} according to pt�1

;

the forecaster incurs loss `(It , Jt) and each action i incurs loss
`(i , Jt). None of these values is revealed to the forecaster;

the feedback h(It , Jt) is revealed to the forecaster.

H = [h(i , j)]N⇥M is the feedback matrix.

L = [`(i , j)]N⇥M is the loss matrix.

125

examples

Dynamic pricing. Here M = N , and L = [`(i , j)]N⇥N where

(j)

i j
� i {ij + c

(,) =

} {i>j
`

}
.

N

and h(i , j) = {i>j or}

h(i , j) = a i j + b i>j , i , j = 1, . . . ,N .{  } { }

Multi-armed bandit problem. The only information the forecaster
receives is his own loss: H = L.

126

examples

Apple tasting. = = 2.

L =


0 1

1 0

�

H =


a a
b c

�
.

The predictor only receives feedback when he chooses the second
action.
Label e�cient prediction. N = 3, M = 2.

L =

2
1 1

4
0 1

1 0

3

5

H =

2
a b
c c

3

.

N M

4
c c

5

127

a general predictor

A forecaster first proposed by Piccolboni and Schindelhauer (2001).
Crucial assumption: H can be encoded such that there exists an
N ⇥ N matrix K = [k(i , j)]N⇥N such that

L = K · H .

Thus,

`(i , j) =
XN

k(i , l)h(l , j) .
l=1

Then we may estimate the losses by

è k(i , It)h(It , Jt)
(i , Jt) = pIt ,t

.

128

a general predictor

Observe

e XN k(i , k)h(k, Jt)Et`(i , Jt) = pk,t�1

k=1

pk,t�1

k
k

XN
= (i , k)h(k, Jt) = `(i , Jt) ,

=1

è
(i , Jt) is an unbiased estimate of `(i , Jt).
Let

e�⌘Li ,t�1 �
pi ,t�1

= (1 � �)
e

P +

N
=1

e�⌘Lek,t�1 N
k

where Li ,t =

Pt
=1

`(i , Jt).e
s

e
129

performance bound

With probability at least 1 � �,

1

Xn
1

`(It , Jt)n
� min

i=1,...,N
t=1

�

Xn

`(i , Jt)n
t=1

 Cn 1/3N2/3
p
ln(N/�) .

where C depends on K . (Cesa-Bianchi, Lugosi, Stoltz (2006))

Hannan consistency is achieved with rate O(n�1/3
) whenever

L = K · H .

This solves the dynamic pricing problem.

Bartók, Pál, and Szepesvári (2010): if M = 2, only possible rates
are n�1/2, n�1/3, 1

130

imperfect monitoring: a general framework

S is a finite set of signals.

Feedback matrix: H : {1, . . . ,N} ⇥ {1, . . . ,M} ! P(S).

For each round t = 1, 2 . . . , n,

the environment chooses the next outcome Jt 2 {1, . . . ,M}
without revealing it;

the forecaster chooses pt�1

and draws an action
It 2 {1, . . . ,N} according to it;

the forecaster receives loss `(It , Jt) and each action i su↵ers
loss `(i , Jt), none of these values is revealed to the forecaster;

a feedback st drawn at random according to H(It , Jt) is
revealed to the forecaster.

131

target

Define
`(p, q) =

X
piqj`(i , j)

i ,j

H(·, q) = (H(1, q), . . . ,H(N, q))

where H(i , q) = j qjH(i , j) .

Denote by F the set

P

of those � that can be written as H(·, q) for
some q.

F is the set of “observable” vectors of signal distributions �.
The key quantity is

⇢(p,�) = max `(p, q)
q :H(·,q)=�

⇢ is convex in p and concave in �.
132

rustichini’s theorem

The value of the base one-shot game is

minmax `(p, q) = min max ⇢(p,�)

p q p
�2F

If qn is the empirical distribution of J
1

, . . . , Jn, even with the
knowledge of H(·, qn) we cannot hope to do better than
minp ⇢(p,H(·, qn)).

Rustichini (1999) proved that there exists a strategy such that for
all strategies of the opponent, almost surely,

lim sup

0

@1

X
`(It , Jt) � min ⇢ (p,H(

n n!1 p
·, qn))

t=1,...,n

1

A  0

133

rustichini’s theorem

Rustichini’s proof relies on an approachability theorem for a
continuum of types (Mertens, Sorin, and Zamir, 1994).

It is non-constructive.

It does not imply any convergence rate.

Lugosi, Mannor, and Stoltz (2008) construct e�ciently computable
strategies that guarantee fast rates of convergence.

134

combinatorial bandits

The class of actions is a set S ⇢ {0 d, 1} of cardinality |S| = N .

At each time t d, a loss is assigned to each component: `t 2 R .

Loss of expert v 2 S is `t(v) = `>t v .

Forecaster chooses It 2 S.

The goal is to control the regret

Xn n

`t(It) � min

k=1,...,N
t=1

X
`t(k) .

t=1

135

combinatorial bandits

Three models.

(Full information.) All d components of the loss vector are
observed.

(Semi-bandit.) Only the components corresponding to the chosen
object are observed.

(Bandit.) Only the total loss of the chosen object is observed.

Challenge: Is O(n�1/2poly(d)) regret achievable for the
semi-bandit and bandit problems?

136

combinatorial prediction game

Adversary

Player

137

combinatorial prediction game

Adversary

Player © Google. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
http://ocw.mit.edu/fairuse.

138

http://ocw.mit.edu/fairuse

combinatorial prediction game

Adversary

Player © Google. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
http://ocw.mit.edu/fairuse.

139

http://ocw.mit.edu/fairuse

combinatorial prediction game

Adversary

Player

`
2

`
6

`d�1

`
1

`
4

`
5

`
9

`d�2

`d`
3

`
8

`
7

© Google. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
http://ocw.mit.edu/fairuse.

140

http://ocw.mit.edu/fairuse

combinatorial prediction game

Adversary

Player

`
2

`
6

`d�1

`
1

`
4

`
5

`
9

`d�2

`d`
3

`
8

`
7

loss su↵ered: `
2

+ `
7

+ . . . + `d

© Google. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
http://ocw.mit.edu/fairuse.

141

http://ocw.mit.edu/fairuse

combinatorial prediction game

Adversary

Player

`
2

`
6

`d�1

`
1

`
4

`
5

`
9

`d�2

`d`
3

`
8

`
7

<
8

Full Info: `
1

, `
2

, . . . , `d
Feedback: :

loss su↵ered: `
2

+ `
7

+ . . . + `d

© Google. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
http://ocw.mit.edu/fairuse.

142

http://ocw.mit.edu/fairuse

combinatorial prediction game

Adversary

Player

`
2

`
6

`d�1

`
1

4

`
5

`
9

`d�2

`d`
3

`
8

`
7

`

< n d
b ck:

8
Full I fo: `

1

, `
2

, . . . , `
Feed a : Semi-Bandit: `

2

, `
7

, . . . , `d
Bandit: `

2

+ `
7

+ . . . + `d

loss su↵ered: `
2

+ `
7

+ . . . + `d

© Google. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
http://ocw.mit.edu/fairuse.

143

http://ocw.mit.edu/fairuse

notation

`
2

`
6

`d�1

`
1

`
4

`
5

`
9

`d�2

`d`
3

`
8

`
7

`
2

`
6

`d�1

`
1

`
4

`
5

`
9

`d�2

`d`
3

`
8

`
7

S ⇢ {0, 1}d

`t 2 Rd
+

Vt 2 S T, loss su↵ered: `t Vt

regret:
n

R E
X n

TV � E
X

T
n = `t t min `t u

u
t=1

2S
t=1

Tloss assumption: `t v 1 for all v and t = 1, . . . , n.| |  2 S
144

weighted average forecaster

At time t assign a weight wt,i to each i = 1, . . . , d .

The weight of each vk 2 S is

w t(k) = wt,i .
i :vk

Y

(i)=1

Let qt�1

(k) = w t�1

(k N
)/ k=1

w t�1

(k).

At each time t, draw Kt from

P

the distribution

pt�1

(k) = (1 � �)qt k�1

() + �µ(k)

where µ is a fixed distribution on S and � > 0. Here

wt,i = exp �⌘ Lt,i

where Lt,i = `
1,i + + `t,i and

�

`t,i is a

�

n estimated loss.

e

e e · · · e e
145

loss estimates

Dani, Hayes, and Kakade (2008).
Define the scaled incidence vector

X t = `t(Kt)V Kt

where Kt is distributed according to pt�1

.

Let Pt�1

= E
⇥
V Kt V> be theKt

d ⇥ d correlation matrix.
Hence

Pt 1

⇤

� (i , j) =
k : vk(i

X
pt�1

(k) .
)=vk(j)=1

Similarly, let Qt�1

and M be the correlation matrices of E V V>

when V has law, qt�1

and µ. Then

⇥ ⇤

Pt�1

(i , j) = (1 � �)Qt�1

(i , j) + �M(i , j) .

The vector of loss estimates is defined by

èt = P+

t�1

X t

where P+

t�1

is the pseudo-inverse of Pt�1

.
146

key properties

M M+v = v for all v 2 S.

Qt�1

is positive semidefinite for every t.
Pt 1

P+ r at 1

v = v fo ll t v� and� 2 S.

By definition,
Et X t = Pt�1

`t

and therefore
Et èt = P+

t�1

Et X t = `t

An unbiased estimate!

147

performance bound

The regret of the forecaster satisfies

1

✓
ln

ELb
2B2 d N

n � min Ln(k) 2 + 1 .
n k=1,...,N

◆


s✓

d�min(M)

◆

n

where
T�min(M) = min x Mx > 0

x2span(S):kxk=1

is the smallest “relevant” eigenvalue of M . (Cesa-Bianchi and
Lugosi, 2009.)

Large �min(M) is needed to make sure no `t,i is too large.|e |

148

performance bound

Other bounds:

B
p

d lnN/n (Dani, Hayes, and Kakade). No condition on S.
Sampling is over a barycentric spanner.

d
p

(✓ ln n)/n (Abernethy, Hazan, and Rakhlin). Computationally
e�cient.

149

eigenvalue bounds

�min(M) = min E(V , x)2 .
x2span(S):kxk=1

where V has distribution µ over S.

In many cases it su�ces to take µ uniform.

150

multitask bandit problem

The decision maker acts in m games in parallel.
In each game, the decision maker selects one of R possible actions.
After selecting the m actions, the sum of the losses is observed.

1

�min =

R

maxE Ln � Ln(k) lnR .
k

 2m
p
3nR

The price of only obs

h
b

erving the su

i

m of losses is a factor of m.

Generating a random joint action can be done in polynomial time.

151

assignments

Perfect matchings of Km,m.
At each time one of the N = m! perfect matchings of Km,m is
selected.

1

�min(M) =

m � 1

maxE Ln � Ln(k)  2m 3n ln(m!) .
k

Only a factor of m

h

w

b

orse than n

i

aive full-i

p

nformation bound.

152

spanning trees

In a network of m nodes, the cost of communication between two
nodes joined by edge e is `t(e) at time t. At each time a minimal
connected subnetwork (a spanning tree) is selected. The goal is to
minimize the total cost. N = mm�2.

1

�min(M) =

1

O
m

�
✓

m2

◆
.

The entries of M are

2

P{Vi = 1}=
m

P
�

3

Vi = 1, Vj = 1

= if

m2

i ⇠ j

4

P Vi = 1, Vj = 1 = if .
2

i 6⇠ j
m

�

153

stars

At each time a central node of a network of m nodes is selected.
Cost is the total cost of the edges adjacent to the node.

1

�min � 1 � O
✓

m

◆
.

154

cut sets

A balanced cut in K
2m is the collection of all edges between a set

of m vertices and its comp�lement. Each balanced cut has m2

2medges and there are N = m

�
balanced cuts.

1 1

�min(M) = � O .
4

✓

m2

◆

Choosing from the exponentially weighted average distribution is
equivalent to sampling from ferromagnetic Ising model. FPAS by
Randall and Wilson (1999).

155

hamiltonian cycles

A Hamiltonian cycle in Km is a cycle that visits each vertex exactly
once and returns to the starting vertex. N = (m � 1)!

2

�min �
m

E�cient computation is hopeless.

156

sampling paths

In all these examples µ is uniform over S.

For path planning it does not always work.

What is the optimal choice of µ?
What is the optimal way of exploration?

157

minimax regret

Rn = inf max sup Rnstrategy S⇢{0,1}d adversary

Theorem

Let n � d 2. In the full information and semi-bandit games, we
have

0.008 d
p

n  Rn  d
p
2n,

and in the bandit game,

0.01 d 3/2pn  Rn  2 d 5/2
p
2n.

158

proof

upper bounds:

D = [0,+1)

d , F (x) = 1

d
og⌘ i=1

xi l xi works for full
information but it is only opti

P

mal up to a logarithmic factor in the
semi-bandit case.
in the bandit case it does not work at all! Exponentially weighted
average forecaster is used.

lower bounds:

careful construction of randomly chosen set S in each case.

159

a general strategy

Let D dbe a convex subset of R with nonempty interior int(D).
A function F : D ! R is Legendre if

• F is strictly convex and admits continuous first partial
derivatives on int(D),

• For u 2 @D, and v 2 int(D), we have

lim (u � v T
) rF

�
(1 � s)u + sv = +

s!0,s>0

1.

The Bregman divergence DF : D ⇥ int(

�

D) associated to a
Legendre function F is

DF (u T, v) = F (u) � F (v) � (u � v) rF (v).

160

CLEB (Combinatorial LEarning with Bregman divergences)

Parameter: F Legendre on D � Conv(S)

Conv(S)

D

�(S)

pt

wt

w 0
t+1

wt+1

pt+1

(1) wt
0
+1

2 D :

rF (w 0
+1

) = rF ()t wt � `˜t

(2) wt+1

2 argmin DF (w ,wt
0
+1

)

w2Conv(S)

(3) pt+1

2 �(S) : wt+1

= EV⇠pt+1

V

161

General regret bound for CLEB

Theorem

If F admits a Hessian r2F always invertible then,

n

Rn / diam T̃ 2

�1

˜DF (S) + E
X

`t
=1

⇣
r F (wt)

t

⌘
`t .

162

Di↵erent instances of CLEB: LinExp (Entropy Function)

D 1
Pd

= [0,+)

d , F (x) = 1

⌘ i=1

xi log xi

8
>><

Full Info: Exponentially weighted average

>>: Semi-Bandit=Bandit: Exp3
Auer et al. [2002]

8
>>>

Full Info: Component Hedge

>>>
> Koolen, Warmuth and Kivinen [2010]
><

>>
Semi-Bandit: MW

>> Kale, Reyzin and Schapire [2010]

Bandit: new algorithm

>>>>:

163

Di↵erent instances of CLEB: LinINF (Exchangeable
Hessian)

D = [0,+1)

d , F (x) =
Pd

i=1

R xi 1

()

0

� s ds

INF, Audibert and Bubeck [2009]

⇢
 (x) = exp(⌘x) : LinExp
 (x) = (�⌘x)�q, q > 1 : LinPoly

164

Di↵erent instances of CLEB: Follow the regularized leader

D = Conv(S), then

wt+1

2 argmin

Xt

T̃`s w + F (w)

w2D s=1

!

Particularly interesting choice: F self-concordant barrier function,
Abernethy, Hazan and Rakhlin [2008]

165

18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet Lecture 1
Scribe: Haihao (Sean) Lu Nov. 2, 2015

3. STOCHASTIC BANDITS

3.1 Setup

The stochastic multi-armed bandit is a classical model for decision making and is defined
as follows:

There are K arms(different actions). Iteratively, a decision maker chooses an arm k ∈
{1, . . . ,K}, yielding a sequence XK,1, . . . ,XK,t, . . ., which are i.i.d random variables with
mean µk. Define µ∗ = maxj µj or ∗ ∈ argmax. A policy π is a sequence {πt}t≥1, which
indicates which arm to be pulled at time t. πt ∈ {1, . . . ,K} and it depends only on the
observations strictly interior to t. The regret is then defined as:

n n

Rn = max IE[XK,t]− IE[Xπt,t]
k

∑

t=1

∑

t=1
n

= nµ∗ − IE[
∑

Xπt,t]
t=1

n

= nµ∗ − IE[IE[

K

∑

Xπt,t | πt]]
t=1

=
∑

∆kIE[Tk(n)] ,
k=1

nwhere ∆k = µ∗ − µk and Tk(n) =
∑

t=1 1I(πt = k) is the number of time when arm k was
pulled.

3.2 Warm Up: Full Info Case

X1,t
.Assume in this subsection that K = 2 and we observe the full information



..



at

XK,t

time t after choosing πt. So in each iteration, a normal idea is to choose




the arm




with
highest average return so far. That is

¯πt = argmaxXk,t
k=1,2

where
1

X̄k,t =
t

t∑

s=1

Assume from now on that all random variable Xk,t are subGaussian with variance proxy
2 2

σ2, which means IE[eux
u σ

] ≤ e 2 for all u ∈ IR. For example, N(0, σ2) is subGaussian with

Xk,s

8

166

variance proxy σ2 and any bounded random variable X ∈ [a, b] is subGaussian with variance
proxy (b− a)2/4 by Hoeffding’s Lemma.

Therefore,
Rn = ∆IE[T2(n)] , (3.1)

where ∆ = µ1 − µ2. Besides,

n

¯ ¯T2(n) = 1 +
∑

1I(X2,t > X1,t)
t=2
n

= 1 +
∑

¯ ¯1I(X2,t −X1,t − (µ2 − µ1) ≥ ∆) .
t=2

¯ ¯It is easy to check that (X2,t−X1,t)−(µ2−µ1) is centered subGaussian with variance proxy
2σ2, whereby

2

¯ ¯ − t∆

IE[1I(X 2
2,t > X1,t)] ≤ e 4σ

by a simple Chernoff Bound. Therefore,

∞
2

Rn ≤ ∆(1 +
∑ 4σ2

− t∆

e 24σ) ≤ ∆+ , (3.2)
∆

t=0

whereby the benchmark is
4σ2

Rn ≤ ∆+ .
∆

3.3 Upper Confidence Bound (UCB)

Without loss of generality, from now on we assume σ = 1. A trivial idea is that after s
pulls on arm k, we use µ̂k,s = 1 ∑

j∈{pulls of k}XK,j and choose the one with largest µ̂k,s.s
The problem of this trivial policy is that for some arm, we might try it for only limited
times, which give a bad average and then we never try it again. In order to overcome this
limitation, a good idea is to choose the arm with highest upper bound estimate on the mean
of each arm at some probability lever. Note that the arm with less tries would have a large
deviations from its mean. This is called Upper Confidence Bound policy.

167

Algorithm 1 Upper Confidence Bound (UCB)

for t = 1 to K do
πt = t

end for
for t = K + 1 to n do

t−1

Tk(t) =
∑

1I(πt = k)
s=1

(number of time we have pull arm k before time t)

1
µ̂k,t =

∑

XK,t∧s
Tk(t) s=1

log t)
πt ∈ argmax

{

2 (
µ̂k,t + 2

k∈[K]

√

Tk(t)

}

,

end for

Theorem: The UCB policy has regret

K∑ log n π2

Rn ≤ 8 + (1 +)
∆k 3

k,∆
k
>0

∑

∆k

k=1

Proof. From now on we fix k such that ∆k > 0. Then

n

IE[Tk(n)] = 1 +
t=

∑

IP(πt = k) .
K+1

Note that for t > K,

2 log t 2 log t
{πt = k} ⊆ {µ̂k,t + 2

√

≤ µ̂∗,t + 2 }
Tk(t)

√

T∗(t)
{ √

2 log t
√

⋃ 2 log t 2 log t
⊆ {µk ≥ µ̂k,t + 2 } {µ∗ ≥ µ̂∗,t + 2 }

⋃

{µ∗ ≤ µk + 2
Tk(t) T∗(t)

√

, πt = k}
Tk(t)

}

And from a union bound, we have

√

2 log t 2 log t
IP(µ̂k,t − µk < −2) = IP(µ̂k,t − µk < 2

Tk(t)

√

)
Tk(t)

t
−s8 log t

≤
∑

exp(s)
2

s=1

1
=

t3

t−1

168

2 log t 2 log tThus IP(µk > µ̂k t + 2
k

) ≤ 1
, 3 and similarly we have IP(µ∗ > µ̂∗,t + 2) ≤ 1 ,T (t) t T 3

∗(t) t

whereby

√ √

n n n∑ 1 2 log t
IP(πt = k) ≤ 2 µk + 2

√
∑

+
∑

IP(µ∗ ≤ , πt = k)
t3 Tk(t)t=K+1 t=1 t=1

∞ n
1 8 log t

≤ 2
∑

+
∑

IP(Tk(t) ≤ , πt = k)
t3 ∆2

t=1 t=1 k

∞ n

≤ 2
∑ 1 g n

+
∑ 8 lo

IP(Tk(t) ≤ , πt = k)
t3 ∆2

t=1 t=1 k

∞ ∞∑ 1 8 o
≤ 2 + (

3
t=1

∑ l g n
IP s ≤)

t ∆2
s=1 k

∞

≤ 2
∑ 1 8 log n

+
t2 ∆2

t=1 k

π2 8 log n
= + ,

3 ∆2
k

where s is the counter of pulling arm k. Therefore we have

K

Rn =
∑ ∑ π2 8 log n

∆kIE[Tk(n)] ≤ ∆k(1 + +) ,
3 ∆2

k k,∆
k

k=1 >0

which furnishes the proof.

Consider the case K = 2 at first, then from the theorem above we know Rn ∼ logn ,∆
which is consistent with intuition that when the difference of two arm is small, it is hard to
distinguish which to choose. On the other hand, it always hold that Rn ≤ n∆. Combining

logn log(n∆2)these two results, we have Rn ≤ ∧ n∆, whereby Rn ≤ up to a constant.∆ ∆
Actually it turns out to be the optimal bound. When K ≥ 3, we can similarly get the

log(n∆2)
result that Rn ≤

∑
k

k
k

. This, however, is not the optimal bound. The optimal bound∆

should be
∑ log(n/H)

k
k

, which includes the harmonic sum and H = 1 . See [Lat15].∆

∑

k ∆2

k

3.4 Bounded Regret

From above we know UCB policy can give regret that increases with at most rate log n with
n. In this section we would consider whether it is possible to have bounded regret. Actually
it turns out that if there is a known separator between the expected reward of optimal arm
and other arms, there is a bounded regret policy.

We would only consider the case when K = 2 here. Without loss of generality, we
assume µ1 =

∆ and µ ∆
2 = − , then there is a natural separator 0.2 2

169

Algorithm 2 Bounded Regret Policy (BRP)

π1 = 1 and π2 = 2
for t = 3 to n do
if maxk µ̂k,t > 0 then

then πt = argmaxk µ̂k,t

else
πt = 1, πt+1 = 2

end if
end for

Theorem: BRP has regret
16

Rn ≤ ∆+ .
∆

Proof.

IP(πt = 2) = IP(µ̂2,t > 0, πt = 2) + IP(µ̂2,t ≤ 0, πt = 2)

Note that

n n∑

IP(µ̂2,t > 0, πt = 2) ≤ IE 1I(µ̂2,t > 0, πt = 2)
t=3

∑

t=3
n

≤ IE
∑

1I(µ̂2,t − µ2 > 0, πt = 2)
t=3

∞

≤
∑ 2

e−
s∆

8

s=1

8
= ,

∆2

where s is the counter of pulling arm 2 and the third inequality is a Chernoff bound.
Similarly,

n n∑

IP(µ̂2,t ≤ 0, πt = 2) =
∑

IP(µ̂1,t ≤ 0, πt−1 = 1)
t=3 t=3

8
≤ ,

∆2

Combining these two inequality, we have

16
Rn ≤ ∆(1 +) ,

∆2

170

18.657: Mathematics of Machine Learning

Lecturer: Alexander Rakhlin Lecture 19
Scribe: Kevin Li Nov. 16, 2015

4. PREDICTION OF INDIVIDUAL SEQUENCES

In this lecture, we will try to predict the next bit given the previous bits in the sequence.
Given completely random bits, it would be impossible to correctly predict more than half
of the bits. However, certain cases including predicting bits generated by a human can
be correct greater than half the time due to the inability of humans to produce truly
random bits. We will show that the existence of a prediction algorithm that can predict
better than a given threshold exists if and only if the threshold satifies certain probabilistic
inequalities. For more information on this topic, you can look at the lecture notes at
http://stat.wharton.upenn.edu/~rakhlin/courses/stat928/stat928_notes.pdf

4.1 The Problem

To state the problem formally, given a sequence y1, . . . , yn, . . . ∈ {−1,+1}, we want to find
a prediction algorithm ŷt = ŷt(y1, . . . , yt 1) that correctly predicts yt as much as possible.−

iid
In order to get a grasp of the problem, we will consider the case where y1, . . . , yn ∼ Ber(p).
It is easy to see that we can get

n
1

IE

[

n

∑

=
=1

{ŷt yt
t

}

]

→ min{p, 1 − p}

by letting ŷt equal majority vote of the first t − 1 bits. Eventually, the bit that occurs
with higher probability will alway

1

s have occurred more times. So the central limit theorem
shows that our loss will approach min{ 1p, 1− p} at the rate of O(√).

n

Knowing that the distribution of the bits are iid Bernoulli random variables made the
prediction problem fairly easy. More surprisingly is the fact that we can achieve the same
for any individual sequence.

Claim: There is an algorithm such that the following holds for any sequence y1, . . . , yn,

n
1

lim sup
∑

{ŷt = yt} −min{ȳn, 1 n
n n

t=1

− ȳ } ≤ 0 a.s.
→∞

It is clear that no deterministic strategy can achieve this bound. For any deterministic
strategy, we can just choose yt = −ŷt and the predictions would be wrong every time. So
we need a non-deterministic algorithm that chooses q̂t = IE[ŷt] ∈ [−1, 1].

To prove this claim, we will look at a more general problem. Take a fixed horizon n ≥ 1,
and function φ : {±1}n → R. Does

1

there exist a randomized prediction strategy such that
for any y1, . . . , yn

n
1

IE[
∑

{ŷt = yt
n

t=1

}] ≤ φ(y1, . . . , yn) ?

1 6

6

6

171

http://stat.wharton.upenn.edu/~rakhlin/courses/stat928/stat928_notes.pdf

For certain φ such as φ ≡ 0, it is clear that no randomized strategy exists. However for
1φ ≡ , the strategy of randomly predicting the next bit (q̂t = 0) satisfies the inequality.2

Lemma: For a stable φ, the following are equivalent

n
1

a) ∃(q̂t)t=1,...,n∀y1, . . . , yn IE[
∑

{ŷt = yt}] ≤ φ(y1, . . . , yn)
n

t=1

1
b) IE[φ(ǫ1, . . . , ǫn)] ≥ where ǫ1, . . . , ǫn are Rademacher random variables

2

where stable is defined as follows

Definition (Stable Function): A function φ : {±1}n → is stable if

1
|φ(. . . , yi, . . .)− φ(. . . ,−yi, . . .)| ≤

n

Proof. (a =
1

⇒ 1b) Suppose IEφ < . Take (y1, . . . , yn) = (ǫ1, . . .

R

, ǫn). Then IE[1 n yn t=1 { t̂ =2
ǫt}] = > IE[φ] so there must exist a sequence (nǫ1, . . . , ǫ

1
n) such that IE[

∑

∑

t {ŷt = ǫt}] >2 n =1

φ(ǫ1, . . . , ǫn).

(b =⇒ a) Recu

1

rsively define V (y1, . . . , yt) such that ∀y1, . . . , yn

1

1
V (y1, . . . , yt 1) = min max

(

IE[{ŷt = yt}] + V (y1, . . . y

1

− n)
qt∈[−1,1] yt∈±1 n

)

Looking at the definition, we can see that IE[1 n
t=1 {ŷt = yt}] = V ()n ∅ − V (y1, . . . , yn).

Now we note that V (y1, . . . , yt) = − t − IE[φ(y1,

∑

.

1

. . , yt, ǫtn +1, . . . , ǫn)] satisfies the recursive2
definition since

1 t
minmax IE[ŷt = yt] IE[φ(y1, . . . , yt, ǫt+1, . . . , ǫn)]
q̂t yt n

{ } −

1

−
2n

q̂tyt t 1
=minmax

−
− IE[φ(y1, . . . , yt, ǫt+1, . . . , ǫn)]

−

q̂t yt 2n
−

2n

q̂ t 1 q 1
=minm x{−

t − ˆ t
a −

t
IE[φ(y1, . . . , yt 1, 1, ǫt+1, . . . , ǫn)]− , − IE[φ(y . −1,− 1, . . , yt −1, ǫt+1, . . . , ǫn)]

−

q̂t 2n 2n 2n
−

2n
}

t 1
=− IE[φ(y1, . . . , yt 1, ǫt, ǫt+1, . . . , ǫ− n)]

−
−

2n
=V (y1, . . . , yt 1)−

The first equality uses the fact that for a, b ∈ {±1}, { 1a = b} = −ab , the second uses the2
fact that yt ∈ {±1}, the third minimizes the entire expression by choosing q̂t so that the
two expressions in the max are equal. Here the fact that φ is stable means q̂t ∈ [−1, 1] and
is the only place where we need φ to be stable.

Therefore we have

1

n
1

IE[
∑ 1

{ŷt = yt}] = V (∅)−V (y1, . . . , yn) = −IE[φ(ǫ1, . . . , ǫn)]+ +φ(y1, . . . , yn)
n 2

t=1

≤ φ(y1, . . . , yn)

1 6

6
6

6

6

6

6

1 6

172

by b).

By choosing φ = min{ȳ, 1− ȳ}+ c√ , this shows there is an algorithm that satisfies our
n

original claim.

4.2 Extensions

4.2.1 Supervised Learning

We can extend the problem to a regression type problem by observing xt and trying to
predict yt. In this case, the objective we are trying to minimize would be

1 1
l

n

∑

(ŷt, yt)− inf
f∈F

,
n

∑

l(f(xt) yt)

It turns out that the best achievable performance in such problems is governed by martin-
gale (or, sequential) analogues of Rademacher averages, covering numbers, combinatorial
dimensions, and so on. Much of Statistical Learning techniques extend to this setting of
online learning. In addition, the minimax/relaxation framework gives a systematic way of
developing new prediction algorithms (in a way similar to the bit prediction problem).

4.2.2 Equivalence to Tail Bounds

We can also obtain probabilistic tail bound on functions φ on hypercube by using part a) of
the earlier lemma. Rearranging part a) of the lemma we get 1− 2φ(1y1, . . . , yn) ≤ q̂tyt.n
This implies

∑

2

IP
(1 µ 1 µ

φ(ǫ1, . . . , ǫn) <
−)

= IP
(
1− 2φ(ǫ1, . . . , ǫn) > µ ≤ IP

2 n

∑

q̂tǫt > µ ≤ e− 2n

So IEφ ≥ 1 =⇒ existence of a strategy =⇒ tail boun

)

d for φ

(

1< .

)

2 2

We can extend the results to higher dimensions. Consider z1, . . . , zn ∈ B2 where B2 is
a ball in a Hilbert space. We can define recursively ŷ0 = 0 and ŷt+1 = ProjB2

(ŷt −
1√ zt).n

Based on the properties of projections, for every ∗ ∈ , we have 1 ∑〈ˆ − ∗ 〉 ≤ 1y B2 yt y , ztn
√ .
n

z
Taking y∗

t
= ,

‖

∑

∑
zt‖

n n

∀z1, . . . , zn,
∑

zt
√

‖
t=1

‖ − n ≤
∑

ŷt, zt
t=1

〈 − 〉

Take a martingale difference sequence Z1, . . . , Zn with values in B2. Then

n n

IP
(
‖
∑ 2

nµ

Zt

√

t=1

‖ − n > µ
)
≤ IP(

∑

t=1

〈ŷt,−Zt〉 > µ) ≤ e− 2

Integrating out the tail,

n

IE‖
∑

Zt

t=1

‖ ≤ c
√
n

173

It can be shown using Von Neumann minimax theorem that

n n

∃(ŷt)∀z1, . . . , zn, y
∗ ∈ B2

∑

Wt

√
〈ŷt − y∗, zt〉 ≤ sup E c n

MDSWt 1,...,W=1 n

‖
∑

t=1

‖ ≤

where the supremum is over all martingale difference sequences (MDS) with values in B2.
By the previous part, this upper bound is c

√
n. We conclude an interesting equivalence of

(a) deterministic statements that hold for all sequences, (b) tail bounds on the size of a
martingale, and (c) in-expectation bound on this size.

In fact, this connection between probabilistic bounds and existence of prediction strate-
gies for individual sequences is more general and requires further investigation.

174

18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet Lecture 20
Scribe: Vira Semenova Nov. 23, 2015

In this lecture, we talk about the adversarial bandits under limited feedback. Adver-
sarial bandit is a setup in which the loss function l(a, z) : AxZ is determinitic. Lim-
ited feedback means that the information available to the DM after the step t is It =
{l(a1, z1), ..., l(at−1, zt)}, namely consits of the realised losses of the past steps only.

5. ADVERSARIAL BANDITS

Consider the problem of prediction with expert advice. Let the set of adversary moves be Z
and the set of actions of a decision maker A = {e1, ..., eK}. At time t, at ∈ A and zt ∈ Z are
simultaneously revealed.Denote the loss associated to the decision at ∈ A and his adversary
playing zt by l(at, zt). We compare the total loss after n steps to the minimum expert loss,
namely:

n

min
≤ ≤

∑

lt(ej , zt),
1 j K

t=1

where ej is the choice of expert j ∈ {1, 2, ..,K}.
The cumulative regret is then defined as

n n

Rn =
∑

lt(at, zt)− min
∑

lt(ej , zt)
1≤j≤K

t=1 t=1

The feedback at step t can be either full or limited. The full feedback setup means that
the vector f = (l(e1, z

⊤
t), ..., l(eK , zt)) of losses incurred at a pair of adversary’s choice zt and

each bandit ej ∈ {e1, ..., eK} is observed after each step t. Hence, the information available
to the DM after the step t is I = ∪t ′

t ′ {l(a1, zt), ..., l(aK , zt =1 t′)}. The limited feedback means
that the time −t feedback consists of the realised loss l(at, zt) only. Namely, the information
available to the DM is It = {l(a1, z1), ..., l(at, zt)}. An example of the first setup is portfolio
optimization problems, where the loss of all possible portfolios is observed at time t. An
example of the second setup is a path planning problem and dynamic pricing, where the
loss of the chosen decision only is observed. This lecture has limited feedback setup.

The two strategies, defined in the past lectures, were exponential weights, which yield
the regret of order Rn ≤ c

√
n logK and Follow the Perturbed Leader. We would like to

play exponential weights, defined as:

1exp(tη
pt,j

∑ − l
= s=1 (ej , zs))

∑k

−

l=1 exp(−η
∑t−1 ls=1 (ej , zs))

This decision rule is not feasible, since the loss l(ej , zt) are not part of the feedback if
ej = at. We will estimate it by

l(ej , zt)1I(aˆ t = ej)
l(ej , zt) =

P (at = ej)

6

175

ˆLemma: l(ej , zt) is an unbiased estimator of l(ej , zt)

K I(
P ˆ l(e e =
roof. E k

,zt)1 k
et)

at l(ej , zt) =
∑

Pk=1 (a = e) = l(e , z)P (at=ej) t k j t

Definition (Exp 3 Algorithm): Let η > 0 be fixed. Define the exponential weights
as

−
∑t−1η ˆ

(j) exp(l(ej , zs))
p s=1
t+1,j = ∑k

l=1 exp(−η
∑t−1 l̂s=1 (ej , zs))

(Exp3 stands for Exponential weights for Exploration and Exploitation.)
We will show that the regret of Exp3 is bounded by

√
2nK logK. This bound is

√
K

times bigger than the bound on the regret under the full feedback. The
√
K multiplier is

the price of have smaller information set at the time t. The are methods that allow to get
rid of logK term in this expression. On the other hand, it can be shown that

√
2nK is the

optimal regret.

−
∑t

∑
K

−1 ˆ W e
Proof. Let Wt,j = exp(kη l(e ,= j zs)), W1 t =

∑
Ws j=1 t,j , and p = j=1 t,j j

t W .
t

W
∑K (−η

∑ −1exp t l̂ e , z ηl̂ e , zt+1 j=1 s=1 (j s)) exp((j t))
log() = log() (5.1)

W
∑K e t

−

xp(−
∑ −1

t η l̂s=1 (ej , zj=1 s))

t−1

ˆ= log(IEJ∼pt exp(−η
∑

l(eJ , zs))) (5.2)
s=1

≤∗ η2
log(1− 2η ˆIEJ∼ptl(eJ , z

ˆ
s) + IEJ∼ptl (eJ , zs) (5.3)

2

∗ ˆwhere inequality is obtained by plugging in IEJ∼pt l(eJ , zt) into the inequality

η2x2
expx ≥ 1− ηx+

2

.

K K
l(ej , zt)1I(a e)ˆIEJ∼pt l(eJ zt) =

∑
ˆ t = j

, pt,j l(eJ , zt) =
∑

pt,j = l(at, zt) (5.4)
P (at = ej)j=1 j=1

K K
l22 (ej , zt)1I(a)ˆ ˆ t = ej

IEJ∼ptl (eJ , zt) =
∑

pt,j l2(eJ , zt) =
∑

pt,j (5.5)
P 2(at = ej)j=1 j=1

l2(ej , zt) 1
=

Pat,t
≤ (5.6)

Pat,t

Summing from 1 through n, we get

log(Wt+1) ≤
2

log(n
1)− η

∑
lt=1 (at, zt) +

ηW 2

∑
1 .

P
a ,t
t

176

For t = 1, we initialize w1,j = 1, so W1 = K.

Since IE 1 p
J =Pa ,t

∑K j,t Kj=1 = , the expression above becomesp
t j,t

IE log(n η2KnWn+1)− logK ≤ −η
∑

t l a=1 (t, zt) + 2
ˆNoting that log(Wn+1) = log(

∑K
j=1 exp(−η

∑t−1 l e , zs=1 (j s))
and defining j∗ = argmin1≤j≤K

∑n lt=1 (ej , zt), we obtain:

K t−1 t−1

log(Wn+1) ≥ log(
∑

exp(−η
∑

l(ej , zs))) = −η
∑

l(ej , zs)
j=1 s=1 s=1

Together:

n n
logK ηKn∑

l(at, zt)− min t
≤j≤

∑

l(ej , z)
K

t t=1

≤ +
1 η 2

=1

The choice of η :=
√
2 logKnK yields the bound Rn

√
≤ 2K logKn.

177

18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet Lecture 21
Scribe: Ali Makhdoumi Nov. 25, 2015

6. LINEAR BANDITS

Recall form last lectures that in prediction with expert advise, at each time t, the player
plays at ∈ {e1, . . . , ek} and the adversary plays zt such that l(at, zt) ≤ 1 for some loss
function. One example of such loss function is linear function l(at, zt) = aTt zt where |zt|∞ ≤
1. Linear bandits are a more general setting where the player selects an action at ∈ A ⊂ R

k,
where A is a convex set and the adversary selects z T

t ∈ Z such that |zt at| ≤ 1. Similar to
the prediction with expert advise, the regret is defined as

Rn = E

[
n n∑

TAt zt

]

−min Ta zt,
a∈K

t=1

∑

t=1

where At is a random variable in A. Note that in the prediction with expert advise, the set
A was essentially a polyhedron and we had min n T

a∈K aT zt=1 t = min1≤j≤k e zj t. However, in

the linear bandit setting the minimizer of aT zt can be any point of the set A and essentially
the umber experts that the player tries to ”comp

∑

ete” with are infinity. Similar, to the
prediction with expert advise we have two settings:

1 Full feedback: after time t, the player observes zt.

2 Bandit feedback: after time t, the player observes AT
t zt, where At is the action that

player has chosen at time t.

We next, see if we can use the bounds we have developed in the prediction with expert
advise in this setting. In particular, we have shown the following bounds for prediction
with expert advise:

1 Prediction with k expert advise, full feedback: Rn
√

≤ 2n log k.

2 Prediction with k expert advise, bandit feedback: Rn
√

≤ 2nk log k.

The idea to deal with linear bandits is to discretize the set A. Suppose that A is bounded
(e.g., A ⊂ B2, where B2 is the l2 ball in R

k). We can use a 1 -covering ofn A which we
have shown to be of size (smaller than)O(nk). This means there exist y1, . . . , y|N | such that

for any a ∈ A, there exist yi such that ||yi − a|| ≤ 1 . We now can bound the regret forn
general case, where the experts can be any point in A, based on the regret on the discrete
set, N = {y1, . . . , y|N |},as follows.

Rn = E

[
n

]
n∑

TAt zt
t 1

−min Ta zt
a∈A

= t=1
[

n

∑

n

= E

∑
TAt zt

]

−min Ta zt + o(1).
a∈N

t=1

∑

t=1

Therefore, we restrict actions At to a combination of the actions that belong to {y1, . . . , y|N |}
(we can always do this), then using the bounds for the prediction with expert advise, we
obtain the following bounds:

178

1 Linear bandit, full feedback: Rn ≤
√

2n log(nk) = O(
√
kn log n), which in terms

of dependency to n is of order O(
√
n) that is what we expect to have.

2 Linear bandit, bandit feedback: Rn ≤
√

2nnk log(nk) = Ω(n), which is useless in
terms of dependency of n as we expect to obtain O(

√
n) behavior.

The topic of this lecture is to provide bounds for the linear bandit in the bandit feedback.
Problem Setup: Let us recap the problem formulation:

• at time t, player chooses action at ∈ A ⊂ [−1, 1]k.

• at time t, adversary chooses zt ∈ Z ⊂ R
k, where aTt zt = 〈at, zt〉 ∈ [0, 1].

• Bandit feedback: player observes 〈at, zt〉(rather than zt in the full feedback setup).

Literature: O(n3/4) regret bound has been shown in [BB04]. Later on this bound has
been improved to O(n2/3) in [BK04] and [VH06] with ”Geometric Hedge algorithm”, which
we will describe and analyze below. We need the following assumption to show the results:
Assumption: There exist δ such that δe1, . . . , δek ∈ A. This assumption guarantees that
A has full-dimension around zero.
We also discretize A with a 1 -net of size Cnk and only consider the resulting discrete setn
and denote it by A, where |A| ≤ (3n)k. All we need to do is to bound

Rn = E

[
n∑

TAt zt

]
n

−min
∑

Ta zt.
a∈A

t=1 t=1

For any t and a, we define

t−1exp η
t(

(

− zs=1 ˆ
T
s a

p a) = ,
t−1

a∈A exp

∑
)

(

−η zs=1 ˆ
T
s a
)

where η is a parameter (that we will

∑

choose later) an

∑

d ẑt is defined to incorporate the idea of
exploration versus exploitation. The algorithm which is termed Geometric Hedge Algorithm

is as follows:
At time t we have

• Exploitation: with probability 1− γ draw at according to pt and let ẑt = 0.

• Exploration: with probability γ let at = δej for some 1k ≤ j ≤ k and ẑt =
k j)
2 〈

(
a k
t, zt aγ

〉 t = z e
δ γ t j .

Note that δ is the the parameter that we have by assumption on the set A, and η and γ
are the parameters of the algorithm that we shall choose later.

Theorem: Using Geometric Hedge algorithm for linear bandit with bandit feedback,

with γ = 1 = g
1/3

and η
√

lo n
4/3

, we have
n kn

E[Rn] ≤
2/3Cn
√

log 3/2n k .

179

Proof. Let the overall distribution of at be qt defined as qt = (1− γ)pt + γU , where U is a
uniform distribution over the set {δe1, . . . , δek}. Under this distribution, ẑt is an unbiased
estimator of zt, i.e.,

k
γ k (

Eat∼qt [ẑt] = 0(1 −
j)

γ) +
∑

zt ej = zt.
k γ

j=1

following the same lines of the proof that we had for analyzing exponential weight algorithm,
we will define

1

wt = e p z
a∈A

(
t−

x − Tη a ŝ

s=1

)
∑ ∑

.

We then have

log

(
wt+1

)

= log

(
∑

Tpt(a) exp ηa ẑt
wt

a∈

(
−

A

)

)

e−
2

x≤1−x+x

≤
2

log

(
∑

T 1
()

(

1− ˆ + 2(T 2pt a ηa zt η a ẑs)
2

a∈A

))

(− T 1
= log

(

1 +
∑

)

(

ˆ + 2(T 2pt a ηa zt η a ẑt)
2

a∈A

))

log(1+x)≤x

≤
∑

T 1 2pt(
T 2a)

(

−ηa ẑt + η (a ẑt)
2

a∈A

)

.

Taking expectation from both sides leads to

Eat∼qt

[
wt+1

log

(

wt

)]

≤ −ηEat∼qt

[

pt(a)
Ta ẑt

a∈A

] [
∑ η2

+ T
Eat∼qt

∑
2pt(a)(a ẑt)

2
a∈A

]

= −
[2

T η
ηE

t∼pt at ẑt
]
+ 2

Ea a ∼q pt(a)(
Ta ẑt)

2 t t

[

a

∑

∈A

]

2
qt=(1−γ)pt+γU η

=
− γ

Eat∼qt

[
T η

at ẑ
T 2

Et a
− γ

]
+ η

1 −
∼U

1 t ẑ
T

a t + E
γ t a

2 t∼qt

[

pt(a)(a ẑt)
a∈A

]

aT zt≤1 −η [] ηγ η2

[] ∑

t

≤ T
Eat∼qt at ẑt + + ∼qt

[
∑

T 2
Eat pt(a)(a ẑ

1− γ 1−
t)

γ 2
a∈A

]

.

We next, take summation of the previous relation for t = 1 up to n and use a telescopic
cancellation to obtain

n n
η T ηγ η2 T 2

E [logw E+] ≤ [logw1]− En 1

[
∑

at ẑt

]

+ n+ E pt(a)(a ẑ
1−

t)
γ 1 γ 2

t=1
−

[
∑

t=1 a

∑

∈A

]

n n
ηγ η2

≤ E [log]− ηE

[
∑

T Tat ẑ
2w1 t

]

+ n+ E pt(a)(a ẑt) . (6.1)
1 γ 2

t=1
−

[
∑

t=1 a∈A

]
∑

180

Note that for all a∗ ∈ A we have

n

log(wn+1) = log

((
n

a

))
∑

exp −η
∈A

∑
Ta ẑs

s=1

≥ −η
∑

.
s=

〈 ∗a , ẑs
1

〉

Using E[ẑs] = zs, leads to

n

E [log(wn+1)] ≥ −η
∑

∗a , zs . (6.2)
s=1

〈 〉

We also have that

log(w1) = log |A| ≤ 2k log n. (6.3)

Plugging (6.2) and (6.3) into (6.1), leads to

γ η
E[Rn] ≤ n+ E

[
n

]
∑∑

pt a)(
T 2 n

(a t)
2 k log

ẑ + . (6.4)
1− γ 2 η

t=1 a∈A

nIt remains to control the quadratic term E
[∑

p a aT z 2
t=1 a∈A t()(t̂) . We use the fact that

|
(j)

zt |, |
(j)

at | ≤ 1 to obtain

∑]

E

[
n n∑∑

T 2 T 2pt(a)(a ẑt) = p a)Et(qt [(a ẑt)]
t=1 a∈A

]
∑

t=1 a

∑

∈A

n k

=
∑∑ 2γ k (j)

pt(a)


(

(1− γ)0 +
∑

)

[j 2a zt]
k γ

t=1 a∈A j=1



(j) n|ajz
t

|≤1



≤
∑∑ k2

(a)

(
2

t

)
k

p = n .
γ γ

t=1 a∈A

Plugging this bound into (6.4), we have

η k2 2k log n
E[Rn] ≤ γn+ n + .

2 γ η

Letting lognγ = 1
/3

and η =
n1

√

kn4/3
leads to

E[3/2 2/3Rn] ≤ Ck n
√

log n.

Literature: The bound we just proved has been improved in [VKH07] where they show
O(d3/2

√
n log n) bound with a better exploration in the algorithm. The exploration that we

used in the algorithm was coordinate-wise. The key is that we have a linear problem and we
can use better tools from linear regression such as least square estimation. However, we will
describe a slightly different approach in which we never explore and the exploration is com-
pletely done with the exponential weighting. This approach also gives a better performance
in terms of the dependency on k. In particular, we obtain the bound O(d

√
n log n) which

coincides with the bound recently shown in [BCK 12] using a John’s ellipsoid.

181

−1Theorem: Let Ct = Eat∼qt[a aTt], ẑt = (aTt t zt)Ct at, and γ = 0 (so that pt = qt). Using

Geometric Hedge algorithm with η = 2
√

logn for linear bandit with bandit feedbackn

leads to

E[Rn] ≤ CK
√

n log n.

Proof. We follow the same lines of the proof as the previous theorem to obtain (6.4). Note
that the only fact that we used in order to obtain (6.4) is unbiasedness, i.e., E[ẑt] = zt,
which holds here as well since

E[ẑ −
Et] = [1 TCt atat zt] =

−1C Et [Tatat]zt = zt.

Note that we can use pseudo-inverse instead of inverse so that invertibility is not an issue.
Therefore, rewriting (6.4) with γ = 0, we obtain

[
n

η ∑∑
T 2 2k log n

E[Rn] ≤ Eat∼pt pt(a)(a ẑt)
∈

]

+ .
2 η

t=1 a A

We now bound the quadratic term as follows

n n
T 2 T 2

Eat∼pt

[
∑∑

pt(a)(a ẑt)

]

=
∑∑

p a)Et(at∼pt (a ẑt)
t=1 a∈A t=1 a∈A

[]

CT

t
=C −1

n n
T

t, ẑt=(a
t
zt)C

t
at

=
∑

a) Tp a Et(ẑ T 2
tˆ a = pt(

T
t a) Tz a E (−1 T −1at zt) Ct atat Ct a

t=1 a

∑

∈A

[] ∑

t=1 a

T

∑

∈A

n n|a

[

t
zt|≤1 E

]

∑∑
T −1 T −1 [a

≤
taT

p (a)
t
]=Ct T −1a C Et t atat Ct a = pt(a)a Ct a

t=1 a∈A

[] ∑

t=1 a

∑

∈A

n n∑∑ tr(AB)=tr(BA)
= ()tr(T −1 1p t r(−

t a a C a) =
∑∑

pt(a)t
TCt aa)

t=1 a∈A t=1 a∈A

n n n

=
∑

tr(−1C Et a∼pt[
Taa]) =

∑

tr(−1Ct Ct) = tr(Ik) = kn.
t=1 t=1

∑

t=1

Plugging this bound into previous bound yields

η 2k log n
E[Rn] ≤ nk + .

2 η

lognLetting η = 2
√

, leads to E[Rn]n ≤ Ck
√
n log n.

182

18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet Lecture 22
Scribe: Aden Forrow Nov. 30, 2015

7. BLACKWELL’S APPROACHABILITY

7.1 Vector Losses

David Blackwell introduced approachability in 1956 as a generalization of zero sum game
theory to vector payoffs. Born in 1919, Blackwell was the first black tenured professor at
UC Berkeley and the seventh black PhD in math in the US.

Recall our setup for online linear optimization. At time t, we choose an action at ∈ ∆K

and the adversary chooses zt ∈ B∞(1). We then get a loss ℓ(at, zt) = 〈at, zt〉. In the full
information case, where we observe zt and not just ℓ(at, zt), this is the same as prediction
with expert advice. Exponential weights leads to a regret bound

Rn ≤

√
n

2
log(K).

The setup of a zero sum game is nearly identical:

• Player 1 plays a mixed strategy p ∈ ∆n.

• Player 2 plays q ∈ ∆m.

• Player 1’s payoff is p⊤Mq.

Here M is the game’s payoff matrix.

Theorem: Von Neumann Minimax Theorem

max min ⊤p Mq = min max ⊤p Mq.
p∈∆n q∈∆m q∈∆m p∈∆n

The minimax is called the value of the game. Each player can prevent the other from doing
any better than this. The minimax theorem implies that if there is a good response pq to
any individual q, then there is a silver bullet strategy p that works for any q.

Corollary: If ∀q ∈ ∆n, ∃p such that p⊤Mq ≥ c, then ∃p such that ∀q, p⊤Mq ≥ c.

Von Neumann’s minimax theorem can be extended to more general sets. The following
theorem is due to Sion (1958).

Theorem: Sion’s Minimax Theorem Let A and Z be convex, compact spaces, and
f : A × Z → R. If f(a, ·) is upper semicontinuous and quasiconcave on Z ∀a ∈ A and

183

f(·, z) is lower semicontinuous and quasiconvex on A ∀z ∈ Z, then

inf sup f(a, z) = sup inf f(a, z).
a∈A z∈Z z∈ aZ ∈A

(Note - this wasn’t given explicitly in lecture, but we do use it later.) Quasiconvex and
quasiconcave are weaker conditions than convex and concave respectively.

Blackwell looked at the case with vector losses. We have the following setup:

• Player 1 plays a ∈ A

• Player 2 plays z ∈ Z

• Player 1’s payoff is ℓ(a, z) ∈ d
R

We suppose A and Z are both compact and convex, that ℓ(a, z) is bilinear, and that
‖ℓ(a, z)‖ ≤ R ∀a ∈ A, z ∈ Z. All norms in this section are Euclidean norms. Can we
translate the minimax theorem directly to this new setting? That is, if we fix a set S ⊂ d

R ,
and if ∀z ∃a such that ℓ(a, z) ∈ S, does there exist an a such that ∀z ℓ(a, z) ∈ S?

No. We’ll construct a counterexample. Let A = Z = [0, 1], ℓ(a, z) = (a, z), and
S = {(a, z) ∈ [0, 1]2 : a = z}. Clearly, for any z ∈ Z there is an a ∈ A such that a = z and
ℓ(a, z) ∈ S, but there is no a ∈ A such that ∀z, a = z.

Instead of looking for a single best strategy, we’ll play a repeated game. At time t,
player 1 plays at = at(a1, z1, . . . , at−1, zt−1) and player 2 plays zt = zt(a1, z1, . . . , at−1, zt−1).
Player 1’s average loss after n iterations is

1
ℓ̄n =

n∑

ℓ(at, zt)
n

t=1

Let d(x, S) be the distance between a point x ∈ d
R and the set S, i.e.

d(x, S) = inf
s∈S

‖x− s‖.

If S is convex, the infimum is a minimum attained only at the projection of x in S.

Definition: A set S is approachable if there exists a strategy at = at(a1, z1, . . . , at−1, zt−1)
¯such that limn→∞ d(ℓn, S) = 0.

Whether a set is approachable depends on the loss function ℓ(a, z). In our example, we can
choose a0 = 0 and at = zt−1 to get

n
1

ℓ̄lim n = lim
∑

(zt−1, zt) = (z̄, z̄) ∈ S.
n→∞ n→∞ n

t=1

So this S is approachable.

7.2 Blackwell’s Theorem

We have the same conditions on A, Z, and ℓ(a, z) as before.

184

Theorem: Blackwell’s Theorem Let S be a closed convex set of 2
R with ‖x‖ ≤ R

∀x ∈ S. If ∀z, ∃a such that ℓ(a, z) ∈ S, then S is approachable.
Moreover, there exists a strategy such that

2R
d ℓ̄(n, S) ≤ √

n

Proof. We’ll prove the rate; approachability of S follows immediately. The idea here is to
transform the problem to a scalar one where Sion’s theorem applies by using half spaces.

Suppose we have a half space H = {x ∈ d
R : 〈w, x〉 ≤ c} with S ⊂ H. By assumption,

∀z ∃a such that ℓ(a, z) ∈ H. That is, ∀z ∃a such that 〈w, ℓ(a, z)〉 ≤ c, or

maxmin〈w, ℓ(a, z)〉 ≤ c.
z∈Z a∈A

By Sion’s theorem,

minmax〈w, ℓ(a, z)
a∈A z∈Z

〉 ≤ c.

So ∃a∗H such that ∀z ℓ(a, z) ∈ H.
This works for any H containing S. We want to choose Ht so that ℓ(at, zt) brings the

¯average ℓ ¯
t closer to S than ℓt−1. An intuitive choice is to have the hyperplane W bounding

H ¯
t be the separating hyperplane between S and ℓt−1 closest to S. This is Blackwell’s

¯strategy: let W be the hyperplane through πt ∈ argminµ∈S ‖ℓt−1 − µ‖ with normal vector
ℓ̄t−1 − πt. Then

H = {x ∈ d
R : 〈x− πt, ℓ̄t−1 − πt〉 ≤ 0}.

Find a∗H and play it.
We need one more equality before proving convergence. The average loss can be ex-

panded:

t 1
ℓ̄t t−1 t

t t
t

=
− 1 t 1 1¯(ℓt−1 − πt) +

−
πt + ℓt

t t t

Now we look at the distance of the average from S, using the above equation and the
definition of πt+1:

d ¯(ℓ , S)2 ℓ̄t = ‖ t − πt+1‖
2

≤ ‖ℓ̄t − πt‖
2

=

∥
∥
∥

2t− 1 1¯(ℓt−1 − πt) + (ℓt − πt)
t

∥

∥ t

ℓt

∥

=

(
t− 1

)2

d ¯(ℓ 2 π 2
t t 1 ¯

t−1, S) +
‖ −

∥
∥

‖
+ 2

−
〈ℓt − πt, ℓ

t t2 t2
t−1 − πt〉

Since ℓt ∈ H, the last term is negative; since ℓt and πt are both bounded by R, the middle
2

term is bounded by 4R
2 . Letting µ2

t = t2d(ℓ̄ 2
t, S) , we have a recurrence relation

t

µ2
t ≤ µ2

t−1 + 4R2,

=
−

ℓ̄ +
1
ℓ

185

implying

µ2
n ≤ 4nR2.

Rewriting in terms of the distance gives the desired bound,

2R
d ℓ̄(t, S) ≤ √

n

Note that this proof fails for nonconvex S.

7.3 Regret Minimization via Approachability

Consider the case A = ∆ K
K , Z = B∞(1). As we showed before, exponential weights Rn ≤

c
√

n log(K). We can get the same dependence on n with an approachability-based strategy.
First recall that

n n
1 1
Rn =

∑ 1
ℓ(at, zt)−min ℓ(ej , zt)

n n j n
t=1

∑

t=1

n n

= m x

[

1
a

∑ 1
ℓ(at, zt) ℓ(ej , zt)

j n n
t=1

−
∑

t=1

]

If we define a vector average loss

n
1

ℓ̄n =
∑

(ℓ(at, zt)− ℓ(e1, zt), . . . , ℓ(a
K

Rt, zt) e
t=1

− ℓ(K , zt))
n

∈ ,

Rn ¯ ¯
n → 0 if and only if all components of ℓn are nonpositive. That is, we need d(−ℓn, OK) → 0,
where −O = {x ∈ K

R : −1 ≤ xi ≤ 0, iK ∀ } is the nonpositive orthant. Using Blackwell’s
approachability strategy, we get

Rn
≤ d(ℓ̄ −

n, O

√

K
) ≤ c .

n K n

The K dependence is worse than exponential weights,
√
K instead of log(K).

How do we find a∗H? As a concrete example, let K = 2. We need a

√

∗
H tp satisfy

〈 ∗w, ℓ(∗aH , z)〉 = 〈w, 〈aH , z〉y − z〉 ≤ c

for all z. Here y is the vector of all ones. Note that c ≥ 0 since 0 is in S and therefore in
H. Rearranging,

〈 ∗aH , z〉〈w, y〉 ≤ 〈w, z〉 + c,

Choosing a∗H = w will work; the inequality reduces to
〈w,y〉

〈w, z〉 ≤ 〈w, z〉 + c.

Approachability in the bandit setting with only partial feedback is still an open problem.

186

18.657: Mathematics of Machine Learning

Lecturer: Philippe Rigollet Lecture 23
Scribe: Jonathan Weed Dec. 2, 2015

1. POTENTIAL BASED APPROACHABILITY

Last lecture, we saw Blackwell’s celebrated Approachability Theorem, which establishes a
procedure by which a player can ensure that the average (vector) payoff in a repeated game
approaches a convex set. The central idea was to construct a hyperplane separating the

¯convex set from the point `t 1, the average loss so far. By projecting perpendicular to−
this hyperplane, we obtained a scalar-valued problem to which von Neumann’s minimax
theorem could be applied. The set S is approachable as long as we can always find a “silver
bullet,” a choice of action at for which the loss vector `t lies on the side of the hyperplane
containing S. (See Figure 1.)

Figure 1: Blackwell approachability

Concretely, Blackwell’s Theorem also implied the existence of a regret-minimizing algo-
rithm for expert advice. Indeed, if we define the vector loss `t by (`t)i = `(at, zt)− `(ei, zt),
then the average regret at time t is equivalent to the sup-norm distance between the average

¯loss `t and the negative orthant. Approaching the negative orthant therefore corresponds
to achieving sublinear regret.

However, this reduction yielded suboptimal rates. To bound average regret, w
the sup-norm distance by the Euclidean distance, which led to an extra factor of

√e replaced
k appear-

ing in our bound. In the sequel, we develop a more sophisticated version of approachability
that allows us to adapt to the geometry of our problem. (Much of what follows resem-
bles out development of the mirror descent algorithm, though the two approaches differ in
crucial details.)

1.1 Potential functions

We recall the setup of mirror descent, first described in Lecture 13. Mirror descent achieved
accelerated rates by employing a potential function which was strongly convex with respect

187

to the given norm. In this case, we seek what is in some sense the opposite: a function
whose gradient does not change too quickly. In particular, we make the following definition.

Definition: A function Φ : IRd → IR is a potential for S ∈ IR if it satisfies the following
properties:

• Φ is convex.

• Φ(x) ≤ 0 for x ∈ S.

• Φ(y) = 0 for y ∈ ∂S.

• Φ(y) − Φ(x) − 〈∇Φ(x), y − x〉 ≤ h x2‖ − y‖
2, where by abuse of notation we use

∇Φ(x) to denote a subgradient of Φ at x.

Given such a function, we recall two associated notions from the mirror descent algo-
rithm. The Bregman divergence associated to Φ is given by

DΦ(y, x) = Φ(y)− Φ(x)− 〈∇Φ(x), y − x〉 .

Likewise, the associated Bregman projection is

π(x) = argminDΦ(y, x) .
y∈S

We aim to use the function Φ as a stand-in for the Euclidean distance that we employed
in our proof of Blackwell’s theorem. To that end, the following lemma establishes several
properties that will allow us to generalize the notion of a separating hyperplane.

Lemma: For any convex, closed set S and z ∈ S, x ∈ SC , the following properties
hold.

• 〈z − π(x),∇Φ(x)〉 ≤ 0,

• 〈x− π(x),∇Φ(x)〉 ≥ Φ(x).

In particular, if Φ is positive on SC , then H := {y | 〈y − Φ(x),∇Φ(x)〉 = 0} is a
separating hyperplane.

Our proof requires the following proposition, whose proof appears in our analysis of the
mirror descent algorithm and is omitted here.

Proposition: For all z ∈ S, it holds

〈∇Φ(π(x))−∇Φ(x), π(x)− z〉 ≤ 0 .

Proof of Lemma. Denote by π the projection π(x). The first claim follows upon expanding
the expression on the left-hand side as follows

〈z − π,∇Φ(x)〉 = 〈z − π,∇Φ(x)−∇Φ(π)〉+ 〈z − π,∇Φ(π)〉.

188

The above Proposition implies that the first term is nonpositive. Since the function Φ is
convex, we obtain

0 ≥ Φ(z) ≥ Φ(π) + 〈z − π,∇Φ(π)〉 .

Since π lies on the boundary of S, by assumption Φ(π) = 0 and the claim follows.
For the second claim, we again use convexity:

Φ(π) ≥ Φ(x) + 〈π − x,∇Φ(x)〉 .

Since Φ(π) = 0, the claim follows.

1.2 Potential based approachability

With the definitions in place, the algorithm for approachability is essentially the same as it
before we introduced the potential function. As before, we will use a projection defined by
the hyperplane H = {y | 〈y− ¯ ¯π(`t−1),∇Φ(`t = 0 and von Neumann’s minmax theorem−1〉 }
to find a “silver bullet” a∗t such that `t = `(a∗t , zt) satisfies

〈`t − ¯πt,∇Φ(`t−1)〉 ≤ 0 .

All that remains to do is to analyze this procedure’s performance. We have the following
theorem.

Theorem: If ‖`(a, z)‖ ≤ R holds for all z ∈ A, z ∈ Z and all assumptions above are
satisfied, then

4R2h log n¯Φ(`n) ≤ .
n

Proof. The definition of the potential Φ required that Φ be upper bounded by a quadratic
function. The proof below is a simple application of that bound.

As before, we note the identity

`¯ ¯ t t−1
`t = `t−1 + .

t

This expression and the definition of Φ imply.

1 h¯ ≤ ¯) 〈 ¯Φ(`t Φ(`t−1) + `t − ¯ ¯` 2
t 1,)− ∇Φ(`t 1 〉+ ‖`− t `

t 2 2
− t−1

t
‖ .

¯The last term is the easiest to control. By assumption, `t and `t 1 are contained in a ball−
of radius R, so ‖`t − ¯̀

t−1‖2 ≤ 4R2.
To bound the second term, write

1 1 1〈 ¯`t − ¯ ¯ ¯ ¯`t 1,∇Φ(`t 1)〉 = 〈`t − πt,∇Φ(`t 1) + π ` , Φ(`) .
t

− − − 〉
t
〈 t

t
− t−1 ∇ t−1 〉

The first term is nonpositive by assumption, since this is how the algorithm constructs
the silver bullet. By the above Lemma, the inner product in the second term is at most
− ¯Φ(`t−1).

We obtain (
t− 1 2¯Φ(`t) ≤

)
hR2

¯Φ(`t)−1 + .
t t2

− ¯̀

189

¯Defining ut = tΦ(`t) and rearranging, we obtain the recurrence

2hR2

ut ≤ ut−1 + ,
t

So
n

un =
∑ n

ut − ut−1 ≤ 2hR2
∑ 1

t
t=1 t=1

Applying the definition of un proves the claim.

1.3 Application to regret minimization

We now show that potential based approachability provides√ an improved bound on regret
minimization. Our ultimate goal is to replace the bound nk (which we proved last lecture)
by
√
n log k (which we know to be the optimal bound for prediction with expert advice).

We will be able to achieve this goal up to logarithmic terms in n. (A more careful analysis
of the potential defined below does actually yields an optimal rate.)

Recall that Rn ¯= d (`n, On K
−), where Rn is the cumulative regret after n rounds and O−∞ K

is the negative orthant. It is not hard to see that d = ‖x+‖ , where x+ is the positive∞ ∞
part of the vector x.

We define the following potential function:

K
1 1

Φ(x) = log
η


K

∑
eη(xj)+

j=1


.

The function Φ is a kind of “soft max” of the


positive entries


of x. (Note that this definition

does not agree with the use of the term soft max in the literature—the difference is the
presence of the factor 1 .) The terminology soft max is justified by noting thatK

1 1‖x+‖ = max(x log +
logK logK

j)+ ≤ max eη(xj) + .
η
≤ Φ(x) +∞

j j η K η

The potential function therefore serves as an upper bound on the sup distance, up to an
additive logarithmic factor.

The function Φ defined in this way is clearly convex and zero on the negative orthant.
To verify that it is a potential, it remains to show that Φ can be bounded by a quadratic.

Away from the negative orthant, Φ is twice differentiable and we can compute the
Hessian explicitly:

∇2Φ(x) = η diag(∇Φ(x))− η∇Φ∇Φ> .

For any vector u such that ‖u‖2 = 1, we therefore have

K K

u>∇2Φ(x)u = η
∑

u2
j (∇Φ(x))j − η(u>

j

∇Φ(x))2 ≤ η
=1

∑
u2
j (

j=1

∇Φ(x))j ≤ η ,

since ‖u‖2 = 1 and ‖∇Φ(x)
2
‖1 ≤ 1.

We conclude that ∇ Φ(x) � ηI, which for nonnegative x and y implies the bound

η
Φ(y)− Φ(x)− 〈∇Φ(x), y − x〉 ≤

2
‖y − x‖2 .

≤ 4hR2 log n .

190

In fact, this bound holds everywhere. Therefore Φ is a valid potential function for the
negative orthant, with h = η.

The above theorem then implies that we can ensure

Rn logK 4R2η log n logK≤ ¯Φ(`n) + ≤ + .
n η n η

To optimize this bound, we pick η = 1
√

n logK and obtain the bound2R logn

Rn ≤ 4R
√
n log n logK .

As alluded to earlier, a more careful analysis can remove the log n term. Indeed, for this
particular choice of Φ, we can modify the above Lemma to obtain the sharper bound

〈x− π(x),∇Φ(x)〉 ≥ 2Φ(x) .

When we substitute this expression into the above proof, we obtain the recurrence
relation

t¯Φ(`t)
− 2 c≤ ¯Φ(`t−1) + .
t t2

This small change is enough to prevent the appearance of log n in the final bound.

191

References

[Nem12] Arkadi Nemirovski, On safe tractable approximations of chance constraints, Euro-
pean J. Oper. Res. 219 (2012), no. 3, 707–718. MR 2898951 (2012m:90133)

[NS06] Arkadi Nemirovski and Alexander Shapiro, Convex approximations of chance

constrained programs, SIAM J. Optim. 17 (2006), no. 4, 969–996. MR 2274500
(2007k:90077)

[BB04] McMahan, H. Brendan, and Avrim Blum. Online geometric optimization in the

bandit setting against an adaptive adversary. Conference on Learning theory
(COLT) 2004.

[BCK 12] Bubeck, Sbastien, Nicolo Cesa-Bianchi, and Sham M. Kakade. Towards mini-

max policies for online linear optimization with bandit feedback. arXiv preprint
arXiv:1202.3079 (2012). APA

[BK04] Awerbuch, Baruch, and Robert D. Kleinberg. Adaptive routing with end-to-end

feedback: Distributed learning and geometric approaches.Proceedings of the thirty-
sixth annual ACM symposium on Theory of computing. ACM, 2004.

[Bla56] D. Blackwell, An analog of the minimax theorem for vector payoffs, Pacific J.
Math. 6 (1956), no. 1, 1–8

[Sio58] M. Sion, On general minimax theorems. Pacific J. Math. 8 (1958), no. 1, 171–176.

[VH06] Dani, Varsha, and Thomas P. Hayes. Robbing the bandit: Less regret in online geo-

metric optimization against an adaptive adversary. Proceedings of the seventeenth
annual ACM-SIAM symposium on Discrete algorithm. Society for Industrial and
Applied Mathematics, 2006.

[VKH07] Dani, Varsha, Sham M. Kakade, and Thomas P. Hayes, The price of bandit in-

formation for online optimization, Advances in Neural Information Processing
Systems. 2007.

6

[Bub15] Sébastien Bubeck, Convex optimization: algorithms and complexity, Now Publish-
ers Inc., 2015.

6

[DGL96] L. Devroye, L. Györfi, and G. Lugosi, A probabilistic theory of pattern recognition,
Applications of Mathematics (New York), vol. 31, Springer-Verlag, New York,
1996. MR MR1383093 (97d:68196)

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The elements of statis-
tical learning, second ed., Springer Series in Statistics, Springer, New York, 2009,
Data mining, inference, and prediction. MR 2722294 (2012d:62081)

6

[Kol11] Vladimir Koltchinskii. Oracle inequalities in empirical risk minimization and sparse
´ ´recovery problems. Ecole d’Eté de Probabilités de Saint-Flour XXXVIII-2008. Lec-

ture Notes in Mathematics 2033. Berlin: Springer. ix, 254 p. EUR 48.10 , 2011.

[LT91] Michel Ledoux and Michel Talagrand. Probability in Banach spaces, volume 23 of
Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and
Related Areas (3)]. Springer-Verlag, Berlin, 1991. Isoperimetry and processes.

6

[Kea90] Michael J Kearns. The computational complexity of machine learning. PhD thesis,
Harvard University, 1990.

192

6

6

[Zha04] Tong Zhang. Statistical behavior and consistency of classification methods based
on convex risk minimization. Ann. Statist., 32(1):56–85, 2004.

193

MIT OpenCourseWare
http://ocw.mit.edu

18.657 Mathematics of Machine Learning
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	MIT18_657F15_L19.pdf
	Prediction of Individual Sequences
	The Problem
	Extensions
	Supervised Learning
	Equivalence to Tail Bounds

