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18.704 Fall 2004 Homework 1 Solutions 

All references are to the textbook “Rational Points on Elliptic Curves” by 
Silverman and Tate, Springer Verlag, 1992. Problems marked (*) are more 
challenging exercises that are optional but not required. 

1. Do Exercise A.3 from the textbook, parts (a) and (b). 

Solution. (a) Think of P2 as 

{ [a, b, c]| a, b, c not all zero} / � 

where [a, b, c] � [a�, b , c�] if there exists a nonzero t with a = ta�, b = tb , c = tc . 
Now let x, y, z be coordinates in 3-space, i.e. A

3 . We define a map 

� : Lines in A3 through the origin −� P2 

as follows. Given a line β through the origin in A
3 , simply pick any point 

(a, b, c) → = (0, 0, 0) on β and define �(β) = [a, b, c] ∼ P2 . Why is this well-defined? 
Well if we pick a different non-origin point (a�, b , c�) ∼ β then since β is a line 
through the origin, (a�, b , c ) is just a nonzero scalar multiple of (a, b, c), so 
[a�, b , c�] = [a, b, c] ∼ P2 . 

The map � is surjective: given p = [a, b, c] ∼ P2, then the vector (a, b, c) → = 
(0, 0, 0) and so p = �(β) where β is the unique line joining p to the origin. 
The map � is injective: if �(β1) = [a, b, c] = �(β2), then both of the points 
(0, 0, 0), (a, b, c) lie on both of the lines β1, β2, so since two points determine a 
unique line we have β1 = β2. Thus � determines a bijective correspondence 
between lines in A3 through the origin and points in P2 . 

(b) Every plane � through the origin in A3 has the form 

��,�,� = { (a, b, c) ∼ A3| �a + �b + αc = 0} 

for some �, �, α not all zero. But by our definition of lines in P2, every line 
β ∼ P2 has the form 

β�,�,� = { [a, b, c] ∼ P2| �a + �b + αc = 0} 

for some �, �, α not all zero. 
Since 

�(S��,�,� ) = L��,�,� = β�,�,� , 
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there is a bijective correspondence between planes � through the origin in A3 

and lines in P2 . 

2. Do Exercise A.8 part (b) from the text. 

Solution. Let C0 be the affine curve x2 + xy − 2y2 + x − 5y + 7 = 0. Since 
the largest degree of the terms in the equation for C0 is 2, we may homogenize 
the equation by adding enough powers of Z to each term to make it have degree 
2. So we get that 

C : X2 + XY − 2Y 2 + XZ − 5Y Z + 7Z2 = 0 

defines a curve in P2 whose affine part is the given affine curve C0. To find the 
points at infinity on C, we substitute Z = 0 and solve: 

X2 + XY − 2Y 2 = 0. 

Factoring, we have 

(X + 2Y )(X − Y ) = 0, so X = −2Y or X = Y. 

Thus there are two points at infinity on C, [−2, 1, 0] and [1, 1, 0]. These corre­
spond to the “directions” in the affine plane given by the lines x = −2y and 
x = y. 

3. (a) Do Exercise A.16(a) from the textbook. 

(b) (*) Do Exercise A.16(b) from the textbook. 

Solution. (a) The equation of an arbitrary conic in P2 takes the form 

C : aX2 + bXY + cY 2 + dXZ + eY Z + fZ2 = 0 

for some a, b, c, d, e, f not all zero. Suppose we pick a random point in P2, such as 
P = [2, 3, 5] ∼ P2 . Then P lies on C if and only if 4a+6b+9c+10d+15e+25f = 0. 
Similarly, given any point Pi = [ri , si, ti] ∼ P2, the condition for p to lie on C 

2 2is a single linear equation ri a + risib + si c + ritid + sitie + t2f = 0. Thus i 
we see that the 5 given points P1, . . . , P5 lie on C if and only if ri 

2a + risib + 
2si c + ritid + sitie + t2f = 0 holds for i = 1, 2, . . . , 5. Since this is a set of i 

5 homogeneous equations in the 6 variables a, b, c, d, e, f , there is at least one 
solution for a, b, c, d, e, f with not all of them zero. 

(b) In this problem, one is supposed to show that there is a unique conic 
going through the 5 distinct points if and only if no four of the five points lie 
on a line. This was an extra credit problem and the proof is a little involved; 
please come see me if you want to talk over the solution. 
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4. Do Exercise 1.7 parts (b) and (c) from the text. Also, in case some 
rational point exists, find formulas which give all rational points in terms of a 
parameter t, and use the formula to write down some particular rational point 
on the curve that you would have never guessed by inspection. 

Solution. (a) We will show that there are no rational solutions to the equa­
tion 3x2 + 5y2 = 4. Suppose that (x, y) is a rational solution to the equation. 
We can choose a common denominator for the rational numbers x, y so that 
x = X/Z, y = Y/Z, with X, Y, Z integers. Then [X, Y, Z] lies on the projective 
curve C : 3X2 + 5Y 2 − 4Z2 = 0. 

Recall the notation a|b means that “a divides b”. If there is some integer p 
such that p|X , p|Y , and p|Z, then [X �, Y �, Z �] is also on the curve C, where X � = 
X/p, Y � = Y/p, Z � = Z/p. Thus by removing all common factors from [X, Y, Z] 
we may assume that [X, Y, Z] is a point on the curve such that gcd{X, Y, Z} = 1. 

Now any square is congruent to either 0 or 1 modulo 3. Then 3X2 � 
0 mod 3, 5Y 2 � 0 or 2 mod 3, and 4Z2 � 0 or 1 mod 3. The only way 
this is possible is if 3X2 � 5Y 2 � 4Z2 � 0 mod 3. But then 3|Y and 3|Z. 
Consequently, 9|Y 2 and 9|Z2, forcing 3|X . Now X, Y, Z have the common factor 
3, contradicting the assumption that gcd{X, Y, Z} = 1. This contradiction 
proves that the original curve cannot have a rational point. 

(b) By trial and error, we find the point (2/3, 2/3) is a rational point on the 
curve C0 : 3x2 + 6y2 = 4. Now we follow the method on page 11 of the text 
for parametrizing the rational points on the curve. Given the point (0, t) with 
t rational, the line through (2/3, 2/3) and (0, t) is y = t + (2 − 3t)(x)/2. This 
hits the curve C0 at an additional point (x0, y0). Substituting the formula for 
y into the equation for C0, we get a quadratic equation in x: 

−12t2 + 8t
2 x + x + constant term = 0. 

9t2 − 12t + 6 

Since one of the roots is x = 2/3, the other is 

12t2 − 8t 
x0 = − 2/3 

9t2 − 12t + 6 

and then 
y0 = t + (2 − 3t)(x0)/2. 

(Note. Your exact formulas may be different depending on your choice of a 
rational line on which to project.) 

Now letting t run over all rational numbers, (x0, y0) defined by these formulas 
runs over all rational points on the curve C0. (Actually, one point is missed. 
We need to let “t = ≡” in order to get the point (2/3,−2/3).) 

Picking t = 1, we get (x0, y0) = (2/3, 2/3) again! But picking t = −1 we get 
the more interesting point (2/27,−22/27) ∼ C0 which is a point we would have 
been unlikely to guess. 
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