
18.704 Fall 2004 Homework 2 Solutions 

All references are to the textbook “Rational Points on Elliptic Curves” by 
Silverman and Tate, Springer Verlag, 1992. Problems marked (*) are more 
challenging exercises that are optional but not required. 

1. A cubic in Weierstrass normal form is C0 : y2 = x3 + ax2 + bx + c, or in 
homogeneous coordinates, C : Y 2Z = X3 + aX2Z + bXZ2 + cZ3 . Prove that 

2C is a nonsingular curve if and only if the polynomial x3 + ax + bx + c has 
distinct roots. Show also that the point at infinity [0, 1, 0] is an inflection point 
on the curve C. 

Solution. We will solve this problem using homogeneous coordinates. 
(Note: the book does prove on p. 26 that C0 has a singular point if and 

only if f (x) = x3 + ax2 + bx + c has distinct roots. So another approach is to 
reproduce that “affine coordinates” proof; then you only need to show that the 
single point at infinity [0, 1, 0] is always nonsingular.) 

Let F (X, Y, Z) = X3 +aX2Z +bXZ2 +cZ3 −Y 2Z, so that C is the vanishing 
locus in P2 of the polynomial F . Suppose that [r, s, t] is a point on the curve 
where all three partial derivatives of F vanish. We calculate 

βF/βX = 3X2 + 2aXZ + bZ2 

βF/βY = 2Y Z 

βF/βZ = aX2 + 2bXZ + 3cZ2 − Y 2 . 

From the second equation we see that either s = 0 or t = 0. Suppose that t = 0; 
then the first equation gives r = 0, and finally the third equation gives s = 0. 
But [0, 0, 0] is not a point in P2, so we can ignore this possibility. 

This means that we do not have to worry about the case t = 0, so since we 
are working in projective space we can assume that t = 1 by scaling. We still 
have to worry about the case s = 0. In that case, the first equation above says 
that r is a root of 3x2 + 2ax + b = 0. Since [r, 0, 1] also lies on the curve C, 
r is a root of x3 + ax2 + bx + c = 0. Thus r is a root both of the polynomial 
p(x) = x3 + ax2 + bx + c and its derivative p�(x) = 3x2 + 2ax + b. Then r is a 
double root of the polynomial p(x) and p(x) does not have distinct roots. 

Conversely, if r is a multiple root of the polynomial p(x) then r is also a 
root of the polynomial p�(x). But then r is also a root of 3p(x) − xp�(x) = 
ax2 + 2bx + 3c. It follows that in this case [r, 0, 1] is a point on C where all three 
partial derivatives vanish, so C fails to be nonsingular. 
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To show that P = [0, 1, 0] is an inflection point on C, we first need to find 
the tangent to the curve C at P . This is the line �X + �Y + αZ = 0 where 
� = βF/βX(P ) = 0, � = βF/βY (P ) = 0, and α = βF/βZ(P ) = −1. In other 
words, the line at infinty Z = 0 is the tangent line to C at the point P . But 
since P is clearly the only point of intersection of Z = 0 with C, the point P 
must be an inflection point. 

2. Let C be a nonsingular cubic curve in P2 (not necessarily in Weierstrass 
form.) Suppose that O is an inflection point on C. Make the rational points on 
C into a group using O as the identity element, as in Section I.2 of the text. 

(a) Prove that a point P � C satisfies P +P = O (in other words the order of 
P	 in the group divides 2) if and only if the tangent line to C at P goes through 

.O

(b) Prove that a point P � C satisfies P + P + P = O (i.e. P has order 
dividing 3 in the group) if and only if P is an inflection point on the curve. 

Solution. (a) We have P + P = (P � P ) �O. If P + P = O, then there is a 
line δ whose three points of intersection with C are O, O, P � P . Since δ hits O
twice, δ must be the tangent line to C at O. But since O is a point of inflection, 
this happens if and only if P � P = . This says exactly that the tangent line O
to the curve at P goes through O. The converse is similar. 

(b) Recall the way we constructed additive inverses to show that the points 
on C are a group: first find O �O; In our case this is O again. Then given any 
point P on C, we have −P .= P � O

Now suppose that P +P +P = (P +P )+P = . Then P �O = = P +P .−PO
Write Q = P �P . Then P �O = P + P = O �Q; this means the line through P 
and O and the line through Q and O have identical third points of intersection, 
which forces P = Q. Finally, we have shown P � P = P which means that P is 
an inflection point. 

The converse follows by reversing these steps. 

33. This problem concerns the affine curve C0 : x3 + y = � for some nonzero 
constant �. In homogeneous coordinates, this is C : X3 + Y 3 = �Z3 . In 
particular, [1, −1, 0] is a point at infinity on the curve. In fact C is a nonsingular 
curve and [1, −1, 0] is an inflection point (you don’t have to prove this.) Define 
a group law on C by taking O = [1, −1, 0] as the identity. 

(a) Given a point P = (x0, y0) � C0, find the tangent line to C at P . 

(b) Let P = (x0, y0) be a rational point on C0. Find the coordinates of the 
additive inverse Q of P , that is, the point Q such that P + Q = .O
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(c) Find all of the complex points P on C such that P + P = O. There are 
four. How many of these points are rational points? (The answer depends on 
�.) 

(d) Let � = 9. Then (1, 2) � C0. Calculate (1, 2) + (1, 2). (You don’t need 
to use section I.4. The formulas there are not applicable because they assume 
the curve is in Weierstrass form.) 

(e)* Let � = 1000. find all of the rational points on C in this case (feel free 
to quote known theorems without proof.) What kind of group do we get for the 
set of all rational points on C? 

Solution. (a) Using implicit differentiation, we have 

dy x
3x 2 + 3y 2 dy 

= 0, so that = 
2 

. 
dx dx 

−
y2 

Then the tangent line to C0 at (x0, y0) is 

2 
 
x

0 y − y0 = (x − x0).2
− 

y
0 

(b) Since	O is an inflection point, as we saw in problem 2 above we have 
= . Since O is the point at infinity coresponding to the direction −P P � O

(1, −1), the line through P and O is the unique line δ through P with slope −1, 
i.e. the line (y−y0) = −(x−x0). But since the curve C0 is symmetric about the 
line y = x, it follows that δ hits C0 in the third point (y0, x0). (If this geometric 
argument bothers you, one can also see this algebraically.) So −P = (y0, x0). 

(c) From problem 2 above, we are looking for all points P such that P �P = 
=. We know that O itself is one such point, so assume now that P ∗ O. ThenO

P = (x0, y0) is on the affine part of the curve C0. We calculated the tangent line 
to the curve at P above in part (a). This line will contain the point O if and 

2only if it has slope −1, i.e. if and only if x2 = y
0 , or x0 = ±y0. Note that we 

0 
can’t have x0 = −y0, for then since (x0, y0) � C, we would have � = 0, which 
we excluded. 

So any point of order dividing 2 on the curve has the form (x0, x0). Then 
33 = �/2. If we define α = �/2, then the solutions to this equation are x

0 

x0 = α, α�, α�2 

where � = −1/2 + 
�

3i/2 is a third root of 1. Thus we have found all of the 
points of order 2 on the curve: 

O = [1, −1, 0], (α, α), (α�, α�), (α�2, α�2). 

O is definitely a rational point on the curve (its homogeneous coordinates are 
certainly rational.) Since α is real, α� and α�2 cannot be real numbers, so they 
are certainly not rational. Thus the only other point that is potentially rational 
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is (α, α), which is rational if and only if � happens to be twice the cube of a 
rational number. 

To summarize: if � is twice the cube of a rational number, then C has two 
rational points of order dividing 2, namely (α, α) and O; on the other hand, if 
� is not twice the cube of a rational number, then O is the only rational point 
on C of order dividing 2. 

(d) Now let � = 9. The tangent line at the point (1, 2) is 

(y − 2) = (−1/4)(x − 1), 

by part (a). To find its third intersection point with C, we substitute y = 
(−1/4)x + 9/4 into the equation for C, getting 

3 x + ((−1/4)x + 9/4)3 = 9, 
263/64x 3 + 27/64x + a1x + a2 = 0, 

2 x 3 + 3/7x + b1x + b2 = 0, 

where here a1, a2, b1, b2 are some constants we won’t care about. Then the 
sum of the three roots of the cubic is (-3/7), and so since the root x = 1 has 
multiplicity two we must have the third root is x3 = −3/7 − 1 − 1 = −17/7. 
Then the corresponding y-coordinate is y3 = (−1/4)(−17/7) + 9/4 = 20/7. 
Thus P � P = (−17/7, 20/7). Then P + P = (P � P ) � O, which as we saw in 
part (b) is equal to 

P + P = (20/7,−17/7). 

(e) Since � = 1000, we are looking for rational solutions to x3 + y3 = 103 . If 
we write x = X/Z, y = Y/Z for some integers X, Y, Z, then X3 + Y 3 = (10Z)3 . 
Now if we quote Fermat’s last theorem for the case of the exponent 3 (that case 
has been known for many years), then it says that the only solutions to this 
equation are the ones where one of X, Y, Z is 0. Since Z can’t be zero, we see 
that the only possible solutions are X = 0, Y = 10Z, or X = 10Z, Y = 0. In 
affine coordinates these are the two trivial solutions (x, y) = (0, 10), (10, 0). But 
we need to also include the point at infinity [1,−1, 0], which is always a rational 
point on the curve C (regardless of �.) So the group of rational points on C 
consists of precisely 3 elements. There is only one such group up to isomorphism, 
namely the cylic group of order 3. 
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