
18.704 Fall 2004 Homework 3 Solutions 

All references are to the textbook “Rational Points on Elliptic Curves” by 
Silverman and Tate, Springer Verlag, 1992. Problems marked (*) are more 
challenging exercises that are optional but not required. 

We are going to prove the following result in class: 

Theorem 0.1 Let C be a nonsingular curve y2 = x3 + ax2 + bx + c where 
a, b, c � Z are integers. Then if P = (x, y) is a rational point of finite order on 
C, then x and y are both in Z. 

Although we won’t have finished proving this by the time you work on this 
problem set, for now assume the theorem above is true. 

In all of the problems below, C will be a nonsingular cubic curve in Weier­
strass normal form, i.e. the solution set to y2 = f(x) = x3 + ax2 + bx + c where 
f(x) has distinct roots. We always take the zero element of the group to be the 
point at infinity O = [0, 1, 0]. 

1. For each curve below, determine if the given point has finite order, and if 
it does, calculate its order. Hint: rather than calculating P, 2P, 3P, . . . , it might 
save time to calculate P, 2P, 4P, 8P, . . . and look for a pattern—note that the 
book gives an explicit doubling formula on p.31 (at least for the x-coordinate.) 

(1) y2 = x3 − 43x + 166, P = (3, 8). 

(2) y2 = x3 + 17, P = (−2, 3). 

Solution. Recall the formulas for doubling a point. Given P = (x0, y0), the 
tangent line to C at P is y = �x + λ where � = f �(x0)/2y0 and λ = y0 − �x0. 
Then writing 2P = (x1, y1), we have x1 = �2 − a − 2x0 and y1 = −(λ + �x1). 

(1) In this part we have a = 0, b = −43, c = 166, and P = (3, 8). Using the 
formulas above we can show that the tangent line to P is y = −x + 11, and 
2P = (−5, −16). The tangent line to 2P is y = −x − 21, and 4P = (11, 32). 
The tangent line to 4P is y = 5x − 23, and 8P = (3, 8). 

We notice that 8P = P . This means that 7P = O. Thus P has finite order, 
and its order must divide 7, so it is 1 or 7. Since O is the only point of order 1 
and P ≤= O, we must have that P has order 7. 

(2) We use the same formulas, but now with a = b = 0, c = 17, P = (−2, 3). 
Then the tangent line at P is y = 2x + 7, and 2P = (8, 23). Continuing, the 
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slope of the tangent line at 2P is � = 192/23. We need go no farther; it is clear 
from the formulas above that 4P will not have integer x-coefficient. If P were 
a point of finite order, then 4P would also have finite order, and Theorem 0.1 
would then imply that 4P has integer coefficients. Since this doesn’t happen, 
we conclude that P has infinite order in the group. 

2. In this problem you will prove the strong form of the Nagell-Lutz Theo­
rem, assuming Theorem 0.1 above. Assume that the equation of the nonsingu­
lar cubic curve C : y2 = f(x) = x3 + ax2 + bx + c has integer coefficients, i.e. 
a, b, c � Z. Let 

ψ(x) = x 4 − 2bx2 − 8cx + (b2 − 4ac). 

Recall from p. 31 of the text that if P = (x, y) and we write 2P = (x , y�) then 
x = ψ(x)/4y2 . Let D = −4a3c + a2b2 + 18abc − 4b3 − 27c2 be the discriminant 
of f(x). Now it turns out to be true that there are polynomials F (x), �(x) with 
integer coefficients such that 

F (x)f(x) + �(x)ψ(x) = D. 

You can assume this without proof; it is tedious to determine F and � by hand. 

(1) (Strong form of the Nagell-Lutz Theorem) Do Exercise 2.11(b) from the 
text. 

(2) What is the minimum number of rational points of finite order that a 
nonsingular cubic curve in Weierstrass form can have (remember to count O)? 
Find choices of a, b, c � Z so that y2 = f(x) has this minimal number of them. 

Solution. (1) By Theorem 0.1, if P = (x0, y0) is a rational point of finite 
order then P has integer coefficients. If P has order 2 then the tangent line at 
P is vertical and 2P = O. Now assume that P is of finite order greater than 2 
(in particular, then we know that y0 ≤= 0). Then we can use our given formulas, 

2and 2P = (x1, y1) where x1 = ψ(x0 )/4y0 . We have that 2P also has finite order, 
so it has integer coefficients by our theorem. Then x1 is an integer and so in 

2particular y0 |ψ(x0 ). But since P is on the curve y2 = f(x), we certainly have 
2y
0 |f(x0). Now we use the given information: there exist integer polynomials 
F, � such that 

F (x)f(x) + �(x)ψ(x) = D. 

Plugging in x0, we have 

F (x0)f(x0) + �(x0)ψ(x0) = D, 

and since F, f, �, ψ are all polynomials with integer coefficients, all of the quan­
tities F (x0), f(x0), �(x0 ), ψ(x0) are integers. Since y2|f(x0) and y2|ψ(x0 ), we 
conclude from the equation that y2|D as required. 
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(2). None of our results seem to force a curve in Weierstrass form to have 
any rational points whatsoever, except for the point O. So we guess that C 
can have as only a single rational point of finite order. By playing around, we 
come up with the equation C : y2 = x3 − 2 (you will likely think up a different 
example.) Let us prove it has no rational points of finite order except O. To 
be perfectly rigorous, I suppose we should check that C is nonsingular. Setting 

2f(x) = x3 − 2, we have f �(x) = 3x . Now the only root of f �(x) is 0, which is 
not a root of f . By a previous homework problem, C is nonsingular. 

Now it is easy to see that x3 − 2 = 0 has no rational solutions for x, since 
any such solution would have to be an integer dividing 2. So C has no rational 
points of order 2. Now suppose C has a rational point (x0, y0) of finite order 
> 2. Then x0, y0 are integers. The discriminant of f is D = −4(27). By the 

2strong form of the Nagell-Lutz theorem, y0 | − 108. Then y0 = ±1,±2,±3, or 
±6. However, none of the equations x3 − 2 = 1, 4, 9, 36 has any integer solution 
for x, since 3, 6, 11, and 38 are not cubes. Thus C has no rational points of 
finite order in the affine plane, so O is its only rational point. 

3. In this problem we allow the coefficients a, b, c of f(x) to lie in the real 
numbers R. We saw in class that C : y2 = f(x) has 9 points of order dividing 3 
if one allows complex coefficients. In this problem we are going to see how many 
of these points have real coefficients. Recall from p. 40 of the text that a point 
P = (x, y) ≤= O on C has order 3 if and only if x is a root of the polynomial 

�(x) = 2f ��(x)f(x) − f �(x)2 = 3x 4 + 4ax 3 + 6bx2 + 12cx+ (4ac− b2). 

Now do Exercise 2.2(b) from the text. 

Solution. We saw in class that �(x) has 4 distinct roots (over the complex 
numbers.) Consider the local extrema of �; these occur at points x where 
��(x) = 0. Also, we note that ��(x) = 12f(x). 

By the mean value theorem, between any two values �1 < �2 such that 
�(�1) = �(�2) = 0, there must be a �1 < α < �2 with ��(α) = 0. In other 
words, between any two zeroes of � lies a local extremum. 

Now suppose � is a value such that �(x) has a local extremum at �, so 
��(�) = 12f(�) = 0, and so f(�) = 0. Then �(�) = −f �(�)2 � 0. Moreover, if 
�(�) = 0, then f �(�) = 0, so that f and f � have a common root �, contradicting 
the fact that the curve C is assumed to be nonsingular. Thus actually �(�) < 0 
at any value of � where � has a local maximum or minimum. But since the 
leading term of �(x) is 3x4 , we definitely have that limx�� �(x) = � and 
limx�−� �(x) = �. 

From all of this, we conclude that � has precisely two real roots, say �1 < �2, 
and that �(a) < 0 for all �1 < a < �2, with all of the local extrema occurring 
in this range. In particular, � is decreasing at x = �1 and increasing at x = �2. 
Since �� = f , we see that f(�1) < 0 < f(�2). 

Then the points of order 3 with real x-coordinate are (�1,± f(�1)) and 
(�2,± f(�2)). But only the two points (�2,± f(�2) have real y-coordinate. 
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Together with O, these form exactly 3 points of order dividing 3 with coefficients 
in R. 
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