18.704 Fall 2004 Homework 6 Solutions

All references are to the textbook “Rational Points on Elliptic Curves” by
Silverman and Tate, Springer Verlag, 1992. Problems marked (*) are more
challenging exercises that are optional but not required.

1. Do Exercise 3.4 of the text, which asks you to prove the upper bound in
Lemma 3'(b). Advice: use the proof of Lemma 2 in section III.2 as a model.)

Solution. This really is very similar to the endgame of the proof of Lemma
2, but easier. Let H and h be the height functions defined in section III.1.
Let ¢(x), ¥(z) be two polynomials with no common roots, and let d be the
maximum of the degrees of ¢, 1.

Let ¢ = m/n in lowest terms, so H(q) = max{|m/|, |n|} by definition. Assume

that ¥(q) # 0.
Write ¢(z) = Y20, @iz’ and ¢(z) = Y20 biz'. Then we define

d d
B(g) = no(q) = 3 aim'n®, and W(g) = np(g) = Y bymint =
1=0 1=0

which are both integers. Now ¢(q)/¥(q) = ®(q)/¥(g). Although the fraction
®(q)/¥(g) might not be in lowest terms, we still have

M max
H(W®)§ (12(a)],|%(q)])

and moreover,

d d
[®(q)] < (Zlaillmlilnld’i) < (Z Jail) H (q)°.

Similarly,
d

W (q)| < (D 1bsl) H(g)™

i=0
So setting A = max(zgzl |asl, Z?Zl |bi|), we have



so taking logs we get

o) )
(5g) < @ +iog 4

and setting ko = log A we’ve proven the bound requested.

2. The Nagell-Lutz theorem is not the last word when it comes to finding
points of finite order on a nonsingular cubic curve C, but in special cases one
can prove further necessary conditions. In this problem assume that C is a
nonsingular cubic curve of the special form y? = 3 + az? + bz, with a,b € Z.

(a) As a warmup, prove the following fact: Let § : G — H be a homomor-
phism of commutative groups. If ¢ € G has finite order, then 6(g) € H has
finite order.

(b) Now do Exercise 3.7(a) of the text.

Solution. (a) This part is really only here to give you a hint as to how to
proceed in part (b). Anyway, the proof is trivial: ¢ has finite order means that
mg = e for some m > 1, where e is the identity of G. Then m#(g) = 6(mg) =
O(e) = €', where €’ is the identity of H. This says that 6(g) has finite order in
H.

(b) The key observation to make is that the homomorphism ¢ : ¢ — C
defined in section III.4 is helpful here. There C is defined to be the elliptic
curve y2 = 23 +ax? 4 bz, where @ = —2a and b = a? — 4b. The map ¢ is defined

on coordinates as
o(z,y) = (y°/2°,y(a® — b) /2?)

for all points (z,y) € C not equal to O or T = (0,0). We also note that
y?/x? = x + a + (b/z) since (z,y) is a point on C.

Now let P = (z,y) € C(Q) have finite order. By the Nagell-Lutz theorem,
x and y are integers. By part (a), ¢(P) has finite order in C. Since we assume
y # 0, the formula above for ¢ works. Also, ¢(P) must have integer coordinates,
by the Nagell-Lutz theorem applied to C. So z + a + (b/x) is an integer. Since
xz and a are also integers, this implies that x divides b. Moreover, since x +
a+ (b/x) = y?/x?, we must also have that x divides y. Then the quantity
y?/x? = (y/x)? is a perfect square in Z, i.e. x +a + (b/x) is a perfect square.

3. With the help of the results of problem 2(b) above, in this problem we
will generalize a problem from an earlier homework set.

(a) Find all possible primes p and integers m > 0 such that p™ + 1 is a
perfect square.

(b) Let C be the curve y? = 23 + p™z for some prime p > 5 and m > 1.
Find all of the rational points of finite order on C' (don’t forget O).



(c) It is not hard to find all of the rational points of finite order on y? =
23 + p™a when p = 2 or p = 3, but the calculation is a bit tedious. So I'll ask
you just to do a special case: find all of the rational points of finite order on
y? = 23 + 64x.

Solution.

(a). Suppose that p™ + 1 = n? for some integer n > 1, prime p, and m > 0.
Then p™ =n?—1= (n+1)(n—1). Suppose that n—1 > 1. Then alson+1 > 1,
and so p divides both n+ 1 and n — 1. but then p divides (n+1) — (n —1) = 2.
So p = 2. furthermore, in this case, n+ 1 and n — 1 are powers of 2 which differ
by 2. This clearly forcesn —1 =2 and n+1=4,son =3 and m = 3.

Obviously n — 1 = 0 is forbidden, since p™ is positive, so we are left with
the casen —1=1. Then n =2, p=3, and m = 1.

So there are only two possibilities: 23 4+ 1 = 32, and 3! + 1 = 22.

(b) Fix the prime power p™ with p > 5 and m > 1. The rational points of
order dividing 2 on y? = 23 + p™z are precisely O and the points (z,0), where
x is a rational root of 23 + p™x. Since 2% + p™ has complex roots, O and (0,0)
are the only rational points of order dividing 2.

Now let (z,y) € C(Q) be a point of finite order bigger than 2. By problem
2(b) above, we know that z[p™, and so x = p€ is a prime power for some
0 < e <m. Also, we know that = + (p™/x) = p® 4+ p™ ¢ is a perfect square.

Now we have several cases. Suppose that e < m — e. Then p¢ + p™ ¢ =
p¢(1+4p™~2¢) is a perfect square. Since p does not divide 1+ p™~2¢, this means
that e is even, and (14 p™~2¢) is a perfect square. By part (a), this forces p = 2
or p = 3, contradicting the assumption p > 5 in this part.

Similarly, if e > m —e, we get a contradiction for essentially the same reason.

Finally, we have the case e = m — e, or m = 2e. Then p® + p® = 2p°® must
be a perfect square. Clearly for this to happen we need to have p = 2, which
again is not allowed by the hypothesis.

We conclude that {O, (0,0)} is the entire set of rational points of finite order
on this C.

(c) In this part we assume that p = 2 and m = 6. We begin as in part (b):
The rational points of order dividing two are {O, (0,0)}, so assume that (x,y)
is a rational point of order > 2; then 2 = 2° for some 0 < e < 6, and 2¢ + 26—¢
is a perfect square.

Now because m is so small, we could just check all 7 possibilities for e, but
let’s continue to proceed as in part (b). So if e < 6 — e, then as above e is even
and 1+ 2672¢ is a perfect square. By part (a), 6 — 2e = 3 and so there is no
such e.

Similarly, if e > 6 — e we get no solutions.

Finally, we have the case e = 6 — e, and so e = 3, and 23 + 23 = 16 is indeed
a perfect square in this case. So we get the candidate point P = (8,32) in this
case. We need to check if it really does have finite order. We calculate the slope



of the tangent line to P is (3(8)2 +64)/2(32) = 4 and so x(2P) = 42 —2(8) = 0.
Then clearly 2P = (0,0).
So in this case, the group of rational points of finite order on C' is

{0,(0,0), P,—P},

where P = (8,32). The calculation above makes it clear that this is a cyclic
group of order 4.



