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18.704 Fall 2004 Homework 6 Solutions


All references are to the textbook “Rational Points on Elliptic Curves” by 
Silverman and Tate, Springer Verlag, 1992. Problems marked (*) are more 
challenging exercises that are optional but not required. 

1. Do Exercise 3.4 of the text, which asks you to prove the upper bound in 
Lemma 3�(b). Advice: use the proof of Lemma 2 in section III.2 as a model.) 

Solution. This really is very similar to the endgame of the proof of Lemma 
2, but easier. Let H and h be the height functions defined in section III.1. 
Let κ(x), �(x) be two polynomials with no common roots, and let d be the 
maximum of the degrees of κ, �. 

Let q = m/n in lowest terms, so H(q) = max{|m|, |n|} by definition. Assume 
that �(q) ≤= 0. 

�d
Write κ(x) = aix

i and �(x) = 
�d 

bix
i . Then we define 

i=0 i=0 

d d 
i d−i d−i�(q) = n dκ(q) = aim n , and �(q) = n d�(q) = bim i n 

i=0 i=0 

which are both integers. Now κ(q)/�(q) = �(q)/�(q). Although the fraction 
�(q)/�(q) might not be in lowest terms, we still have 

κ(q) � 
 
H � max |�(q)|, |�(q)|

�(q) 

and moreover, 

d d 

|�(q)| � |ai||m|i|n|d−i
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�
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|ai| 


 
H(q)d . 

i=0 i=0 

Similarly, 
d 

|�(q)| � |bi| H(q)d . 
i=0 

�
�d �d 
 

So setting A = max , we have 
i=1 |ai|, i=1 |bi| 

κ(q)
H � AH(q)d 

�(q) 
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so taking logs we get 
κ(q)

h � dh(q) + log A 
�(q) 

and setting �2 = log A we’ve proven the bound requested. 

2. The Nagell-Lutz theorem is not the last word when it comes to finding 
points of finite order on a nonsingular cubic curve C, but in special cases one 
can prove further necessary conditions. In this problem assume that C is a 
nonsingular cubic curve of the special form y2 = x3 + ax2 + bx, with a, b → Z. 

(a) As a warmup, prove the following fact: Let � : G � H be a homomor­
phism of commutative groups. If g → G has finite order, then �(g) → H has 
finite order. 

(b) Now do Exercise 3.7(a) of the text. 

Solution. (a) This part is really only here to give you a hint as to how to 
proceed in part (b). Anyway, the proof is trivial: g has finite order means that 
mg = e for some m � 1, where e is the identity of G. Then m�(g) = �(mg) = 
�(e) = e�, where e is the identity of H . This says that �(g) has finite order in 
H . 

(b) The key observation to make is that the homomorphism κ : C � C 
defined in section III.4 is helpful here. There C is defined to be the elliptic 
curve y2 = x3 + ax2 + bx, where a = −2a and b = a2 − 4b. The map κ is defined 
on coordinates as 

κ(x, y) = (y 2/x2 , y(x 2 − b)/x2) 

for all points (x, y) → C not equal to O or T = (0, 0). We also note that 
y2/x2 = x + a + (b/x) since (x, y) is a point on C. 

Now let P = (x, y) → C(Q) have finite order. By the Nagell-Lutz theorem, 
x and y are integers. By part (a), κ(P ) has finite order in C. Since we assume 
y ≤= 0, the formula above for κ works. Also, κ(P ) must have integer coordinates, 
by the Nagell-Lutz theorem applied to C. So x + a + (b/x) is an integer. Since 
x and a are also integers, this implies that x divides b. Moreover, since x + 
a + (b/x) = y2/x2 , we must also have that x divides y. Then the quantity 
y2/x2 = (y/x)2 is a perfect square in Z, i.e. x + a + (b/x) is a perfect square. 

3. With the help of the results of problem 2(b) above, in this problem we 
will generalize a problem from an earlier homework set. 

(a) Find all possible primes p and integers m � 0 such that pm + 1 is a 
perfect square. 

(b) Let C be the curve y2 = x3 + pmx for some prime p � 5 and m � 1. 
Find all of the rational points of finite order on C (don’t forget O). 
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(c) It is not hard to find all of the rational points of finite order on y2 = 
x3 + pmx when p = 2 or p = 3, but the calculation is a bit tedious. So I’ll ask 
you just to do a special case: find all of the rational points of finite order on 
y2 = x3 + 64x. 

Solution. 
(a). Suppose that pm + 1 = n2 for some integer n � 1, prime p, and m � 0. 

Then pm = n2 −1 = (n+1)(n−1). Suppose that n−1 > 1. Then also n+1 > 1, 
and so p divides both n+ 1 and n− 1. but then p divides (n+ 1) − (n− 1) = 2. 
So p = 2. furthermore, in this case, n+ 1 and n− 1 are powers of 2 which differ 
by 2. This clearly forces n− 1 = 2 and n+ 1 = 4, so n = 3 and m = 3. 

Obviously n − 1 = 0 is forbidden, since pm is positive, so we are left with 
the case n− 1 = 1. Then n = 2, p = 3, and m = 1. 

So there are only two possibilities: 23 + 1 = 32, and 31 + 1 = 22 . 

(b) Fix the prime power pm with p � 5 and m � 1. The rational points of 
order dividing 2 on y2 = x3 + pmx are precisely O and the points (x, 0), where 
x is a rational root of x3 + pmx. Since x2 + pm has complex roots, O and (0, 0) 
are the only rational points of order dividing 2. 

Now let (x, y) → C(Q) be a point of finite order bigger than 2. By problem 
e2(b) above, we know that x|pm , and so x = p is a prime power for some 

e + pm−e0 � e � m. Also, we know that x+ (pm/x) = p is a perfect square. 
e + pm−eNow we have several cases. Suppose that e < m − e. Then p = 

pe(1 + pm−2e) is a perfect square. Since p does not divide 1 + pm−2e, this means 
that e is even, and (1 + pm−2e) is a perfect square. By part (a), this forces p = 2 
or p = 3, contradicting the assumption p � 5 in this part. 

Similarly, if e > m−e, we get a contradiction for essentially the same reason. 
eFinally, we have the case e = m − e, or m = 2e. Then pe + pe = 2p must 

be a perfect square. Clearly for this to happen we need to have p = 2, which 
again is not allowed by the hypothesis. 

We conclude that {O, (0, 0)} is the entire set of rational points of finite order 
on this C. 

(c) In this part we assume that p = 2 and m = 6. We begin as in part (b): 
The rational points of order dividing two are {O, (0, 0)}, so assume that (x, y) 
is a rational point of order > 2; then x = 2e for some 0 � e � 6, and 2e + 26−e 

is a perfect square. 
Now because m is so small, we could just check all 7 possibilities for e, but 

let’s continue to proceed as in part (b). So if e < 6 − e, then as above e is even 
and 1 + 26−2e is a perfect square. By part (a), 6 − 2e = 3 and so there is no 
such e. 

Similarly, if e > 6 − e we get no solutions. 
Finally, we have the case e = 6 − e, and so e = 3, and 23 + 23 = 16 is indeed 

a perfect square in this case. So we get the candidate point P = (8, 32) in this 
case. We need to check if it really does have finite order. We calculate the slope 
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of the tangent line to P is (3(8)2 + 64)/2(32) = 4 and so x(2P ) = 42 − 2(8) = 0. 
Then clearly 2P = (0, 0). 

So in this case, the group of rational points of finite order on C is 

{O, (0, 0), P, −P }, 

where P = (8, 32). The calculation above makes it clear that this is a cyclic 
group of order 4. 
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