
18.704 Fall 2004 Homework 7 Solutions


All references are to the textbook “Rational Points on Elliptic Curves” by 
Silverman and Tate, Springer Verlag, 1992. Problems marked (*) are more 
challenging exercises that are optional but not required. 

1. Do Exercise 3.9(a) from the text. 

Solution. We use the method of section III.6. Let C be the curve y2 = 
2 3x3 + 3x, and let � = C(Q). The dual curve is C : y = x − 12x with group of 

rational points �. Let � : � � Q�/Q�2 and � : � � Q�/Q�2 be defined as in 
III.5. 

To find �(�) , we need to find which divisors b1 of b = 3 are in the image | |
of �. We have �(O) = 1 and �(T ) = b = 3. Taking b1 = −1, we need to 
check if the equation N2 = −M4 − 3e4 has any solutions in integers (M,N, e) 
with M ≡ 0. It doesn’t, since the right hand side is always negative. Similarly 
b1 = −3 leads to no solutions. So �(�) = 2. | |

To find �(�) , we check decompositions −12 = b1b2 and look for solutions |
4to n2 = b1M4 + b

|
2e . The possibilities are b1 = ±{1, 2, 3, 4, 6, 12}, but modulo 

rational squares we only need to consider b1 = ±{1, 2, 3, 6}. So �(�) ⊕ 8.| |
We know that �(O) = 1 and �(T ) = b = −12 � −3 modulo squares. 

Considering b1 = 6 and the equation N2 = 6M4 − 2e4, we find by inspection 
the solution (N,M, e) = (2, 1, 1). So we know that �(�) ≡ 3.|

Consider b1 = 3 and the equation N2 = 3M4 − 4
|
e4 . If some integer solution 

(N,M, e) with M = 0 exists, then since any square is congruent to 0 or 1 modulo ≥
4, we see that the only possibility is 4|N and 4 M . Then also 4 e4, so 2 e. Then| | |
setting N = 4N � , M = 2M � , e = 2e�, we have a smaller solution (N �,M �, e�) to 
the equation with M � = 0. Then we can do the same argument again and get ≥
a smaller solution, etc. But this process cannot continue forever, so in fact no 
solution exists in the first place. So 3 ≥→ �(�). Thus �(�) ⊕ 7. 

But finally, from the formula 

2r = (1/4) �(�)||�(�) ,| |

where r is the rank of �, it is clear that �(�) is a power of 2. So the only | |
possibility is �(�) = 4 and thus r = 1 as required. | | 

2. This problem is again about the curve C : y2 = x3 + 3x. Even if we have 
found the rank of an elliptic curve (as we have for this one in problem 1), it can 
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be hard to find generators for the group of rational points. In this problem, I 
ask you to find generators for � = C(Q). Any way you come up with for doing 
this is fine. The following steps outline one possible way, which you can ignore 
if you find a different way. 

(a) By inspection, one can easily find the integer point (1, 2) on C. Find all 
of the points on C with integer coordinates (Hint: Besides (0, 0) and (1, 2), I 
found two other integer points with positive y-coordinate, and I believe these 
are all of them. Note that an integer point (x, y) → C of infinite order need not 
satisfy the conclusion of the Nagell-Lutz theorem.) 

(b)(*) Can you prove these are all of the integer points? (Since we have no 
theorems so far to help us find all integer points on a cubic, you’ll have to invent 
some ad-hoc argument. I wasn’t able to do it.) If you can’t or choose not to 
solve part (b), just assume that you have all of the integer points and go on to 
(c). 

(c) Show that if a rational point Q = (x, y) → C(Q) does not have integer 
coordinates, then mQ does not have integer coordinates for all m ≡ 1 (Hint: 
review section II.4.) 

(d) Prove that the set of points {P = (1, 2), T = (0, 0)} generates the group 
� (assuming part (b) is true.) Remember this means that every element of � 
has the form mP + nT for some m, n Z.→ 

Solution. 
(a),(b). The curve is y2 = x(x2 + 3). Suppose that (x, y) is an integer point 

on the curve such that 3 � x. Then if p is a prime dividing x, then p does not 
divide x2 + 3. Thus in this case both x and x2 + 3 must be squares. But if 
x2 + 3 = d2 is a square, then d2 − x2 = 3, and the only two squares differing by 
3 are 1 and 4. So in this case, our point must be (1, ±2). 

Now if (x, y) is an integer point such that 3 x, then also 3 y and we can write | |
x = 3w, y = 3z. Then 9z2 = 3w(9w2 + 3) and so z2 = w(3w2 + 1) and we are 
left needing to find integer solutions to this equation. Now if (w, z) is an integer 
point on this curve, and p is a prime dividing w, then p � 3w2 + 1. So w and 
3w2 + 1 are squares. Writing w = v2, we have that 3v4 + 1 is a square. So we 
have found that all integer solutions (w, z) to the equation z2 = w(3w2 + 1) are 
given by (v2 , ±vu) as v ranges over all positive integers such that 3v4 + 1 is a 
square, and where u = 

≤
3v4 + 1. 

Trying values of v, we quickly see that 3(1)4 + 1 = 4 = 22 and 3(2)4 + 1 = 
49 = 72 . I suspect that for no other positive value of v is 3v4 + 1 a square, but 
that is the part that I don’t know how to prove. In any case, we have found the 
points (1, ±2) and (4, ±14) on the curve z2 = w(3w2 + 1), and thus the points 
(3, ±6), (12, ±42) on the original curve. We will assume for the sake of the rest 
of the problem that we have now found all of the integer points on C: 

{O, (0, 0), (1, ±2), (3 ± 6), (12, ±42).} 
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(c) Let P = (x, y) → C be a rational point which is not an integer point. Then 
some prime p divides the denominator of either x or y, and then as is argued 
on pages 49-50 of the text, there is λ ≡ 1 such that p2� divides the denominator 
of x and p3� divides the denominator of y. In other words P C(p) in the →
notation of section II.4. But the point of that section is to prove that C(p) is 
a subgroup of C(Q). Thus mP → C(p) for all m ≡ 1. In particular, this means 
that the points mP do not have integer coordinates for all m ≡ 1. 

(d) First, we figure out how the integer points discovered in part (a) are 
related in the group C(Q). The point T = (0, 0) is obviously the only point 
of order 2 on the curve C. Put P = (1, 2); we calculate from the group law 
that P + T = (3, −6). Also we can calculate that 2P = (1/4, −7/8) does not 
have integer coordinates. But 2P + T = (12, 42). These calculations allow us 
to identify all of the integer points we found as combinations of P and T , since 
we also have O = 0P + 0T , (1, −2) = −P , (3, 6) = = −P + T , and −P − T 
(12, −42) = −2P − T = −2P + T . 

Now since the group C(Q) is isomorphic to Z � Z/2Z, we can choose a 
generator Q for the Z part, and then T , being the only point of order 2, clearly 
generates the Z/2Z part. So we will have generators Q, T for the group. Either 
P = mQ or else P = mQ + T for some nonzero m Z. In the latter case, →
(3, −6) = P +T = mQ+2T = mQ and so in any case mQ has integer coefficents. 
If m is negative, then clearly −mQ will still have integer coefficients. Now 
applying part (c), the only possible conclusion is that Q has integer coefficients. 

But then by our earlier calcultions, Q is in the group generated by T and P . 
Then since by choice of Q we know that T and Q generate C(Q), we must also 
have that T and P generate C(Q). 

33. Consider the curve C : y2 = x + px for some prime p ≡ 2 with group of 
rational points � = C(Q). 

(a) Do Exercise 3.8(a) from the text. 

(b) If p = 73, show that the rank of � is 2. 

Solution. (a) This is similar to problem 1. Now we have the curve C : y2 = 
3x − 4px with group of rational points �, and again let � : � � Q�/Q�2 and 
� : � � Q�/Q�2 be defined as in III.5. 

Once argues exactly as in the special case p = 3 of problem 1 that �(�) = 2. | |
To find �(�) , we check decompositions −4p = b1b2 and look for solutions 

to n2 = b1M
|
4 + b

|
2e

4 with M = 0. The possibilities are b1 = ±{1, 2, 4, p, 2p, 4p},≥
but modulo rational squares we only need to consider b1 = ±{1, 2, p, 2p}. So 
�(�) ⊕ 8. Then from the formula 2r = (1/4) �(�)||�(�) it is clear that the | | | |
rank r is less than or equal to 2 as required. 
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� = 

(b). In case p = 73, we have to figure out above for which b1 in the list 
±{1, 2, 73, 146} we get solutions to N 2 = b1M4 + b2e4 with M = 0. Again, we ≥
have �(O) = 1 and T = b so 1,−4p � −73 are in the image of �. Now we 
find by inspection that N2 = 73M4 − 4e4 has the solution (N,M, e) = (3, 1, 2), 
and so symmetrically N2 = −4M4 + 73e4 has the solution (3, 2, 1). Finally, we 
find that N2 = 146M4 − 2e4 has the solution (12, 1, 1). So we have shown that 
73, −4 (which is � −1 modulo squares), and 146 are also in the image of �. 
Altogether we see that �(C) , which must be a power of 2, is greater than or | |
equal to 5. So �(C) = 8 and r = 2 in this case. | | 

34. Let C be the singular cubic curve y2 = x . We have seen that if �ns = 
C(Q) \ {(0, 0)} is defined to be the set of rational points on C excluding the 
singular point (0, 0), then �ns is a group (with identity point [0, 1, 0] at infinity 
as usual, and the group law defined in the same way as for nonsingular curves.) 
In the following steps we will prove part (b) of the Theorem on page 100. 

(a) Do Exercise 3.10(a) from the text. The formulas given in this problem 
do not work for all possible choices of points P,Q; what are the exceptions? 

(b) Do Exercise 3.11 from the text. Note that the formula given there needs 
a minor correction, and that the exceptions to the formula of part (a) need to 
be dealt with. 

(c) So Exercise 3.13(a) from the text. (Hint: it is enough to prove that given 
any finite set of rational numbers q1, q2, . . . qm, the set 

{a1q1 + a2q2 + · · · + amqm a1, a2, . . . , am| → Z} 

is not all of Q). 

Solution. (a) Since a fair amount of this problem is routine calculation, I 
will only sketch the proof. We use the same addition formulas as always. So 
given two nonsingular points P = (x1, y1), Q = (x2, y2) → �ns, 

y2 − y1 

x2 − x1 

is the slope of the line through P,Q, and the equation of the line is y = �x+ λ 
where λ has the formula given in the problem: 

λ = 
y1x2 − x1y2 

. 
x2 − x1 

Then if P + Q = (x3, y3), then x3 = �2 −x1 −x2 and y3 = −�x3 −λ. I leave 
3it to you to verify using also the relations x3 = y2 and x
2 = y2 that

1 1 2 


 
λ3 � 

λ2 

(x3, y3) = , . 
x1x2 y1y2 
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If either P or Q is O then this formula doesn’t work, but we know how to find 
the sum in that case. Of course neither P nor Q is allowed to be the singular 
point (0, 0), which isn’t even in the group. Finally, if P = Q then the formula 
above is also not correct and one needs a separate formula for that case. 

(b) We define α(P ) = x/y if P = (x, y) is an affine point, but we want to 
define α(O) = 0 (not 1 as stated in the exercise.) Now given distinct points 
P = (x1, y1), Q = (x2, y2) not equal to O, one computes (x3, y3) = P + Q as in 
part (a), and from that formula, we get x3/y3 = (y1y2)/(x1x2λ). Thus to prove 
α is a homomorphism one needs to show that 

y1y2 x1 x2 
= + . 

(x1x2λ) y1 y2 

3 2Again this is a straightforward calculation (using x3 = y2 and x2 = y2 ) which I 1 1 
leave to you. To finish the proof that α is a homomorphism, one needs to deal 
with the case P = Q, either arguing by continuity, or else by using separate 
formulas for that case. 

Once we know α is a homomorphism, to prove it is bijective it is enough to 
demonstrate an inverse map. Defining � : Q � Cns(Q) by q ∈� (q−2, q−3) if 
q = 0 and 0 ∈� O, it is easy to check that α and � are inverses as maps of sets. ≥

(c) Given any finite set of rational numbers q1, q2, . . . , qm, any integer com­
bination a1q1 + a2q2 + + amqm with a1, a2, . . . , am Z, when written in · · · →
lowest terms, will have a denominator no bigger than the least common mul­
tiple of the denominators of the qi. Since Q contains elements with arbitrarily 
large denominators, there is no way every element of Q can be expressed this 
way. So (Q,+) is not a finitely generated group. Since by part (b) this group 
is isomorphic to Cns(Q), that group is also not finitely generated. 
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