
18.704 Fall 2004 Homework 8 Solutions 

All references are to the textbook “Rational Points on Elliptic Curves” by 
Silverman and Tate, Springer Verlag, 1992. Problems marked (*) are more 
challenging exercises that are optional but not required. 

1. A nonsingular projective conic with at least one point over the field Fp 

has exactly p + 1 projective points; the reason is that one can project onto a line 
as is argued on page 109 of the text. In this problem we see that the same is 
not true for singular conics. Let p ≥= 2 be a prime, and let C be the conic given 
by the homogeneous equation C : aX 2 + bXY + cY 2 = dZ2 where a, b, c, d ⊂ Fp 

and a, b, d ≥= 0. Let #C(Fp) be the number of points on C in projective space 
over F .p

(a) Note that C is the given by the vanishing of F (X, Y, Z) = aX 2 + bXY + 
cY 2 − dZ2 in P2 . Recall that C is nonsingular at a point as long as not all 
partial derivatives of F vanish there. Show that C is nonsingular if and only if 
b2 = 4ac. 

(b) Assume that C is singular. Then do Exercise 4.1(b) from the text. For 
p = 3, find choices of a, b, c, d for which each possibility occurs. 

Solution. (a) The partial derivatives are �F/�X = 2aX + bY , �F/�Y = 
bX +2cY , and �F/�Z = −2dZ. If all of these are zero at a point, then (since we 

= 0 and p ≥assume d ≥ = 2), Z = 0. Then aX 2 +bXY +cY 2 = 0 and 2aX +bY = 0, 
so Y = −2ab−1X , so aX2 +−2aX2 +4ca2b−2X2 = 0. If X = 0, and then Y = 0, 
but [0, 0, 0] is not a point in projective space, so this is a contradiction. Thus 
−a + 4ca2b−2 = 0, so 4ca2 − ab2 = 0 and so (since a ≥= 0) 4ca − b2 = 0. The 
converse is similar. 

(b) Since C is singular, by part (a) we have b2 − 4ac = 0. The reason this is 
special is that the left hand side of our equation factors: 

aX2 + bXY + cY 2 = (2aX − bY )(2aX − bY ) = dZ2 . 

First we count the points at infinity. So if Z = 0, then 2aX = bY . So [b, −2a, 0] 
is a point at infinity, and since scalar multiples give the same point of projective 
space, this is the only point at infinity. 

Now we may assume Z = 1 and look for affine points (x, y) with (2ax−by)2 = 
d. If d is not a square in Fp, then this has no solutions. So in this case the 
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point at infinity is the only solution and #C(Fp) = 1. Otherwise, d is a nonzero 
square in Fp, say d = e2 . Then 2ax − by = ±e. Since we assume b ≥= 0, for each 
possible choice of x, we get the two solutions y = b−1(2ax ± e). Since x can vary 
over the p elements of Fp, we get 2p affine points this way (note that the two 
elements 2ax ± e are always distinct, otherwise 2e = 0 and since p ≥= 2, e = 0, a 
contradiction.) Adding in the point at infinity, we get 2p + 1 points total on C. 

When p = 3, we get both possibilities by choosing d = 1 (a square) and 
d = 2 (not a square). So (for example) C : X 2 + 2XY + Y 2 = Z2 has 7 solutions 
in F3, but C : X2 + 2XY + Y 2 = 2Z2 has 1 solution in F3. 

2. (a) Let C be the projective curve x3 + y3 + z3 = 0 which is the subject of 
Gauss’s theorem. Calculate #C(Fp) for p = 307 (you don’t need a computer; 
see the suggestions on page 118.) 

(b) Let p be a prime with p � 2(mod 3), and let c ⊂ Fp. Prove that the 
curve C : y2 = x3 + c satisfies #C(Fp) = p + 1. 

Solution. (a) By the result of Gauss’s Theorem, #C(Fp) is equal to p+1+A, 
where 4p = A2 + 27B2 and A is congruent to 1 mod 3. So we need to find A 
and B where p = 307. As discussed on page 118, p + 1 + A is always divisible 
by 9. So A � 7(mod 9). We try A = 7, 16, 23 . . . . If A = 7, then 27B2 = 1079, 
but 1079 is not a multiple of 27. Trying A = 16, then 27B2 = 972, and B2 = 36 
and B = 6 so we’re done: 4(307) = 162 + 27(6)2 . So #C(Fp) = 308 + 16 = 324. 

(b) As we saw in the proof of Gauss’s Theorem, for a prime p which is not 
congruent to 1 mod 3, every element of Fp has a unique cube root. Therefore as 
x varies over the elements in Fp, x3 + c varies over all of the elements of Fp. Now 
if p = 2 then the result can be checked directly, so assume from now on that 
p is an odd prime. Then if x3 + c is a nonzero square in Fp then there will be 
two points of the form (x, y) on C; if x3 + c = 0 then there is one corresponding 
point (x, 0) on C; and if x3 + c is not a square then there are no points on C 
with that x-coordinate. Now since p is odd, exactly 1/2 of the elements of F� 

p 
are squares. So we get 2(1/2)(p − 1) + 1 = p points on the curve in the affine 
plane. Throwing in the point at infinity O, we get p + 1 points on C. 

3. In this exercise we work over Q, and revisit points of finite order again 
using reduction modulo p as a tool. The equation we are interested in is 

3C : y 2 = x + bx for some nonzero b ⊂ Z. 

Let � ≡ C(Q) be the subgroup consisting of all rational points of finite order 
on C. 

(a) In Exercise 4.8, p. 142, it is shown that if p is any prime number such 
3that p � 3 (mod 4), and b is not equal to 0 in F�, then the curve C : y2 = x + bx 

p
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satisfies #C(Fp) = p + 1. Assume this without proof, and use it to show that 
the order of the group � is 2 or 4. 

(b) Recall from section III.4 that the multiplication by 2 map on C is de­
composed as a composition � ≤ � where � : C ⊕ C and � : C ⊕ C are given 
by explicit formulas on p. 79. Use these formulas to show that there exists a 
rational point P ⊂ C such that 2P = (0, 0) if and only if b = 4d4 for some 
integer d. 

(c) Show that the group structure of � is given precisely by the following 
table:	

� 
⎧Z/4Z if b = 4d4 for some d ⊂ Z 

� = Z/2Z � Z/2Z if − b is a square 
⎧ 

Z/2Z otherwise. 

Solution. By exercise 4.8 which we were asked to quote, it follows that 
C(Fp) = p + 1 for all p which are congruent to 3 mod 4 and which do not divide 
b. Then by the reduction mod p theorem in Section IV.3, we see that N = |�| 
divides p + 1 for all primes p � 3(mod 4) such that p > b. Rephrasing, we have 
that every prime greater than b which is congruent to 3 mod 4 is also congruent 
to −1 mod N . I hope your intuition told you this is not likely to happen if N 
is not equal to 1, 2, or 4. 

To actually prove what we want, we can quote a famous theorem (Sorry not 
to warn you about this.) Dirichlet proved in the 1800’s that every arithmetic 
progression {an + b|n ⊂ N}, where a and b are positive integers with gcd(a, b) = 
1, contains infinitely many prime numbers. So we see that if N → 5, then there 
are infinitely many primes in the progression {4Nn + 3|n → 1}, and these are 
all primes which are congruent to 3 mod 4, but congruent to 3 ≥= −1(mod N). 
This is a contradiction to what we showed above. So N ∼ 4. But now N = 3 
and N = 1 are no good, since we know that � has the point (0, 0) of order 2. 
So N = 2 or 4. 

(b). Let C be the curve y2 = x3 − 4bx, and let � : C ⊕ C and � : C ⊕ C be 
the maps given in Section III.4. Suppose P ⊂ C is a point such that 2P = (0, 0). 
Now multiplication by 2 is the same thing as � ≤ �. So there must be some 
rational point Q = (w, z) ⊂ C such that �(Q) = (0, 0). Examining the formula 
for �, we see that this implies that Q = (w, 0) for some nonzero w such that 
w2 = 4b. So b is a square; write b = f 2 for some integer f → 1. Now we also 
must have a point P = (x, y) ⊂ C such that �(P ) = Q = (w, 0). Examining 
the formula for �, we see that if y = 0 then �(P ) ⊂ {T, O}. So y ≥= 0, and 
this implies by the formula that w is a perfect square, say w = e2 . Then 
w2 = e4 = 4b. So 16b = 4e4 and then writing e = 2d, we have b = 4d4 as 
required. Conversely, if b = 4d4 for some integer d then one may check that 
setting P = (2d2 , 4d3), we have 2P = (0, 0). 

(c). By Part (a), we have |�| = 2 or |�| = 4. 
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Suppose that � contains 4 points of order dividing 2. We know the points 
of order 2 are exactly those points with 0 y-coordinate, and there exists such a 
rational point other than (0, 0) if and only if 0 = x(x2 +b) has a nonzero solution 
for x, i.e. −b = d2 is a square. In this case we get � = {(±d, 0), (0, 0), O}, and 
since every point has order dividing 2, we must have � � Z/2Z � Z/2Z. This= 
is line 2 of the table. 

So we may assume now that the only rational points of order dividing 2 on 
C are (0, 0) and O. Suppose however that still |�| = 4. Then � must be cyclic 
of order 4, and there is some rational point Q with � = {Q, (0, 0), 3Q, O} where 
Q has order 4. In particular, 2Q = (0, 0), and by part (b), such a Q exists if 
and only if b = 4d4 for some d. In this case � �= Z/4Z and this is line 1 of the 
table. 

Finally, we have the case where |�| = 2. So in this case we must have 
� = {O, (0, 0)} and � � Z/2Z. This happens for all other choices of b, and is = 
line 3 of the table. 
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