18.725: EXERCISE SET 1

DUE TUESDAY SEPTEMBER 16

(1) The goal of this exercise is to prove a stronger version of Noether's normalization lemma in the case when the ground field k is infinite. So suppose A is a finitely generated k-algebra and choose generators $x_1, \ldots, x_n \in A$ for A. Prove that there exists $y_1, \ldots, y_r \in A$ which are linear combinations of the x_i such that A is integral over $k[y_1, \ldots, y_r]$. Geometrically this corresponds to a projection from the variety in \mathbb{A}^n defined by A onto a linear subspace of \mathbb{A}^n .

Hint: Order the x_i so that x_1, \ldots, x_r are algebraically independent and each of x_{r+1}, \ldots, x_n are algebraic over $k[x_1, \ldots, x_r]$. Then proceed by induction on r. If n = r there is nothing to prove, so suppose n > r and that the result holds for n - 1. Since x_n is algebraic over $k[x_1, \ldots, x_{n-1}]$, there exists polynomial f in n variables such that $f(x_1, \ldots, x_n) = 0$. Let F be the homogeneous part of f of highest degree. Show that there exists $\lambda_1, \ldots, \lambda_{n-1} \in k$ such that $F(\lambda_1, \ldots, \lambda_{n-1}, 1) \neq 0$. Then let $x'_i = x_i - \lambda_i x_n$, and show that x_n is integral over $k[x'_1, \ldots, x'_{n-1}]$.

- (2) Is the ring $A = k[T_1, T_2]/(T_1^2 T_2^3)$ integrally closed in its field of fractions? Prove or disprove.
- (3) Show that the set of pairs $(a, b) \in k^2$ for which either a or b is zero is an algebraic set. What are its irreducible components?
- (4) Suppose the characteristic of k is not 2. Find the irreducible components of the affine algebraic set defined by the equations $X_1^2 + X_2^2 + X_3^2 = 0$, $X_1^2 X_2^2 X_3^2 + 1 = 0$. What happens in characteristic 2?
 - (5) Same as (4) for the equations $X_2^2 X_1 X_3 = 0$, $X_1^2 X_2^3 = 0$.
- (6) Show that the set of invertible $n \times n$ matrices $GL_n(k)$ is naturally a closed algebraic subset of k^{n^2+1} . What about the orthogonal group O(n,k) consisting of invertible matrices A for which $A^T = A^{-1}$?
- (7) Give an example of two algebraic sets V and V' in k^n (some n) such that $I(V) \cdot I(V') \neq I(V \cup V')$.
 - (8) Find the radical in k[x, y] of the ideal generated by x^2y^3 and x^5y .
 - (9) Is the set $\{(z_1, z_2) \in \mathbb{C}^2 | |z_1|^2 + |z_2|^2 = 1\}$ in \mathbb{C}^2 an algebraic subset?
- (10) Describe the algebraic set defined by the equations $X^2 + Y^2 + Z^2 = 1$, $X^2 + Y^2 Y = 0$, and X Z.

Date: September 4, 2003.