18.725: EXERCISE SET 3

DUE TUESDAY SEPTEMBER 30

- (1) Suppose X is a topological space. If $f: G \to F$ is a morphism of sheaves of groups on X, the *image of* f is defined to be the sheaf associated to the presheaf $U \mapsto \operatorname{Im}(G(U) \to F(U))$. The map f is said to be *surjective* if F is equal to the image of f.
- (i) Give an example of a surjective map of abelian sheaves $f: G \to F$ for which the map $G(U) \to F(U)$ is not surjective for some open set U in X.
- (ii) Show that a map of abelian sheaves $f: G \to F$ is surjective if and only if for every point $x \in X$ the map on stalks $G_x \to F_x$ is surjective.
- (2) Let $f: X \to Y$ be a continuous map between topological spaces. For any sheaf F on X, we defined in class the sheaf f_*F on Y by the formula $f_*F(U) = F(f^{-1}(U))$. This defines a functor from the category of sheaves on X to the category of sheaves on Y. Show that this functor has a left adjoint. That is, there is a functor $G \mapsto f^{-1}G$ from the category of sheaves on Y to the category of sheaves on X so that for any F on X and G on Y there is a natural isomorphism

$$\operatorname{Hom}(f^{-1}G, F) \simeq \operatorname{Hom}(G, f_*F).$$

Hint: let $f^{-1}G$ to be the sheaf associated to the presheaf on X which to any U associates $\varinjlim G(V)$, where the limit is taken over open sets V of Y containing f(U).

- (3) Show that the Zariski topology on \mathbb{A}^2 is not the topology obtained by identifying $\mathbb{A}^2 \simeq \mathbb{A}^1 \times \mathbb{A}^1$ and taking the product topology.
- (4) A morphism $f: X \to Y$ between irreducible affine algebraic sets is called *finite* if the ring $\Gamma(X, \mathcal{O}_X)$ is a finite $\Gamma(Y, \mathcal{O}_Y)$ -module. Show that if f is a finite morphism, then for each $y \in Y$, the inverse image $f^{-1}(y)$ is a finite set.
- (5) Give an example of a morphism $f: X \to Y$ between irreducible algebraic sets which has finite fibers but is not a finite morphism.
- (6) Suppose k has characteristic p and let $X \subset \mathbb{A}^n$ be an affine variety. Let $\sigma: k \to k$ denote the Frobenius automorphism of k and let $X^{(p)} \subset \mathbb{A}^n$ denote the algebraic set defined by the ideal

$$A = \{ g \in k[X_1, \dots, X_n] | g^{\sigma} \in I(X) \},$$

where if $g = \sum_{\underline{i}} a_{\underline{i}} X^{\underline{i}}$ we write g^{σ} for the polynomial $g = \sum_{\underline{i}} \sigma(a_{\underline{i}}) X^{\underline{i}}$. Show that Frobenius induces a natural morphism of affine k-varieties $X \to X^{(p)}$ which is a homeomorphism on the underlying topological spaces.

(7) Let $X = \mathbb{A}^2 - \{(0,0)\}$, and view X as a topological space with a sheaf of rings \mathcal{O}_X by restricting the topology and sheaf on \mathbb{A}^2 . Show that (X, \mathcal{O}_X) is not an affine variety.

Date: September 23, 2003.

(8) If \mathcal{C} is a category and $A, B \in Ob(\mathcal{C})$ are objects, then the product $A \times B$ (if it exists) is defined to be an object $C \in Ob(\mathcal{C})$ together with maps $p_1 : C \to A$ and $p_2 : C \to B$ such that for any object $D \in Ob(\mathcal{C})$ the induced map

$$\operatorname{Hom}(D,C) \longrightarrow \operatorname{Hom}(D,A) \times \operatorname{Hom}(D,B)$$

is a bijection.

- (i) Show that the product (C, p_1, p_2) of A and B in C is unique up to unique isomorphism if it exists.
- (ii) Show that products exists in the category of affine varieties. Hint: first consider the case of \mathbb{A}^n and \mathbb{A}^m .
- (9) An affine group variety is a variety G together with a morphism $\mu: G \times G \to G$ such that the resulting operation on the points of G makes the points of G a group, and such that the inverse map $G \to G$ is a morphism.
- (i) Show that \mathbb{A}^1 with $\mu: \mathbb{A}^2 \to \mathbb{A}^1$ given by $(a, b) \mapsto a + b$ is an affine group variety. We usually denote this group variety by \mathbb{G}_a .
- (ii) If G is a group variety and X any affine variety, show that the set Hom(X, G) has a natural group structure.
- (iii) If X is any affine variety, show that $\operatorname{Hom}(X, \mathbb{G}_a)$ is naturally isomorphic as a group to $\Gamma(X, \mathcal{O}_X)$ under addition.