18.725 Algebraic Geometry I Lecture 3

Lecture 3: Projective Varieties, Noether Normalization

Review of last lecture Recall that Spec A = Homy,_a15(A, k). Let I and J be ideals of A. The following
question was asked while we were discussing the topology on Spec A.

Question 1. When do we have that IJ =1NJ?

Answer (From MO.) When Tor{'(A/I,A/.J) = 0 (Tor{ is the derived functor of tensor products ®4). For
example, we can take A = k[V], I = Zy, and J = Zy, where U and W are subspaces of a vector space V
such that U+ W =V.

Last time, we started the proof of the following theorem:

Theorem 1.1. Let X be a space with functions. Then, X is affine if and only if X = Spec A for some
finitely generated k-algebra A with no nilpotents.

Proof. The proof that X is affine if X = Spec A for some A was done in the last lecture. It remains to
check that X = Spec A for some A if X is affine. Assume that X is affine. Note that k[X] =: A is a finitely
generated k-algebra which is a nilpotent ring (since it is an algebra of functions). Take X’ = Spec A. Since
X is affine, the isomorphism k[X]| = A = k[X'] gives a map X’ — X. We also know that X’ is affine. So,
we get a map X — X’. Applying the affineness of X and X’ to the two compositions, we see that these
are inverse isomorphisms and X = Spec A.

O

Closed subvarieties of P* At the end of last lecture, we defined the projective space P} over a field k
and described the regular functions on it. Recall that P? = A"\ {0}/k*. This space has an affine cover

b= U A7, where AT = {(zo,x1,...,2n) s x; # 0}/E* =2 {(x0,21,...,2%i-1,1,Tit1,...,%,)}. Note that it
i=0

n
is a disjoint union of locally closed subsets since P} \ A} = PP~ ! and P" = H S;, where S; is locally closed
i=0
and isomorphic to A®.

Example 1. If k£ = C, we can take P¢ to be a topological space with the complex (classical) topology. Since
it a union of cells of even real dimension, we have

1 7 even

dim H*(P}) = {o odd

Now consider the antipodal map S?*+! — P¢. Since this map is continuous and onto, it follows that Pg
is compact.

n+1_1

Example 2. Suppose that kK =F,. Then, we have |P}| = Zqi =4~ [n]q (g-analogues).
i=0

q—1
Definition 1. An algebraic variety is projective if it is isomorphic to a closed subvariety of a projective
space.
Remark 1. If X is a projective variety over C, then X taken in the classical topology is compact.
Definition 2. An algebraic variety is quasiprojective if it is a locally closed subvariety in a projective space.

Most of the things we use have this property.


http://mathoverflow.net/questions/49259/when-is-the-product-of-two-ideals-equal-to-their-intersection
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Remark 2. It is important to check whether we are working with the Zariski topology or the classical
topology. If a set is closed in the Zariski topology, it is also closed in the classical topology over C since
polynomials are continuous functions. However, a set which is closed in the classical topology may not be
Zariski closed.

Next, we describe the closed subvarieties of P". Note that closed subvarieties in P" correspond to the
k*-invariant subvarieties of A"\ {0}. Let V = k[zo,...,2,] and X C P" be a closed subvariety. Then,

V is a graded vector space V = @ V., where V,, is the set of homogenous polynomials of degree n. Now
consider the action of ¢ € k™ on V. Since we have t|y, = t"Id, we have that f € V vanishes on X if and only
if all of its homogeneous components f, vanish on X. Thus, we have that Ix is a homogeneous (= graded)
ideal. If k is algebraically closed, we have the following correspondence ([SH77, p. 41-42]):

closed subvarieties in P" <— radical (nonunital) homogeneous (= graded) ideals in k[zg, ..., zy]

We can also obtain closed subvarieties of P" by taking projective closures of closed subvarieties X of A™.
Recall that there is an open Aj = {(xo,...,2Zn) : xo # 0} = A™ C P". For closed X C A", we get X, which

is the closure of X in P". If P € k[Yi,...,Y,] vanishes on X, then P = zd <xl 2 ..,x") vanishes

.1'07 .’1?0,. i)
on X, where d = deg P. Note that P = ]5(1,Y1,...,¥n). For example, if P = X —Y? — Y + 1, then
P=X3—-7Y?—7Z?Y + Z®. We also have that Iy = (P : P € Ix).

Example 3 (Linear subvarieties in P"). If Ix can be generated by linear polynomials, then X can be sent
to {(xo: - :ap): Tit1 = = xn = 0} by a linear change of variables (i.e. invariant matrices acting on
P™). Let X C P? be a degree d irreducible curve and Ix = (P), where P € k[X,Y, Z] is a degree d irreducible
polynomial.

Case 1: d=1 This is the case where X = P'.

Case 2: d = 2 (char k # 2) Claim: X = P! again. Proof sketch: By linear algebra, all irreducible
degree 2 polynomials in 3 variables are permuted transitively by a linear change of variables. Without loss
of generality, we can assume that P = XY — Z%. On A? (Z #0), we get (XY = 1) = A\ {0}. Ewercise:
Finish this.

Here is another construction of the isomorphism X = P'. Fiz x € X. Consider the following correspon-
dences:

{lines in P passing through x} <+ {dim. 2 subvarieties of A® := V containing L.} <+ {dim. 1 subvarieties in V/L,}

Note that the last set is isomorphic to P'. Here, L, C A is the set of lines passing through x. Now construct
the map X \ * — P! sending y to the line passing through x and y. Evercise: Finish this.

Case 3: d = 3 X is not necessarily isomorphic to P* in this case. For example, suppose that X is
an elliptic curve. Claim: By a linear change of variables, we can get X to the Weierstrass normal form
y? =23 4+ ax +b. The closure of this curve in P? intersects the line at infinity at 1 point:

ZY? = X%+ aXZ? +b2°
Z=0=X=0
Intersection point : (0:1:0)
Note that P! also has one point at infinity. Comparing the set reqular functions on the affine parts of X

and P! and noting that k[X,Y]/(Y? — X3 — aX — b) is not generated by one element (has a filtration with
the associated graded ring k[X,Y]/(Y? = X?)), we find that X % P!
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Noether normalization lemma and applications

Theorem 1.2. (Noether normalization lemma)
Let A be a finitely generated k-algebra, where k is any field (not necessarily algebraically closed). Then, we
can find B C A such that B = k[x1,...,xy,] for some n and A is finitely generated as a B-module.

Remark 3. Here is a “geometric” version of the theorem which has to do with subvarieties in affine space:

If B C A and A is a finitely generated B-module, then the map Spec A — Spec B is onto and has finite
fibers.

We will prove the theorem in the case where k is infinite.

Lemma 1. Take P € k[z1,...,x,] be a nonconstant polynomial and let d = deg P. There is a linear change
of variables such that P has for form ;vi + (terms of deg, < d).

Proof. Write z; = 2+ M\, for 1 <i <n—1and 2}, = \,xp,. If d = deg P and P = P;+ (terms of deg < d),
then P(x;) = 2¢Py(\1, ..., \y) + (terms of deg, < d). Thus, we would like to find A,..., A, such that
Py(M\,...,\n) = 1. Since Py is homogeneous, it suffices to show that there exist g1, ..., u, such that
Py(p1, ..., n) # 0. Thus, the proof reduces to the following claim:

Claim : A nonzero polynomial over an infinite field takes nonzero values.

This can be proved using induction in number of variables. O
Now we begin the proof of the Noether normalization lemma.

Proof. Since A is finitely generated, we have a surjection ¢ : k[x1,...,2,] = A. We use induction on n. Let
I =ker¢. If I = (0), we are done. Now suppose that I # (0). Take 0 # P € I. By the lemma above, we can
assume without loss of generality that P = z% + (terms of deg, < d). Note that k[z1,...,2,]/(P) —» A
and k[x1,...,x,])/(P) is finite over k[xq,...,2,_1]. Let A" = ¢(k[z1,...,2,_1]). Applying the induction

assumption to A’, there exists B & k[x1,...,%,,] such that A’ is finite over B. Since A is finite over A’, A

is finite over B and we are done. O
Next, we can show that k[z1,...,z,] is Noetherian.

Proposition 1. (Hilbert basis theorem) klx1,...,xy] is Noetherian.

Proof. Tt is enough to check that every ideal is finitely generated. As above, we use induction on n. Let I be
a nonzero ideal of A and 0 # P be an element of I. Without loss of generality, we can assume that A/(P) is

finite as a module over k[z1,...,z,—1]. Since k[z1,...,2z,—1] is Noetherian by induction, every submodule
of A/(P) is finitely generated over k[x1,...,x,_1]. Hence, I/(P) is finitely generated, which implies that I
is finitely generated. O

We need another result in order to finish the proof of the “essential Nullstellensatz” from the first lecture.

Lemma 2. (Nakayama lemma)
Let M be a finitely generated module over a commutative ring A. If I is an ideal of A such that IM = M,
then there exists a € A such that aM =0 and a =1 (mod I).

Proof. Let {m;} be generators of M. Then, m; = Zaijmj, where a;; € I. Then, we can set a =
det(l — aij). O

Finally, we can finish the proof of the essential Nullstellensatz.

Theorem 1.3. (“essential Nullstellensatz”) Let A be a finitely generated k-algebra. If A is a field, then A/k
is algebraic.
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Proof. Since A is a finitely generated k-algebra, it follows from the Noether normalization lemma that there
exists B 2 k[zy,...,x,] such that A D B and A is finitely generated as a B-module. If n = 0, we are done
since A/k would be a finite extension, which must be algebraic. Suppose that n > 1. Then, A D m, where
m is a maximal ideal of B. It follows from Nakayama’s lemma that mA # A. Otherwise, there exists b € B
such that bA = 0 and b =1 (mod m). This would imply that bB = 0 = B/m = 0, which is impossible since
m C B. Since A has a proper ideal mA, it is not a field. O

Irreducibility Here is a list of some definitions and properties of topological spaces which will be discussed
in more detail in the next lecture.

Definition 3. A topological space is irreducible if any two nonempty open subsets intersect. Equivalently,
it is not a union of two proper closed subsets. Another equivalent definition is a space where a nonempty
open subset is dense (sort of opposite to Hausdorff...).

Remark 4. An irreducible topological space is connected, but a connected space is not necessarily irre-
ducible.

Remark 5. Every variety is a union of irreducible pieces.

Proposition 2. Spec A is irreducible if and only if A has no zerodivisors.

Definition 4. A component of a topological space is a maximal irreducible closed subset.
Proposition 3. A Noetherian topological space is the union of its components (finite in number).

Corollary 1. We have the following correspondences:

Irreducible closed subsets in Spec A <+ Prime ideals in A

Components < minimal prime ideals (i.e. prime ideals not containing any other prime ideals)

Corollary 2. 0 = ﬂ(minimal prime ideals).
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