
18.725 Algebraic Geometry I Lecture

Lecture 8: Product Topology, Complete Varieties

To check that Pn is separated, we used an affine covering of Pn as ∪Ani . Instead, we could have checked that
the preimage of ∆ ⊆ Pn × Pn in (An+1 \ 0)2 is closed; this is given by the equation X ∧ Y = 0 (recall that
Pn = (An+1 \ 0)/k×.

Remark 1. We have that X is Hausdorff if and only if the diagonal in X2 is closed with respect to the
product topology, and not the Zariski topology.

Corollary 1. If k = C, then X is separated iff and only if Xcl (which is X with the classical topology coming
from C) is Hausdorff.

Proof. Let X be a variety over k, and Z ⊆ X be a Zariski locally closed subset. We claim that Z is Zariski
closed if and only if it is classically closed. To see this, it suffices to check that if Z is Zariski locally closed
and classically closed, then it is Zariski closed. Note that Z is Zariski open in ZZar, and so it is open dense
in Zcl, so ZZar = Zcl. Since the diagonal ∆ is Zariski locally closed, we are done.

Remark 2. The image of a morphism may not be a subvariety. For example, take the map from A2 to itself
induced by the polynomial mapping k[a, b] → k[x, y], a 7→ x, b 7→ xy. The image is {a = 0} ∪ {(0, 0)}. It
is not a subvariety, but it will be a constructible subset (this is Chevalley’s Theorem, which will be proven
later). Suppose X,Y are irreducible and f : X → Y is a morphism. Then either f(X) is contained in a
closed subset Z ) Y , or f(X) contains an open dense subset U .

Proposition 1. X is separated if and only if for any affine open U, V ⊆ X, U ∩ V is affine and k[U ∩ V ]
is generated by k[U ] and k[V ].

Proof. Consider an open U × V ⊆ X × X where U , V are open subsets in X. Since X is separated, the
intersection of diagonal with U ×V is closed in U ×V ; furthermore, this intersection equals U ∩V . As U ×V
is affine and U ∩ V is closed, we see that U ∩ V is affine. We also have k[U ]⊗ k[V ] = k[U × V ] � k[U ∩ V ].

For the converse, the second condition implies that (U × V ) ∩∆ is closed in U × V , so ∆ is closed.

Example 1. Let X be the affine line with a doubled origin, with the usual affine open covering U V where
U = A1 1

∪
1, V = A2. Then this covering corresponds to k[t1, t2] 7→ k[t, t−1] where t1, t2 7→ t. This is not

surjective.
Consider X to now be the affine plane with a doubled origin, with affine open covering U V where

U = A2 2
∪

1, V = A2. In this case, U ∩ V = A2 \ {0} is not affine.

Also, we checked last time that for Y separated, f : X → Y is determined by f |U where U is a dense
open subset of X.

Proposition 2. (Caternary property). Let X be an algebraic variety, with X = Zn ) Zn−1 ) · · · ) Z0

where each Zi is closed irreducible. If this chain cannot be refined, then dimZi = i.

Proof. Theorem 2.6.7 of [K].

Now we consider “dimension and rate of growth.” Let A be a finitely generated k-algebra. Let V be
the space of generators. Set Vn = span{x1 · · ·xk : xi ∈ V, k ≤ n} and DV (n) = dimVn. The asymptotic
behavior of DV (n) actually does not depend on V . For if V ′ ⊆ Vd, then DV ′(n) ≤ DV (nd).

Proposition 3. If A = k[X] where X is affine of dimension d, then DV (n) = Θ(nd); that is, there exist
constants c′, c such that for all n,

c′nd ≤ DV (n) ≤ cnd (*)

Proof. Suppose B ⊆ A and A is finite over B. If (*) holds for B, then it holds for A. Given VB to be
generators for B, VA = VB ∪W where W are generators for A as a B-module, note each x ∈W satisfies an
equation of the form xr = br 1x

r−1 + · · · + b0 for bi ∈ B. We can assume without loss of generality that−
bi ∈ VB . Then DVB

(n) ≤ DVA
(n) ≤ DVB

(n) · c where c = rdimW . Setting B = k[x1, · · · , xd], an explicit
computation gives a polynomial in n of degree d.
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Remark 3.

(1) The order of growth function has been used to generalized the concept of dimension to noncommutative
algebras, groups etc. in the works of Artin, Gromov and others.

(2) In our commutative setting the function DV (n) can in fact be analyzed much more precisely. It turns
out that for large n we have DV (n) = P (n) for a certain polynomial P . It is closely related to the so
called Hilbert polynomial, to be described in 18.726.

Theorem 1.1. Suppose X,Y are irreducible subvarieties in An. Then each component of X ∩ Y has codi-
mension at most codimX + codimY .

Proof. Rewrite X ∩ Y = (X × Y ) ∩∆An ⊆ An × An. From last time, dim(X × Y ) = dimX + dimY . The
diagonal in affine space is cut out by the n linear equations xi = yi. By a theorem of last time we know
that each component of Zf ⊆ X has dimension equal to dimX − 1, so dim(X ∩ Y ) ≥ dim(X × Y ) − n =
dimX + dimY − n.

Remark 4. This theorem doesn’t exclude empty intersections. The obvious example is the intersection of
subvarieties x1 = 0 and x1 = 1.

Theorem 1.2. The previous theorem holds for X,Y ⊆ Pn; moreover, the intesection X ∩ Y is nonempty if
dimX + dimY > n.

Proof. Here is a lemma: the dimension of CX (the cone over X) equals dimX + 1. To see this, note that
CX ∩ {xi = 1} is isomorphic to Ui = X ∩Ani ⊆ X, and from this it is a straightforward exercise to complete
the proof of this lemma.

Using this, the proof of the theorem goes as follows: dim(X ∩Y ) = dimCX∩Y −1 = dim(CX ∩CY )−1 ≥
dimCX + dimCY − (n+ 1)− 1 = dimX + dimY − n. The intersection of cones is nonempty as it contains
0.

Complete varieties

Definition 1. A variety X is complete if it is separated and universally closed, which means that for all Y ,
the projection map Y ×X → Y sends closed sets to closed sets.

We will see that for k = C, X is complete if and only if Xcl is compact. Also, if X is quasiprojective, we
will see that complete is equivalent to projective. For the forward direction, suppose ι : X ↪→ Pn is locally
closed. Then X is in the image of the closed embedding Γι ↪→ X × Pn, so X ⊆ Pn is closed.

Lemma 1.

(i) Suppose Z is closed in X. Then X is complete implies Z is complete.

(ii) If f : X → Z is a morphism with Z separated and X complete, then f(X) ⊆ Z is a closed complete
subvariety.

(iii) If X,Y are complete, then so is X × Y .

Proof. (i) We see that Y × Z is closed in Y ×X, so by considering the projection to Y , this is clear.

(ii) Identify f(X) with Γf in X × Z. As X,Z are separated, so is X × Z. As Γf is a closed subvariety of
X × Z, it is also separated (for these facts, see Lemma 3.3.2 of [K]). Hence f(x) is separated.

To check that f(X) is universally closed, take a variety Y and closed subset T ⊆ f(X)× Y . It suffices
to check that the image of T in Y is closed. Consider the map f × id : X Y

1

× → f(X) × Y , and

let T̃ = (f × id)− (T ) ⊆ X × Y . Then it suffices to check that the image of T̃ under the projection
X × Y → Y is closed, which follows from X being complete.
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(iii) As X,Y are both separated, so is X × Y (Lemma 3.3.2 of [K]).

Let Z be any variety and T ⊆ X × Y ×Z closed. As X is universally closed, the image of T in Y ×Z
is closed. As Y is universally closed, the image of T in Z is closed. Hence, X ×Y is universally closed.

Proposition 4. Pn is complete.

Proof. We know Pn is separated (Lemma 3.3.2 of [K]), so it suffices to check that it is universally closed.
We use an “elimination theory” argument. Let Y be any variety and Z ⊆ Pn×Y be a closed subset. Then

Z comes from a closed subset Z̃ ⊆ An+1×Y . Suppose I˜, the ideal of functions vanishing on Z, is generatedZ
by some homogeneous polynomials Pi ∈ k[Y ][x0, · · · , xn]. For y ∈ Y , let Pi,y = Pi(y,−) ∈
for some d (this is the degree d homogeneous polynomials). Then (Pi,y) is an ideal of k[x0, ·

k̃[x0, · · · , xn]d
· · , xn], so we

let Ud = {y ∈ Y : (Pi,y) ⊇ k[x0, · · · , xn]d}. Letting pr(Z) be the image of Z in Pn × Y → Y , we see
that y 6∈ pr(Z) iff there is no point (x0, · · · , xn) which makes all of the Pi,y vanish, iff it lies in some Ud.
Therefore, Y \ pr(Z) = ∪dUd. It is enough to check that each Ud is open, which is equivalent to checking
that the∑natural map ⊕ik[x0, · · · , xn]d−di → k[x0, · · · , xn]d (where di is the degree of Pi) defined by sending

(gi) 7→ giPi,y is surjective. This is equivalent to requiring that some matrix with k[Y ]-entries, when

evaluated at y, has maximal rank, which is some condition of non-vanishing of minors. So it is an open
condition.

So projective varieties are complete, and a quasiprojective variety is complete if and only if it is projective.
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