18.725 Algebraic Geometry I Lecture 11

Lecture 11: Sheaf Functors and Quasi-coherent Sheaves

Recall that last time we defined a sheaf and a presheaf on a topological space, respectively denoted as
Sh(X) C PreSh(X). We'll work with sheaves of abelian groups on k-vector spaces. (Recall that F(X) €
PreSh(X) if F(U) is a k-vector space, and F(U) restricts to F(V) if V C U.)

Proposition 1. Presheaf of abelian groups on k-vector space is an abelian category.

Proof. If F EN G, then ker(f)(U) = ker(F(U) — F(U)), and same for cokernel. O

Note that Sh(X) is a full abelian subcategory. Now we introduce the sheafification functor: the embed-
ding functor Sh — PreSh has a left adjoint, sending a presheaf F to its associated sheaf F#. Recall that a
presheaf is a sheaf if for all U = U U.., we have the exact sequence 0 — F(U) — H F(Uy) — H F(UaNUg).

a,p
So we define F#(U) = . liU_I>nU ker(H F(Uy) — H]—'(Ua N Ug)). Another description is via stalks: let
=UaqUa a,f
F be a presheaf on X, x € X, and define F, = lig]-'(U). Then F#(U) = {0 < H]:m | Vo €
zcU zeU

U, 3V 32 CU,s € F(V),s.t. {oy}yev comes from s}. This shows in particular colimits exist in Sh(X):
cokergh (F — G) = cokerpresh (F — g)#. This just follows from general abstract nonsense.

Example 1. An ezample of a cokernel in Presh that is not a sheaf: take X = S*, let F be the continuous
function sheaf C(X,R) (i.e. F(U) are the continuous maps U — R), and G be the constant sheaf Z (i.e.
G(U) consists of constant Z-valued function on each connected U; more precisely, G(U) are continuous maps
U — Z where the latter has the discrete topology), then (F/G)sp(U) would be continuous maps U — R/Z,
whereas (F|G)presn(U) would be the continuous maps (U, R) mod out the constant maps.

Proposition 2. Some properties:
1. F — F¥ is exact; in particular it doesn’t change the stalks.

2. F — F*¥ is left adjoint to the embedding Presh — Sh, and is an isomorphism if F itself is a sheaf.

As an example, consider the constant presheaf V. given by F(U) =V constant. Then F# is a constant
sheaf given by F*(U) = {locallyconstantmaps U — V'}. (Why is F not a sheaf itself? Answer: it
fails the local identity aziom on U = (.)

3. F s F, is an exact functor; in other words, a sequence of sheaves 0 — F — F' — F" — 0 is exact iff
0— Fp — F. — Fi — 0 is ezxact for all .

Pullback and Pushforward If f: X — Y is a continuous map, then we have f* : Sh(Y) — Sh(X),

and f, : Sh(X) — Sh(Y). The latter (pushforward) is given by f.F(U) = F(f *(U)), and the former

(pullback) is given by the sheafification of the presheaf lim F (V). In particular, we have F, =i, (F); so
v

[*(F)e = F), and in particular, we see that f* is exact. On the other hand, f, is only left exact (to see

it is not necessarily exact, note that the pushforward to a point is the same as the global section, which is

not necessarily exact).

Structure Sheaf Suppose X is a space with functions, then X carries the structure sheaf Ox, given by
Ox(U) = k[U]. Say X = Spec(A) is affine, and = € X, then O(X), is the localization of A at the maximal
ideal m,. This makes X a ringed space, i.e. a topological space equipped with a sheaf of rings.

A sheaf of modules over a ringed space (X, A) is a sheaf F where F(U) is an A(U) module, such that
the restriction to subsets respects the module structure. A sheaf of modules F on a ringed space (X, A) is
quasicoherent, if V23U 3 x such that there exists an exact sequence Agl — A%J — Fu — 0, where the first
two are free modules (with possibly infinite dimensions).
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Remark 1. Caution: @A is the sum in the category of sheaves, given by ( @ A = {s¢ H A(U) |
jedJ PreSh JjeJ

locally s € @}, i.e. Yo € UV 2 x,V C U such that only finitely many components of s|y are nonzero.

One can check that the section matches with the normal notion of @A(U) if U is quasicompact. If X is
J
Noetherian, then any open U is quasicompact, so (A®7)(U) = A(U)®7.

Lemma 1. If X is Noetherian, then F(hg F)U) = @f(U), where the right side is the filtered direct limit.

In general, if X is a topological space, I is the global section functor Sh(X) — Vecty, then it has a left
adjoint L(T") where L(T")(V) the locally constant sheaf with values in V.

Quasicoherent O-modules We denote the category of quasicoherent Ox modules by QCoh(X), where
X is an algebraic variety.

Theorem 1.1. If X = Spec(A), then QCoh(X) = Mod(A), given by F — I'(F) = F(X).

Proof. First construct the adjoint (localization) functor Loc, where we use M to denote Loc(M). To do so,
first construct a presheaf L that sends U to k[U] ® 4 M, then sheafify this presheaf. The functor L is left
adjoint to the canonical functor Mod(k[U]) — Mod(A), then one can deduce that L is left adjoint to T,
which sends presheaves of @O-modules to A-modules, from which the theorem follows. O

Note that Loc is an exact functor, which follows from the description of the stalks. Note that F7 is
defined by F(U), where U is an fixed base of topology. In particular, use the base {Uy = X — Zy} (the
Zariski topology), and note that k[Uy] = Ay, thus k[Us] ®4 M = M), and note that M > My is exact.
Finally, M, = h_n>q Mj)y = My, is exact. It’s clear that A= 0. As a corollary,

FIf (z)#0

Corollary 1. M is a quasicoherent Ox module.

—~—

To see this, choose a presentation, and observe that ®;c;M; = GM,;.
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