
18.725 Algebraic Geometry I Lecture

Lecture 15: Divisors and the Picard Group

Suppose X is irreducible. The (Weil) divisor DivW (X) is defined as the formal Z combinations of subvarieties
of codimension 1. On the other hand, the Cartier divisor group, DivC(X), consists of subvariety locally given
by a nonzero rational function defined up to multiplication by a nonvanishing function.

Definition 1. An element of DivC(X) is given by

1. a covering Ui; and

2. Rational functions fi on Ui, fi = 0,

such that on Ui ∩ Uj, fj = ϕijfi, where ϕij ∈ O∗(Ui ∩ Uj).

Another way to express this is that DivC(X) = Γ(K∗/O∗), where K∗ is the sheaf of nonzero rational
functions, where O∗ is the sheaf of regular functions.

Remark 1. Cartier divisors and invertible sheaves are equivalent (categorically). Given D ∈ DivC(X),
then we get an invertible subsheaf in K, locally it’s fiO, the O-submodule generated by fi by construction
it is locally isomorphic to O. Conversely if L ⊆ K is locally isomorphic to O, A system of local generators
defines the data as above. Note that the abelian group structure on Γ(K∗/O∗) corresponds to multiplying by
the ideals.

Proposition 1. Pic(X) = DivC(X)/Im(K∗) = Γ(K∗/O∗)/ im Γ(K∗).

Proof. We already have a function DivC(X) = IFI→ Pic (IFI: invertible frational ideals) given by (L ⊆ K) 7→
L. This map is an homomorphism. It is also onto: choosing a trivialization L|U = O|U gives an isomorphism
L ⊗ ernel:O K No⊇L ∼= K. w let’s look at its k it consits of sections of K∗/O∗ coming from O ⊆ K, which is
just the same as the set of nonzero rational functions, which is im Γ(K∗) = Γ(K∗)/Γ(O∗).

In many scenarios, we can actually obtain explicit descriptions of the Picard group.

Theorem 1.1. If X is locally factorial (i.e. OX,x is always an UFD), then DivW (X) = DivC(X).

A remark about factoriality:

1. k[x1, . . . , xn] is an UFD, and a localization of an UFD is an UFD, from which it follows that An and
Pn are locally factorial.

2. More generally, for a normal curve X, U ⊆ X, O(U) is a Dedekind domain (so that it is Noetherian,
integrally closed, Krull dimension 1, equivalently, all frational ideals are invertible). In this case, OX,x

is a DVR, and therefore is an UFD.

Smoothness What we care in particular is that if X is smooth, then X is locally factorial. What is
smoothness? One description is that if x ∈ X, then completion by the topology of the maximal ideal

limOX,x/m
n
x = ÔX,x (the completed local ring) is isomorphic to k[[x1, . . . , x ]].←

n
− n

Proposition 2. The following are true:

1. k[[x1, . . . , xn]] is a UFD.

2. If A is a Noetherian local ring such that its completion is an UFD, then A itself is an UFD.

Remark 2. The intuition that these local completion rings are the same as local charts for manifolds can
be deceptive. For instance, the converse of b) may not be true, i.e. A is an UFD, but its completion is not.
Also it may happen that A is an UFD, but A[[x]] is not.

Now observe that if X is a smooth variety, then OX,x is a regular local ring, i.e. the maximal ideal
mx is generated by a regular sequence, i.e. x1, . . . , xn such that xi is not a zero divisor in the quotient
OX,x/(x1, . . . , xi 1) (in particular, x− 1 is not a zero divisor). Observe that every Noetherian regular local
ring is a UFD (AuslanderBuchsbaum theorem).
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Proof of the Proposition. For the first statement, every finitely generated module has a finite resolution by
free finitely generated modules, i.e. 0 → Fn → . . . → F0 → M → 0. For the second statement, this can
be found as [Bou98, VII.7. Corollary 2]. If I ⊆ A is Notherian local, then it is an intersection of principal
ideals, and it has a finite free resolution, then it must be principal.

Now back to the equivalence between Weil and Cartier divisors.

Proof of the Theorem. Consider the map DivW (X) → DivC(X) given by [D] 7→ JD = O(−D) ⊆ O ⊆ K,
where O(−D) denotes sheaf of functions vanishing on D. We need to know that JD is locally principal.
(The rest of this paragraph is slightly different from the original proof given in class.) Recall that when we
have an UFD, every prime ideal of height one is principal. JD is locally induced by a prime ideal of height
1 by definition, so when we pass to the stalk it is induced by (fx) for some fx ∈ K. Now (fx) and JD only
differ on components that do not pass x (as they agree on the stalk), which can only happen on finitely
many other components, so after shrinking our local neighborhood we can have (fx) agreeing with JD on
some neighborhood.

Now the map [D] 7→ JD is clearly injective: enough to see that [nD] 67→ 0 when n = 0, wlog when n > 0,
but then the image is Jn

D ⊆ JD = 0. It remains to check that the map is onto. First consider L ⊆ O, we want
to find a Weil divisor D that goes to L. Can asssume that we know this for all L′ such that L ( L′ ⊆ O.
Now pick f ∈ L such that locally L = (f), then we know that all components of Zf have codimension 1,
i.e. are Weil divisors. If D is such a component, then J contains L; we can assume J = (ϕ), then ϕ−1D D L
strictly contains L and is, by assumption, coming from some D′, then L comes from D+D′. Finally, in the

α
general case, L = (f) locally, where f = where α, β ∈ O(U), then we have shown that α comes from some

β
D, β from some D′, then f comes from D −D′.

Example 1. Suppose X is a normal curve, and L = (f), coming from D = nixi, where xi are just
i

points. So what are those values? The local multiplicity of xi, i.e. ni, is given by

∑
valxi

(f).

Another way to describe it is via C f⊕ = coker(O −→ O). Note that this is a coherent sheaf supported on the

zeroes of f , so it splits as Cxi
, and we claim that each has dim Γ( xi

) finite, which equals the length of
xi

C

the sheaf.1 To see this equivalence, consider the ideal sheaf L = Jx, which comes from −(x) by construction,
then L = (f) is locally isomorphic to Jn

x (another way of saying the local ring is DVR), then it would come
from −(nx), but dim OX,x/m

n
x = n.

Remark 3. In fact, for any irreducible X, we have a homomorphism in the other direction: DivC(X) →
DivW (X). ∑For instance, if X is a curve that is irreducible (but not necessarily normal), then we can send

L = (f) to nixi, where ni = dim Γ(Cxi
). If X is separated, irreducible, regular in codimension 1 (there

i

exists Z ⊆ X, such that codim Z ≥ 2, and X − Z is regular), then this is an isomorphism.

Let’s do some easy examples.

Example 2. The Picard group of An is trivial (every codimension 1 subvariety is given by a global function).

Example 3. What about Pn? it is Z, and is generated by {O(d) | d ∈ Z}.

Proof. First see Z is contained in it because O(d1) ⊗ O(d2) = O(d1 + d2), and that O(d) = O when
d < 0 because the global section vanishes for d < 0. The other inclusion holds because for any D ⊆ Pn of
codimension 1, there is a homogeneous polynomial P of some degree d generating the homogeneous ideal
vanishing on D, then JD = OPn(−d) by multiplication by P .

1A coherent sheaf supported at x is an successive extension of Ox, and the length of the sheaf is just the length of this
filtration, i.e. number of extension steps needed.
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Let’s discuss the curve case in more detail. Let X be an irreducible, complete curve (not necessarily

normal). Then one invariant of the divisor is the degree (which is deg( nixi) = ni for Weil divisor,
i i

and the degree of the corresponding image in Weil divisor if we have a Cartier

∑
divisor).

∑
Recall that Picard

group is all Cartier divisors mod out all the principal divisors.

Proposition 3. The degree of a principal divisor is zero.

Thus we get a degree homomorphism from the Picard group to Z.
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