
18.725 Algebraic Geometry I Lecture

Lecture 17: Abel-Jacobi Map, Elliptic Curves

Few more remarks on the analytics theory. Last time we let X be a smooth compact C-manifold of dimension
1, obtained from a normal, complete curve over C. (In fact, any smooth compact C-manifold of dimension
1 is obtained from an algebraic curve; note that this fails for dimension ≥ 2). In this case, Pic◦(X) =
Div(X)/PDiv(X). We remarked that we have a map from it to Γ(Ω1(X))∗/H1(X,Z) = Cg/Z2g (the Abel-
Jacobi map).

Theorem 1.1. X can be reconstructed from the lattice H1(X,Z) ⊆ Γ(Ω1)∗.

This can be generalized to smooth complete varieties in any dimension. Instead of degree, we consider a
map Div → Hn 2(X), and principal divisors are the preimages of 0. There is another Pic(X)− → Hn (X)

n 1
−2

with kernel Pic◦(X), and the theorem reads Pic◦(X) = Γ(Ω − (X))∗/H1(X,Z).

Proposition 1. Pic◦(X) is itself a complex variety as well as a compact abelian Lie group. In fact, one can
define an algebraic group Jac(X) on it, such that for a curve X, the A-J map is algebraic.

To formally define the Jacobian, one defines a functor it represents. More explicitly, for a variety S,
one define a family of invertible sheaves of X parametrized by S, which is essentially an invertible sheaf on
S ×X, modulo the line bundles pulled back from S.

Theorem 1.2. Let g be the (geometric) genus of X and assume it equals 1. Then Cg/Z2g = C/Z2 has
dimension 1 and is therefore a curve. Fix x0 ∈ X. The A-J map gives a map X → Pic◦(X), where we send
x to x− x0. Then this is an isomorphism.

Corollary 1. Every normal curve of genus 1 has a group structure (they are called the elliptic curves).

As an example, consider X ⊆ P2 is the projective closure y2 = P (x) = x3 + ax + b (char k = 2, 3)
(and assume no multiple roots). We’ll check today that X is a smooth curve by showing it’s normal and
irreducible.

Assume k = C, we claim that g = 1, i.e. the topological Euler character is 0. Consider the map
(x, y) 7→ x, which extends to a morphism X → P1. This is of degree 2 and has four ramification points: the
roots of P (x) as well as the infinity. Thinking in classical topology and choose your favorite argument, we
know that Eul(X) = 2Eul(CP1)− 4 = 0.

Now let’s consider how to write down the composition (group) law. To do so, we first fix the initial point
x0 = (0 : 1 : 0), where we see that {x0} = X ∩P1 . The complex story suggests that we have a group law on∞
X, such that for every x, y ∈ X, we have the divisor equivalence (x+E y)− x0 ∼ (x− x0) + (y− x0) (where
+E denotes the addition using the group law), in other words, (x +E y) − x − y ∼ −x0. We know that for
every two lines l, l′ = P1 ⊆ P2 we have (l∩X) ∼ (l′ ∩X) (we discussed this before). Now take l′ = P1 , then∞
(l′ ∩X) = 3x0. Write l ∩X = x1 + x2 + x3, then (x1 − x0) + (x2 − x0) + (x3 − x0) ∼ 0 in Pic(X). So we
should expect x1 +E x2 +E x3 = 0. Now we construct the group law. For x = (a, b) ⊆ X, x′ = (a,−b), we
have x+ x′+ x0 ∼ 3x0 ∈ Pic, so we define x+E x

′ = 0. Now in general, define x+E y to be the 3rd point in
l ∩X, where l passes through x′ and y′. One can directly check that this is a group law that makes X an
abelian algebraic group.

Remark 1. Over C, X = C/Z2 makes it clear that for all N > 0 we have {x ∈ X | Nx = 0} ∼= (Z/NZ)2.
This can be checked algebraically to hold for k of characteristic p - N . If N = p, then this group is Z/p, or
trivial if X is respectively ordinary or supersingular.

Consider X 2 2
0 ⊆ A given by {(x, y) | y = P (x)}. If X0 − {z} is affine, then it corresponds to k[X0](f)

where f is a function in k[X0] such that f(x) = 0⇔ x = z, which is iff (f) = Nz −Nx0 for some N (where
x0 is the group law identity, which is the infinite point). For a given N there are N2 − 1 such z.

Last time we proved that if X is normal irreducible complete curve, f ∈ K(X), then it defines some
f : X → P1, then the divisor (f) is (f0)− (f ) where deg(f∞ 0) = deg(f ) = deg(f). We proved this modulo∞
the following proposition, which we shall prove today:

Proposition 2. A non-constant map between irreducible compact curves is finite.
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Normalization Let X be an irreducible variety, F = K(X) be the field of rational functions on X. Let
E/F be a (finite) field extension. Then build a new variety as follows:

Proposition 3. There exists a variety Y along with a finite map f : Y → X such that for every affine open
U ⊆ X, k[f−1(U)] = k[U ]E (the integral closure).

If E = F , then Y is called a renormalization of X. In fact, Y is the unique normal variety with a finite
onto map to X with the fractional field being E. k[U ]E is finitely generated as a k[U ]-module, or equivalently,
as a ring. In other words k[U ] is a Nagata ring. Sketch of proof to this: using Noether normalization reduce
to X = An. Consider separately the case of purely inseparable and the separable extensions. For separable
extension case, the bilinear form (x, y) 7→ Tr(xy) on E as an F -vector space is not degenerate, so if we pick
a basis (yi) for E/F which lies in k[x1, . . . , xn]E , then k[x1, . . . , xn]E ⊆ {e ∈ E | Tr(exi) ∈ A} is a finitely

generated algebra for A = k[x1, . . . , xn]. Now the assignment U 7→ k[U ]E extends to a coherent sheaf A of
rings on X, and let Y = SpecX(A).

Corollary 2. Given f : X → Y where X,Y are irreducible, if X is normal, f is finite, onto, then X can be
reconstructed from Y and f−1(U) for some open U = ∅ ⊆ Y .

Example 1. Let X = V (x3 − y2), then the normalization of X is A1, and the map is t 7→ (t2, t3).

Lemma 1. If f : X → Y is a map of irreducible curves, suppose f is onto, birational, Y is normal, then f
is an isomorphism.

Proof. Let ϕ ∈ K(Y ), ϕ on f−1(U)⇔ ϕ is regular on U . If ϕ is not, ϕ−1 is regular and is 0 at some x ∈ U .
Suppose y 7→ x, then ϕ is not regular at y.

Lemma 2. Suppose X → Y is birational map, X is complete, Y is normal, then X ∼= Y iso.

Proof. Since f(X) is closed and not finite, we know f must be onto.

Proof of Proposition 2. X → Y is a map of complete curves. We can assume X is normal. Then it factors
through normalization X → Nor(Y ) → Y . The first is isomorphism by assumption, and the second map is
finite by construction.

Tangent Space Now let X be an algebraic variety, x ∈ X. Let us define the Zariski tangent space
TxX. We first we note the tangent space to a smooth manifold is the fiber of the bundle of vector fields
Vect(M) = Der(C∞(M)). Each vector field v gives a linear map δv : Fun(M) → C that maps f to v · f |x,
so we see that δv(fg) = f(x)δv(g) + g(x)δv(f). This suggests the definition TxX ⊆ Homk(OX,x, k) given by
{ξ | ξ(fg) = f(x)ξ(g) + g(x)ξ(f)}. The cotangent space Tx

∗X is the dual (TxX)∗, and we can describe it as
m 2

x/mx. In particular, for X = Spec(A), Vect(X) = Der(A) = {δ : A→ A k-linear | δ(fg) = δ(f)(g)+fδ(g)}.
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