
18.725 Algebraic Geometry I Lecture

Lecture 20: (Co)tangent Bundles of Grassmannians

Last time we proved that X ⊆ An is smooth at x if and only if locally given by equations f1, . . . , fm such that
dfi|x are linearly independent. We say that IX is locally generated by f1, . . . , fm. In fact, any f1, . . . , fm
such that dfi|x is a basis for ker(Tx

∗An → Tx
∗X) would work. Take Z generated by the equations f1, . . . , fm.

We checked that dimx(Z) = dimx(X).

Proposition 1. The following hold:

1. If Z ⊆ X is a closed subvariety, then we have IZ/I
2
Z → ΩX |Z → ΩZ → 0.

2. If IZ is locally generated by functions with linearly independent differential (that is, for all x in Z,
there exists U 3 x, f1, . . . , fm on U such that IZ U = (f1, . . . , f∩ m), dfi|y is linearly independent for
any y ∈ U), then the sequence is exact at left.

3. If X is smooth, the last condition can be checked at x. (ΩX is locally linearly independent of dfi|x is
an open condition.)

Proof. 1. ΩX |Z surjects to ΩZ by sending fdg to f |Zdg|Z , and we claim that the kernel is generated
by fg, g ∈ IZ . This would follow from Der(OZ ,M) = {δ ∈ Der(OX ,M) | δ(IZ) = 0}, so it
remains to see that f 7→ df |Z is a well-defined map of OZ mod IZ/I

2
Z → OX |Z . Observe that

f, g ∈ IZ =⇒ d(fg)|Z = 0.

2. If IZ = (f1, . . . , fm), we have the following diagram:

IZ/I
2
Z ΩX |Z

O⊕nZ

where the diagonal map is guaranteed to be injective on every fiber by condition b), so is injective.

3. We always have it for affine space An. General case is proved similarly.

Corollary 1. X smooth, Z ⊆ X closed, then Z is smooth if and only if locally Z is given by equation with
linearly independent differentials.

Proof. Use proposition 3) above. Locally we assume X ⊆ An, and then X is cut out by some g1, . . . , gp with
˜ ˜linearly independent differentials, so (g1, . . . , gp, f1, . . . , fn) are equations for Z with linearly independent

differentials, so Z is smooth.

Last time we defined ω, the canonical bundle. Let K be the corresponding canonical divisor class.

Corollary 2. If X,Z smooth, Z closed in X, then we get a s.e.s. of locally free sheaves 0 → IZ/I
2
Z =

T 2
Z
∗X → ΩX |Z → ΩZ → 0, and thus K|Z = KZω(IZ/I

2 2
Z). If Z is a divisor, then ω(IZ/IZ) = IZ/IZ =

O(−D)|Z , thus KX(D)|D = KD, which is the adjunction formula.

Remark 1. Sections of KX(D) are top degree forms on X with poles of order ≤ 1 on D. The map
KX(D)|D → KD sends ω to its residue.

Proposition 2. We have a s.e.s. 0→ ΩPn → O( 1)⊕(n+1) = O(
n

− −1)⊗ V ∗ → O → 0 where PV = Pn. As a
corollary, KP = O(−(n+ 1)).

More generally, consider the Grassmannian Gr(k, n), consisting of all k-dimensional linear subspaces V
of an n-dimensional space W . Then O⊕n has a locally free tautological subsheafGr(k,n) V of rank k (that is

locally a direct summand) such that a section s of O ⊗W , i.e. a map s : Gr(k, n)→W , belongs to V if for
all x, s(x) ⊆ Vx.
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Proposition 3. TGr(k,n) = Hom(V,W ⊗O/V) and ΩGr(k,n) = Hom(W ⊗O/V,V).

⊕(n+1)

Let’s see how this implies the last proposition: let k = 1,V = O(−1). Then Hom

(
O(−1),

O
=

(n+1) (n+1)

O(−1)

Hom( (−1),O⊕ )

)
O

=
O(1)⊕

and Ω = ker( ( 1)n+1, ).
Hom(O(−1),O(−1))

O − O
O

Proof of the Second Proposition. For any point V on Gr(k, n), we have an isomorphism TV Gr(k, n) ∼=
Hom(V,W/V ) by identifying a neighborhood of V with Hom(V, V ′). Check this is independent of the
choice of V ′, so let V ′ = W/V , and glue together these open charts.

Second Proof of the First Proposition. It suffices to construct an s.e.s. of sheaves on An+1 − {0} that is
compatible with the G n+1 n

m action. Let π : A −{0} → P , and consider the s.e.s. 0→ π∗ΩPn → ΩAn+1−{0} →
O → 0. See [Kem93] for more details.

Application Let X ⊆ Pn be a smooth hypersutrface of degree d = n+1, then KX
∼= OX is trivial. (Proof:

KX = KPm(X)|X = O(−(n+ 1) + d)|X .)
Here are some examples of X:

1. n = 2, d = 3. This gives us the elliptic curves.

2. n = 3, d = 4. These are the K3 surfaces.

3. n = 2, d = any. We see that the degree of the canonical class is deg(KX) = deg(O(−3+d)|X) = d(d−3).
Recall that complete smooth curves have genus as an invariant, such that deg(KX) = 2g − 2, so we
have g = d(d− 3)/2 + 1.

Now let X be an affine variety, X = Hom(k[X], k). We can write the tangent bundle as TX = TxX =
x∈X

Hom(k[X], k[ε]/ε2) = Hom(Spec(k[ε]/ε2), X) where the first object, Spec(k[ε]/ε2), is a scheme rather

∐
than a

variety. 1 Each such homomorphism h : k[X]→ k[ε]/ε2 is given by f 7→ h0(f)+εh1(f), where h0 : k[X]→ k
is given by h0(f) = f(x) for some x, and h1 : f → k is a derivation where the target k is made a k[X]-module
by evaluation at x, i.e. if h0(f) = f(x) then h1(fg) = f(x)h1(g) + g(x)h1(x).

Proposition 4.⊕Let E be the exceptional locus over x when blowing up X 3 x. Then the cone of E is the

same as Spec( mn +1
x/m

n
x )red, which we call the tangent cone. If we know that x is a smooth point, then⊕ n≥0

mn
x/m

n+1
x is given by Sym(Tx

∗X).
n≥0

Proof. Let A = k[x n
1, . . . , xn], then it surjects to m n+1

x/mx = grx(A) (the associated graded ring). So
n≥0

Cone(E) and Spec(grx(A)) both sit above An, so let’s

⊕
compare their associated ideals. We can do it on each

of the affine coverings for E ⊂ Pn−1, which has coordinates, say, (λ, t1, . . . , tn) (this is for An
0 ) such that the

map to An is generated by (λ, t1, . . . , tn) 7→ (λ, λt1, . . . , λtn). The ideal of E∩An
0 is generated by polynomials

P (λ, λt1, . . . , λtn)/λd evaluated at λ = 0 (where d is the highest degree of λ divisible by P (λ, λt1, . . . , λtn)),
where P ∈ IX . We need to compare those with ker(A→ grx(A)): invert x1 and take the degree 0 part, we
see the latter is generated by {Pd | P = Pd + Pd+1 + . . . ∈ IX}.
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1There was a question why k[ε]/ε2 was called the dual number; answer: dual refers to the fact that there are two parts of
each element.
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