
18.725 Algebraic Geometry I Lecture

Lecture 22: Bertini’s Theorem, Coherent Sheves on Curves

Let’s consider some ways to construct smooth varieties.

Theorem 1.1 (Bertini’s Theorem). Let X ⊆ PV be a smooth subvariety. Then for a generic hyperplane H,
Y = X ∩H is again smooth.

Recall that the set of hyperplanes is parametrized by the dual projective space PV ∨. To say that a
hyperplane is generic is equivalent to saying that there is a nonempty open subset U ⊆ PV ∨ containing the
point in PV ∨ corresponding to that hyperplane and such that each hyperplane in U possesses the desired
property.

Proof. We can assume that X is irreducible. Indeed, if X has multiple irreducible components (i.e. is not
connected) and if we know the claim for each irreducible component, then we have a finite set of open subsets
in PV ∨, whose intersection is again open and consists of hyperplanes whose intersection with X is smooth.

Let d = dim(X), n = dim(PV ). For all x ∈ X, we have TxX of dimension d, and TxX TxPV . If

∈ ∩ def

⊆
x H, then H X will be smooth at x if TxH 6⊃ TxX. Consider the following subset Z = {(H,x) | H 3
x, TxH ⊃ TxX} of the product PV ∨ ×X. One easily sees that is is closed. The set of H for which H ∩X is
singular is the image of Z under the projection PV ∨ ×X → PV ∨.

We will now proceed by dimension count. First, we want to calculate the dimension of Z. For this,
consider the projection Z → X. The two conditions from the definition of Z clearly say that if (H,x) ∈ Z,
then H contains a subspace W of dimension d isomorphic to Pd, so the fiber at each point is {H ∈ PV ∨ |
H ⊃ W} = P(V/W )∨. Since dim(V ) = n + 1, dim(W ) = d + 1, we have the fiber isomorphic to Pn−d−1.
Recall from a theorem last time that a generic fiber has dimension equal to the difference of the dimensions
of the two spaces, so dim(Z) = n− 1.

If we let π : Z → PV ∨, then π(Z) has dimension at most n − 1, so the complement PV ∨ \ π(Z) is not
empty. Moreover, this complement is exactly the desired open subset, and this concludes the proof.

Corollary 1. A generic hypersurface of degree d is smooth. Moreover, if X ⊂ Pn is smooth, for a generic
hypersurface S of degree d, S ∩X is smooth.

Proof. Use Veronese embedding, consider Pn ⊂ PN where (t1, . . . , tn)→ (tI) where I ranges over all mono-
mials of degree d. Then a hypersurface becomes a hyperplane in this case, then we reduce to the previous
case.

Remark 1. Assume that X is irreducible of dimension d. If X is not contained in a hyperplane H, then
we know that each component of X ∩H has dimension d− 1. If X is projective, then X ∩H is nonempty.
In fact, one can check that if dim(X) > 1 and H is a general hyperplane, then X ∩H is irreducible.

Remark 2. Bertini’s theorem refers to a range of theorems. For instance, we can allow X to be singular,
and one of the variations of Bertini’s theorems will say something about the singularities of X ∩H.

Remark 3. We can also relate the topology of X and that of X∩H — this is called the Lefschetz Hyperplane
Theorem. For instance, the map Hi(X,C) → Hi(X ∩H,C) is an isomorphism up to the middle degree for
a general hyperplane H.

Coherent Sheaves on Curves Now we start the last main topic — the sheaf cohomology. We will mostly
focus on the case of sheaves on curves.

Let F be a coherent sheaf on a smooth irreducible curve.

Definition 1. The torsion subsheaf T ⊆ F is a subsheaf of F generated by torsion sections.

The torsion subsheaf T has finite support (by Noetherian property and due to the dimension equal to
one), and F/T is a torsion free sheaf. But we know that a finitely-generated torsion free module over a
DVR is free, so a torsion free sheaf is locally free. Moreover, 0→ T → F → F/T → 0 splits noncanonically
by constructing a surjection F → T ; this follows from the corresponding result about modules over DVRs.
It follows that a coherent sheaf F on a curve can be decomposed into a direct sum T ⊕ F ′, where the first
summand is a torsion sheaf and the second one is torsion-free.
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Every torsion sheaf T has finite length. If its support is irreducible, then it is just a point, so in this case

T ∼= Ox for some x. Actually, a torsion sheaf has a filtration with gr T = Oxi
. In fact, this result is true

for a torsion sheaf on any variety X if the sheaf has finite support.
Now let E be a locally free sheaf, and E ′ ⊂ E be a subsheaf. Of course,

⊕
if E is torsion-free, then so is

E ′. However, this is not the case for E/E ′. Consider the following example where we have torsion in the
quotient:

0→ O(−x)→ O → Ox → 0.

t
Another example is when we can take X = Spec(k[t]), and consider O −→ O.

Locally we have E = O⊕r, E ′
′

= O⊕r , then E ′ → E can be given by a r′ · r matrix with entries in O.

Exercise 1. Using Nakayama lemma, show that the quotient has torsion at x if and only if evaluating matrix
coefficients at x gives us a matrix of rank less than r′.

We want to call a subbundle such a locally free sheaf that taking quotient with respect to it gives a locally
free sheaf.

Example 1. For example, if r′ = 1, this just means sections can vanish at that point. Consider O → O⊕r,
given by (f1, . . . , fr), then cokernel has torsion at x iff fi(x) = 0 for all i. Recall that fi ∈ Ox,X , and this
holds if the valuation of each fi is greater than 0. If d is the minimum of these valuations, and t is some

d

element of Ox,X with valuation 1 (i.e. t ∈ mx −
td f /t

m2
x), then we have O −→ O −−i−→ Or which is the same as

the map above. The second map has no cotorsion (i.e. torsion in the cokernel), and the image is independent
of the choices.

In general, for E ′ ⊂ E , there exists unique E ′′, such that E ′ ↪→ E ′′ ↪→ E where the second map has no
cotorsion, and the rank of E ′′ is the same as rank of E ′ i.e. E ′′/E ′ is torsion. To construct such a sheaf E ′′,
we first take the torsion subsheaf T ⊂ E/E ′ and then consider its preimage with respect to the surjection
E → E/E ′. The latter will be the desired E ′′, as one can easily verify.

Definition 2. We call E ′′ the saturation of E ′ in E.

Basic invariants of a coherent sheaf: rank and degree

Definition 3. Let F be a coherent sheaf. The rank of F is defined as the rank of the locally free sheaf
(F/torsion) when we work over smooth varieties. More generically (for any irreducible variety), one defines

def def
rank as follows. For a field K = lim k[U ], we have the following K-vector space: V = limF [U ]. The rank−

U
→ F −

U
→

is the dimension rk(F def
) = dimK(V ).F

One can show that rank is equal to the dimension of a generic fiber of F .
It is clear from the definition that rank is additive in short exact sequences.

Definition 4. K0(A), the Grothendieck group of an abelian category A, is the free abelian group generated
by isomorphism classes in A modulo the relation that, given 0→ A→ B → C → 0, we have [B] = [A] + [C].

This is the universal object for invariants that are additive in short exact sequences. Thus for instance
rank is a homomorphism K0(Coh(X)) → Z. Note that K0(Coh(X)) can be explicitly described for X of
dimension one.

Assume now that X is complete. Define another homomorphism δ : K0(Coh(X)) → Z such that
δ([E ]) 7→ deg(det(E)) where E is locally free. Additivity comes from multiplicativity of the determinant in
short exact sequences. For torsion sheaves, we set δ to be the length of T , which is the same as the dimension

`

of Γ(T ). (Recall that the length ` is defined as the number of summands in gr T =

This would make sense. Consider the short exact sequence 0 (D)

⊕
=1

Oxi .)
i

→ O → O → OD → 0. The first sheaf
has degree 0, the second second one has degree deg(D), whereas the leftmost has length deg(D). But we
still need a formal check.

2

22



18.725 Algebraic Geometry I Lecture

Proposition 1. δ is a well-defined homomorphism.

Lemma 1. If we have a short exact sequence 0→ E → E ′ → T → 0, where T is torsion and the other two
sheaves are torsion free, then deg(E ′) = deg(E) + `(T ).

Proof. Induction on `(T ), reduce to T = Ox, and r = rank(E) = rank(E ′). We claim that Λr(E) → Λr(E ′)
1 0 . . . 0

has a zero of order 1 at x. Locally it looks like 0 1 . . . 0


where t ∈ m−m2.

0 0 . . . t

Proof of the Proposition. We have δ(E ⊕ T ) = deg(det(E)) + `


(T ). Need to check that for 0 → F ′ → F →

F ′′ → 0, we have the additive property. First consider 0 → T ′ → T → T /T ′ ⊆ T ′′ → 0, then we have
δ(T ) = δ(T ′) + δ(T /T ′) also δ(F) = δ(F/T ) + δ(T ) and same for F ′,F ′′, so we reduce to the case where
F = E is torsion free. If Fs

′ is the saturation of F ′, then δ(Fs
′) = δ(F ′) + δ(torsionof F ′′), so replacing F ′ by

Fs
′ doesn’t check the RHS of δ(F) + δ(F ′) + δ(F ′′), so we can check all three of them to locally free, which

we have already discussed above.

Remark 4. The homomorphism δ can be refined to a homomorphism K0(Coh(X)) → Pic(X) followed by
the degree map Pic(X)→ Z.

Cohomology of quasicoherent sheaves Cohomology is an important invariant of quasicoherent sheaves.
To cut a long story short, cohomology of a sheaf is the derived functor of the global sections. Some theory
can be found in Grothendieck’s Tohoku paper, which is worth reading. A derived functor accounts for the
nonexactness of the initial functor between abelian categories.

Definition 5. Let F : A → B be a left exact functor between abelian categories. A δ-functor is a collection
of functors F i : A → B such that for every short exact sequence 0→ A→ B → C → 0 we have a long exact
sequence 0 → F (A) → F (B) → F (C) → F 1(A) → F 1(B) → F 1(C) → F 2(A) → . . . that is functorial in
short exact sequences.

Definition 6. A δ-functor is universal if it has a canonical morphism from any δ-functor. In other words,
it is the terminal object in the category of δ-functors.

Definition 7. The universal δ-functor is called the derived functor, and is of course unique if exists. We
denote it by RiF .

In our case, A = QCoh(X),B = Vect, F = Γ.
Next class we’ll show the existence along with some properties, including Serre duality for curves.
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