18.725 Algebraic Geometry I Lecture 22

Lecture 22: Bertini’s Theorem, Coherent Sheves on Curves

Let’s consider some ways to construct smooth varieties.

Theorem 1.1 (Bertini’s Theorem). Let X C PV be a smooth subvariety. Then for a generic hyperplane H,
Y = X N H is again smooth.

Recall that the set of hyperplanes is parametrized by the dual projective space PVY. To say that a
hyperplane is generic is equivalent to saying that there is a nonempty open subset U C PV containing the
point in PV corresponding to that hyperplane and such that each hyperplane in U possesses the desired
property.

Proof. We can assume that X is irreducible. Indeed, if X has multiple irreducible components (i.e. is not
connected) and if we know the claim for each irreducible component, then we have a finite set of open subsets
in PV, whose intersection is again open and consists of hyperplanes whose intersection with X is smooth.

Let d = dim(X), n = dim(PV). For all z € X, we have T, X of dimension d, and T, X C T,PV. If

x € H, then H N X will be smooth at z if T, H 7 T,X. Consider the following subset Z Lef {(H,z) | H >
x, Ty H D T, X} of the product PVY x X. One easily sees that is is closed. The set of H for which H N X is
singular is the image of Z under the projection PV x X — PV".

We will now proceed by dimension count. First, we want to calculate the dimension of Z. For this,
consider the projection Z — X. The two conditions from the definition of Z clearly say that if (H,xz) € Z,
then H contains a subspace W of dimension d isomorphic to P, so the fiber at each point is {H € PV |
H > W} =P(V/W)Y. Since dim(V) = n + 1, dim(W) = d 4 1, we have the fiber isomorphic to P"~¢~1,
Recall from a theorem last time that a generic fiber has dimension equal to the difference of the dimensions
of the two spaces, so dim(Z) =n — 1. -

If we let : Z — PV, then n(Z) has dimension at most n — 1, so the complement PV \ 7(Z) is not
empty. Moreover, this complement is exactly the desired open subset, and this concludes the proof. O

Corollary 1. A generic hypersurface of degree d is smooth. Moreover, if X C P™ is smooth, for a generic
hypersurface S of degree d, S N X is smooth.

Proof. Use Veronese embedding, consider P* € PV where (1, ...,t,) — (t') where I ranges over all mono-
mials of degree d. Then a hypersurface becomes a hyperplane in this case, then we reduce to the previous
case. O

Remark 1. Assume that X is irreducible of dimension d. If X is not contained in a hyperplane H, then
we know that each component of X N H has dimension d — 1. If X is projective, then X N H is nonempty.
In fact, one can check that if dim(X) > 1 and H is a general hyperplane, then X N H is irreducible.

Remark 2. Bertini’s theorem refers to a range of theorems. For instance, we can allow X to be singular,
and one of the variations of Bertini’s theorems will say something about the singularities of X N H.

Remark 3. We can also relate the topology of X and that of X NH — this is called the Lefschetz Hyperplane
Theorem. For instance, the map H'(X,C) — H' (X N H,C) is an isomorphism up to the middle degree for
a general hyperplane H.

Coherent Sheaves on Curves Now we start the last main topic — the sheaf cohomology. We will mostly
focus on the case of sheaves on curves.
Let F be a coherent sheaf on a smooth irreducible curve.

Definition 1. The torsion subsheaf T C F is a subsheaf of F generated by torsion sections.

The torsion subsheaf 7 has finite support (by Noetherian property and due to the dimension equal to
one), and F/T is a torsion free sheaf. But we know that a finitely-generated torsion free module over a
DVR is free, so a torsion free sheaf is locally free. Moreover, 0 — 7 — F — F /T — 0 splits noncanonically
by constructing a surjection F — T; this follows from the corresponding result about modules over DVRs.
It follows that a coherent sheaf F on a curve can be decomposed into a direct sum 7 @ F’, where the first
summand is a torsion sheaf and the second one is torsion-free.
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Every torsion sheaf 7 has finite length. If its support is irreducible, then it is just a point, so in this case
T = O, for some x. Actually, a torsion sheaf has a filtration with gr T' = @ Og,. In fact, this result is true
for a torsion sheaf on any variety X if the sheaf has finite support.

Now let £ be a locally free sheaf, and & C £ be a subsheaf. Of course, if £ is torsion-free, then so is
&'. However, this is not the case for £/&’. Consider the following example where we have torsion in the
quotient:

0= 0(-2) = 0= 0, —0.

Another example is when we can take X = Spec(k[t]), and consider O 5Lo.
Locally we have €& = 0%, & = O®" then & — & can be given by a 7 - r matrix with entries in O.

Exercise 1. Using Nakayama lemma, show that the quotient has torsion at x if and only if evaluating matrix
coefficients at x gives us a matriz of rank less than r’.

We want to call a subbundle such a locally free sheaf that taking quotient with respect to it gives a locally
free sheaf.

Example 1. For example, if v’ = 1, this just means sections can vanish at that point. Consider O — Q%"
given by (f1,..., fr), then cokernel has torsion at x iff fi(x) =0 for all i. Recall that f; € Oy x, and this
holds if the valuation of each f; is greater than 0. If d is the minimum of these valuations, and t is some

. . . d i/t . .
element of O, x with valuation 1 (i.e. t € m, —m?2), then we have O s 0 LY O which is the same as

the map above. The second map has no cotorsion (i.e. torsion in the cokernel), and the image is independent
of the choices.

In general, for & C &, there exists unique £, such that & < £” < £ where the second map has no
cotorsion, and the rank of £” is the same as rank of £’ i.e. £”/E" is torsion. To construct such a sheaf £”,
we first take the torsion subsheaf 7 C £/E" and then consider its preimage with respect to the surjection
E — E/&'. The latter will be the desired £”, as one can easily verify.

Definition 2. We call £&” the saturation of £ in £.

Basic invariants of a coherent sheaf: rank and degree

Definition 3. Let F be a coherent sheaf. The rank of F is defined as the rank of the locally free sheaf
(F /torsion) when we work over smooth varieties. More generically (for any irreducible variety), one defines

rank as follows. For a field K d:efligk[U], we have the following K -vector space: Vg dzeflig]:[U]. The rank
U U

is the dimension tk(F) i dimg (V).

One can show that rank is equal to the dimension of a generic fiber of F.
It is clear from the definition that rank is additive in short exact sequences.

Definition 4. K°(A), the Grothendieck group of an abelian category A, is the free abelian group generated
by isomorphism classes in A modulo the relation that, given 0 - A — B — C' — 0, we have [B] = [A]+[C].

This is the universal object for invariants that are additive in short exact sequences. Thus for instance
rank is a homomorphism KY(Coh(X)) — Z. Note that K°(Coh(X)) can be explicitly described for X of
dimension one.

Assume now that X is complete. Define another homomorphism ¢ : K°(Coh(X)) — Z such that
d([€]) — deg(det(&)) where £ is locally free. Additivity comes from multiplicativity of the determinant in

short exact sequences. For torsion sheaves, we set § to be the length of 7, which is the same as the dimension
¢

of I'(T). (Recall that the length ¢ is defined as the number of summands in gr 7 = @ Oy,.)

=1
This would make sense. Consider the short exact sequence 0 — O — O(D) — Op — 0. The first sheaf
has degree 0, the second second one has degree deg(D), whereas the leftmost has length deg(D). But we
still need a formal check.
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Proposition 1. § is a well-defined homomorphism.

Lemma 1. If we have a short exact sequence 0 — & — &' — T — 0, where T is torsion and the other two
sheaves are torsion free, then deg(E) = deg(&) + £(T).

Proof. Induction on ¢(T), reduce to T = O, and r = rank(£) = rank(£’). We claim that A"(E) — A"(&)

1 0 ... 0
has a zero of order 1 at x. Locally it looks like |0 1 ... 0] where t € m —m?. O
0 0 ... t

Proof of the Proposition. We have §(€ ® T) = deg(det(€)) + ¢(T). Need to check that for 0 — F' — F —
F" — 0, we have the additive property. First consider 0 — 7' — T — T /T’ C T” — 0, then we have
8(T)=68(T")+6(T/T') also 6(F) = 6(F/T) + 6(T) and same for F', F”, so we reduce to the case where
F = £ is torsion free. If F/ is the saturation of F', then §(F.) = §(F') + §(torsionof F”), so replacing F' by
F! doesn’t check the RHS of §(F) + 6(F') + 6(F"), so we can check all three of them to locally free, which
we have already discussed above. O

Remark 4. The homomorphism § can be refined to a homomorphism K°(Coh(X)) — Pic(X) followed by
the degree map Pic(X) — Z.

Cohomology of quasicoherent sheaves Cohomology is an important invariant of quasicoherent sheaves.
To cut a long story short, cohomology of a sheaf is the derived functor of the global sections. Some theory
can be found in Grothendieck’s Tohoku paper, which is worth reading. A derived functor accounts for the
nonexactness of the initial functor between abelian categories.

Definition 5. Let F': A — B be a left exact functor between abelian categories. A d-functor is a collection
of functors F* : A — B such that for every short exact sequence 0 — A — B — C' — 0 we have a long exact
sequence 0 — F(A) — F(B) — F(C) — F*(A) — FY(B) — FY(C) — F%*(A) — ... that is functorial in
short exact sequences.

Definition 6. A §-functor is universal if it has a canonical morphism from any 0-functor. In other words,
it 1s the terminal object in the category of d-functors.

Definition 7. The universal o-functor is called the derived functor, and is of course unique if exists. We
denote it by R'F.

In our case, A = QCoh(X), B = Vect, F =T.
Next class we’ll show the existence along with some properties, including Serre duality for curves.
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