18.725 Algebraic Geometry I Lecture 25

Lecture 25: Proof of Serre Duality

We'll deduce the Serre duality of curves from a linear algebra observation: let Vi, Vo C V., and define
ViE={\ eV | Av)=0W €V}, then Vi, V5t € V*, then Vi NVo = (V*/Vi- + V5H)* and V- N V- =
(Vi + Vo)t = (V/(Vi + V3))*. In particular, let C = (Vi @ Vo — V) and ¢’ = (Vi @ V& — V*), then
H°(C") = HY(C)* and H'(C") = H°(C)*.

Definition 1. A Tate vector space is vector space with a topology, such that there exists a basis of neighbor-

hoods of O consisting of vector subspaces which are commensurable.:

Example 1. V = k((t)) is a Tate vector space, where we consider t'k[[t] as the neighborhoods of 0.

—

Residue Let z € X a smooth point on a curve. @7{ = lign(’)wyx/m;l = k[[t]], and @)\XO =Fres(Op x) =

k((t)). Then there is a residue map Res : Qm ® @O — k by mapping w = Zatidt to a_;. This is
independent of the choice of ¢. In char k = 0, the residue map is characterized by 1) Res(df) = 0 and 2)
Res(df/f) = 1 for f a uniformizer. Note that suppose f = @t for ¢ invertible, then df /f = dt/t+dp/p, and
the second term creates residue 0. In case of char k = p > 0, of course residue is no longer characterized by
those two, so we need to use a stronger version of 2). A possible choice is that the residue is invariant under
automorphisms of the formal Taylor series k[[t]]. For any scalar s in k we have an automorphism t"dt —
s"T1"dt, and it’s clear that the only invariant linear functional is proportional to taking the coefficient at
t1dt.

For an algebraic group G over any field one has its Lie algebra g which acts on every G-module (as
derivations). For a connected group G over a field of characteristic 0 and a G-module M, the (co)invariants
of G and of g on M are the same; but this is false in characteristic p. The simplest example comes from
F,lz,y]: the polynomial zP is not invariant for the group GL(2) of linear transformations of the variables,
but it’s invariant under its Lie algebra, because derivatives of a p-th power vanish.

The group of automorphisms of k[[t]] belongs to a larger class of groups; in particular, it is an infinite
dimensional algebraic group (a.k.a. a group scheme of infinite type). Much of the theory goes through for this
generalization. The Lie algebra is the Lie algebra of vector fields of the form f(t)d/dt, where f(t) € t~ k[[t]].
(One can consider the group Aut(k((¢))) whose Lie algebra is the more natural thing {f(¢t)d/dt | f € k((¢))},
but this group is even “more infinite dimensional” and there are additional technical subtleties.) Vector
fields act on differential forms by Lie derivatives: v(w) = L,(w) = d(i,(w)), where L, is the Lie derivative,
iy(w) € k((t)) is the “insertion” (pairing) of the vector field and the 1-form. The condition Res(df) = 0 is
equivalent to invariance of residue under the action of the Lie algebra, which is the same as invariance under
the group if we are over a field of characteristic zero, but not in general.

Now we can define a pairing @\X X (@\XO ® Q) — k that sends (f,w) to Res(fw). Under this we have

(@o ®N) = (6907\;(0)v as dual topological spaces, where the dual basis for ¢’ on the left is t~*~'dt on the
right. (Check that left equals k[t~'] @ k[[t]], and k[t™']Y = k[[t]]dt and k[[t]]Y =t~ k[t~ !]dt.) So if we take

o0
the non-localized version (O x ® Q)J‘ = O, x, then again we can do calculation: Z a;t'dt pairing with
i=—N

> bit' yield 0 for all b; iff a; = 0 for i < 0.
=0

Lemma 1. Suppose X is a complete smooth curve, w € T'(U,Q), U is a nontrivial open subset, then

Z Res,,w = 0.

z€X\U

Sketch of Proof. (See [Tat68] for another proof.) If X = P!, then it is an explicit computation, as w is a
linear combination of ﬁ. For general X, reduce to X = P! as follows: Find a finite separable map
X 5 PLw=foyp*(d),f € R(X), RIX)/R(P') is a finite extension, and let f = Tr(f) € R(P') under

We say V1 and Va are commensurable if V1 /(V1 N V) has finite dimension.
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this extension. Then one can check that Res, ff = Z Res,, (w) for any x € P'. As a corollary, we have

ZTi—x

Z Res(w) = Z Res(f0) = 0. O

zeX yeP!

Proof for Serre duality for curves. Let € be locally free, Y = X \ {z1,...,2,} be affine, and j : ¥ — X.
Er = liglé}/m;’ =& ®0, x Oz x ZEK[[t]]" and & =& ®5— Oz x = k((t))" where 7 is the rank of £. We
claim that H*(X, &) is computed by the complex '

L) o D~ D e
One can check its cohomology is the same as the cohomology of the complex

r(Ely) ~ PE. /e

Ovx
But the right hand side is just the global section of j,j*€/E. Note that rhs at z is &, ®o, < X ),

Oz,X

————0

Oy
and this is the stalk of j,j*E/€ at z. (Some more explanation: X Fres(02,x)/Op.x = k[U — 2] /k[U]
z, X
where U is an affine neighborhood of z. This is a module where m, acts by a local map where neither
localizing by elements in m, nor replacing O, x by O, x affects it.)
Now set V = @E;O DV =T(¢y),Va = @6/’; Then we have the topological dual VY =

@(ETQQ\Q);” set Vi = T(Q® EYy),Vy = @Q@ By the linear algebra discussed above, it re-
(2

mains to check Vit = V{ and V55 = V. V55 = Vi reduces to k[[t]]* = k[[t]|dt. We also have V] C Vi,

which follows from ZResziw = 0 (the lemma above), and it remains to see V/ = V;*. Notice that

V] = Vit & dim(H(EY @ Q)) = dim(H'7(£)) by what we know.

We want to check that V;*/V] is finite dimensional. Vi C V = k[[t]]]", and as a subspace it is discrete
and cocompact, i.e. has a compact complement. Discrete follows from H° being finite dimensional, and
cocompact follows from H' being finite dimensional. Now, V; is discrete implies V1" is compact (complete)
which implies Vit is cocompact, and V; cocompact implies Vi- = (V/V1)* is discrete since V/V; is compact.
Now in general, for discrete cocompact subspaces U C W of V', one can check that the quotient W/U is
discrete compact and finite dimensional.

Now we have that Vi contains V; with finite codimension (thus the quotient k[Y]-module Vit /V/ is

supported at finitely many points 1, ..., ), we can consider it as a subspace of K(Q ® £"|y), the space
of rational sections of Q ® £y
From here there are two ways to proceed: on one hand, we can replace Y by Y’ = Y\{y1,...,ym}-

Then T'(Ely)t = T(E |Y)J‘( oo fy Where localization by f; correspond to removing y; (observe that if
sel(€ly)t c K(Q®E&Y]y) and s is regular at each y;, then s € T'(€]y)), and we still get rational sections
that may be singular at y;; on the other hand, I'(Q ® £Y|y~) consists of rational sections of Q ® £ on Y
that may be singular on y;, so we have V- = V/ for Y’. On the other hand, we can directly check Vi > V/:

suppose s is a rational section in VlL7 and has singularities y1, ..., ym. Then since Y is affine, one can find a
section s’ of € such that (s, s’), which is a section of €, is regular at y; for i > 1, but Res,, (s,s’) # 0. Then
we see that s cannot be orthogonal to s'. O

Now we state some standard corollaries.

Corollary 1. Define the arithmetic genus g, = dim(H*(O)), and the geometric genus g,, = dim(G(Kx)).
Then apply Serre duality to £ = O to get g4 = G-

Corollary 2. Riemann-Roch implies dim(T'(€)) — dim(I'(K ® £)) = deg(€) + rank(E)(1 — g). This is

Riemann’s form of the theorem.
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Corollary 3. deg(K) =29 — 2.
Proof. x(O) = —x(K) by Serre duality. deg(K) = x(K)+g—1=2g— 2. O

The statement of the Serre duality generalizes: let X be a smooth complete (irreducible) variety of
dimension 7, and let £ be a locally free sheaf, then there is a duality H" " (€Y ® K) = H*(E)*. Tt can also be
generalizred to not locally free sheaves and non-smooth varieties (best described using derived categories).

For instance, let X be a smooth affine curve, and % a torsion sheaf. Then there exists a canonical
isomorphism I'(.%)* = Ext!(F, Kx). Suppose X is smooth of dimension n, and .% torsion is supported at a
O-dimensional set, then I'(.#)* = Ext™(#, Kx). Generalizations of Riemann-Roch include the Hirzebruch-
Riemann-Roch theorem and the Grothendieck-Riemann-Roch theorem.

Let X complete, .# coherent sheaf, y(.%) is a topological invariant of .7, i.e. one can give a formula for
X(Z) in terms of topological invariants of .% and that of the tangent bundle of X. For instance, suppose
X is locally free and is over C, then it corresponds to a vector bundle, and has Chern classes. Then x (%)
is expressed via the Chern classes. In particular, it’s constant in families. Even more generally, recall that
the global section functor is the same as direct image of the map to a point, and cohomology are the higher
direct images. So if we replace X — pt to an arbitrary map X — Y, we get Grothendieck’s version of
Riemann-Roch.

A major theme of AG is the question of how to reconstruct topological invariants of X (C).; (classical)
from AG data. This of course can also generalize to other fields. There are two approaches: the de Rham
approach (using differentials, e.g. if X is an affine smooth variety, then X’s regular cohomology can be

computed using its algebraic de Rham complex k[X] 4 r(Ntx) 4 [(Q?X) — ... where Q'X = /\ 0X),
and the etale approach (related to counting of X (F,) and the Weil conjectures).
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