
MIT OpenCourseWare
http://ocw.mit.edu 

18.726 Algebraic Geometry 
Spring 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009)

Problem Set 8 (due Friday, April 10, in class)


Please submit nine of the following exercises, including all items marked “Required”. You 
may assume that all abelian categories under consideration admit a faithful additive functor 
to Ab commuting with limits and colimits (so that diagram-chasing arguments become valid). 

1. (Required) Let C be an abelian category. Prove that the category of complexes with 
values in C is again an abelian category. 

2. (Required) Prove that an abelian group is injective if and only if it is divisible. (This 
proof was sketched in class.) 

·3. (Required) Let	T : C1 ∈ C2 be a cohomological functor between abelian categories, 
such that T i is effaceable for each i > 0. Complete the proof that T is universal. 
(Hint: to check independence from the choice of u, you may want to use a pushout 
construction.) 

4. Prove the acyclic resolution theorem.	 (Hint: break the acyclic resolution up into a 
sequence of short exact sequences, and take the long exact homology sequence of each 
piece.) 

5. Prove that an element of ModR is projective if and only if it is a direct summand of a 
free module. 

6. It was stated in class that “exact functors preserve cohomology of complexes”. Write 
down what this means formally and then prove it. 

7. (Required) Suppose that the abelian category C admits enough injectives. 

(a) Prove	 that any complex in nonnegative degrees admits an injective resolution. 
(This is a bit ambiguous: here I mean a single complex of injectives receiving a 
map from the original complex which is a quasi-isomorphism.) 

·(b) Prove that given any morphism f : C ∈ D· of complexes in nonnegative degrees, 
·	 ·and any injective resolution I of C ·, there exist an injective resolution J of D· 

· ·and a morphism I ∈ J inducing f on cohomology. 

8. (Required) Suppose that the abelian category C admits enough injectives. Write down 
a list of all of the compatibilities one must check in order to define right derived functors 
of a left exact functor F in terms of injective resolutions, but do not check them (except 
for the ones handled by the previous exercise). For instance, one of these is that the 
object RiF (X) is well-defined up to canonical isomorphism. 

9. Let C be an abelian category. 
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(a) For objects M, N in C and i > 0, consider the set of equivalence classes of short 
exact sequences 0 ∈ M ∈ P ∈ N ∈ 0 under the relation that two sequences 
with center terms P1, P2 are equivalent if there is a diagram 

0 �� M �� P1 
�� N �� 0 

idM idN 

0 �� M �� P2 
�� N �� 0 

(this forces P1 = P2 by the five lemma, so this is indeed an equivalence relation). 
Prove that the operation of Baer sum gives this set a group structure: given two 
sequences with center terms P1, P2, let P be the quotient of P1 ×N P2 by the image 
of the map B ∈ P1 ×N P2 acting as B ∈ P1 on the first factor and minus B ∈ P2 

on the second factor. (This is sometimes called the Yoneda extension group.) 

(b) Prove that the construction in (a) is canonically isomorphic to the group Ext1(N, M). 

(c) In Ab, the short exact sequence 0 ∈ Z/pZ ∈ P ∈ Z/pZ ∈ 0 can be filled in 
in two ways, with Z/pZ × Z/pZ or Z/p2

Z. However, Ext1(Z/pZ, Z/pZ) �= Z/pZ. 
Why are these two statements not contradictory? 

10. Generalize the previous exercise as follows.	 For objects M, N in C, consider classes of 
exact sequences 0 ∈ M ∈ Pn ∈ · · · ∈ P1 ∈ N ∈ 0. Construct the minimal equiv­
alence relation under which two sequences are equivalent if there is any commutative 
diagram 

0 �� M �� Pn 
�� · · · �� P1 

�� N �� 0 

idM	 idN 

0 �� M �� P 
n 
� �� �� P1 

� �� N �� 0· · · 

but without any hypothesis on the arrows Pi ∈ P
i 
� . (Note that you need to generate 

the equivalence relation in this case; this condition itself is not symmetric.) Define 
Baer sum in this case to be 

0 ∈ Pn 
�� 
∈ Pn−1 � Pn

�

−1 ∈ · · · ∈ P2 � P2 
� 
∈ P1 

�� 
∈ 0 

where P 
n 
�� is the fibred coproduct (pushout) of M ∈ Pn and M ∈ P 

n

� , and P1 
�� is the 

fibred product (pullback) of P1 ∈ N and P1 
� ∈ N . 

(a) Prove that this construction gives a group. (This includes checking that the Baer 
sum respects equivalence.) 

(b) Prove that this group is canonically isomorphic to Exti(M, N). (Hint: one way 
to do this is to check that these groups together form an effaceable cohomolog­
ical functor. This means that given a short exact sequence 0 ∈ N1 ∈ N ∈ 
N2 ∈ 0, you must interpret the connecting homomorphism �i : Exti(M, N2) ∈ 
Exti+1(M, N1) in terms of sequences.) 
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11. Let G be a group. Prove that for any left Z[G]-module M , the first group cohomology 
group H1(G, M) is equal to the quotient of the group of crossed homomorphisms (i.e., 
set maps f : G ∈ M satisfying f(gh) = g(f(h)) + f(g) for all g, h � G) by the 
subgroup of principal crossed homomorphisms (i.e., crossed homomorphisms of the 
form f(g) = g(m) − m for some m � M). (You may do this either using Yoneda 
extensions, or using an explicit construction of a projective resolution of Z in Mod

Z[G]. 
Beware that the Wikipedia explanation of the latter appears to have some typos.) 

12. Prove that ModR has enough injectives as follows. Given M � ModR, let M ∈ Q be 
a monomorphism of abelian groups with Q divisible. Prove that 

M = HomR(R, M) ∈ HomAb(R, M) ∈ HomAb(R, Q) 

may be viewed as a monomorphism of R-modules taking M into an injective R-module. 
(We will prove a more general result later.) 

13. Let	 R be a ring and let M be an R-module. Prove that M is flat if and only if 
Tor1(R/I, M) = 0 for every finitely generated ideal I of R. (Easy corollary: if R is a 
principal ideal domain, then M is flat if and only if it is torsion-free.) 
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