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18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009) 
Divisors on curves and Riemann-Roch (updated 31 Mar 09) 

We continue the discussion of divisors but now restricted to curves. Again, see IV.1 for 
Riemann-Roch and IV.2 for Riemann-Hurwitz. 

1 The Riemann-Roch theorem 

Again, let X be a (projective, irreducible, nonsingular) curve over an algebraically closed field 
k. Since X is one-dimensional, the canonical sheaf �X/k coincides with the sheaf of Kähler 
differentials �X/k. By a canonical divisor, I mean a divisor K defined by any meromorphic 
section of �X/k. (This means that a canonical divisor is in fact not canonical in any sense. 
Sorry about that.) 

As in the elliptic curve example, there is a homomorphism Div X � Z sending (P ) to 1 
for each P ≤ X(k), and this factors through Cl X because any principal divisor has degree 
0 (Hartshorne, Corollary II.6.10). 

Write l(D) as shorthand for dimk �(X, L(D)). The following theorem will be proved later 
using properties of sheaf cohomology (particularly Serre duality), but in the meantime we 
will see (in this lecture and in the next problem set) how it tells us many useful things that 
have no overt relationship to cohomology. 

Theorem (Riemann-Roch). There exists a nonnegative integer g = g(X) with the following 
property. For any divisor D and any canonical divisor K, 

l(D) − l(K − D) = deg(D) + 1 − g. 

Corollary. The integer g in Riemann-Roch can be identified as 

g = l(K) = dimk �(X, �X/k). 

Proof. Take D = 0. Then l(D) = 1 because any global regular function on a curve (or 
indeed on any projective variety) is constant. This forces l(K) = g. 

The quantity l(K) is called the genus of K, or more precisely the geometric genus. In case 
k = C, this will end up matching the topological genus of the Riemann surface associated 
to X. 

Corollary. The integer g in Riemann-Roch can also be identified by the formula 

deg(K) = 2g − 2. 

Proof. Apply Riemann-Roch with D = K to obtain (by the previous corollary) 

g − 1 = l(K) − l(0) = deg(K) + 1 − g. 

1 



Corollary. If deg(D) > 2g − 2, or deg(D) = 2g − 2 and D ≥� K, then 

l(D) = deg(D) + 1 − g ∼ g − 1. 

Proof. If deg(D) = 2g−2, then deg(K−D) = 0. If f ≤ K(X) nonzero satisfies (f)+K−D ∼ 
0, we must have equality because the left side has degree 0. Thus l(K − D) is only nonzero 
if K � D. 

If deg(D) > 2g − 2, then deg(K − D) < 0. In this case, (f)+ K − D has negative degree 
and so cannot be effective, so l(K − D) = 0 no matter what. 

Corollary. For g ∼ 2, for any divisor D of degree at least 2g − 1, the complete linear system 
associated to D defines a closed immersion of D into a projective space. 

2 The canonical (almost) embedding 

The canonical embedding is the map to projective space defined by the complete linear 
system associated to a canonical divisor K. The name suggests that it is always a closed 
immersion, but this is only almost true; there are a few exceptions in low genus (for which 
see the exercises). 

Lemma. For any point P and any divisor D, we have 

l(D) � l(D + P ) � l(D) + 1. 

Consequently, l(D) � deg(D) + 1. 

Proof. We have an exact sequence of sheaves 

0 � L(D) � L(D + (P )) � E � 0 

where E is the quotient of OX by the ideal sheaf defining P . So clearly l(D) � l(D + P ). 
On the other hand, taking global sections yields a short exact sequence 

0 � �(X, L(D)) � �(X, L(D + (P ))) � �(X, E) 

and the last term is one-dimensional over k, so we get l(D + P ) � l(D) + 1. 

Proposition. The canonical embedding is a closed immersion if and only if X is not hyper-
elliptic. 

Proof. The special cases g = 2, 3 are discussed in the problem set, so I’ll only sketch the 
general argument. Put D = (P ) + (Q) for P, Q ≤ X(k) not necessarily distinct. We need to 
check whether we always have 

l(K − D) = l(K) − 2 = g − 2. 
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By Riemann-Roch, 
l(K − D) = l(D) + g − 3 

so we have an embedding if and only if l(D) = 0 for any effective D of degree 2; but a failure 
of that defines a two-to-one map to P1, in which case X is hyperelliptic. (Strictly speaking, 
we should also check for D of degree 1, but it’s esay to see that if such D has l(D) > 0, then 
there exists a rational function on X with a single pole, which gives a a degree 1 map to P1 . 
That is, X �= P1.) 

The canonical embedding, and variants of it (e.g., using higher multiples of a canonical 
divisor) are key tools for studying the moduli space of curves of a given genus. This is 
“almost” a scheme Mg which represents the functor taking schemes to families of curves of 
genus g, except that this functor is not quite representable. It becomes representable in 
the category of Deligne-Mumford stacks, which extend schemes in much the same way that 
orbifolds extend manifolds (by allowing quotients by finite group actions). 

3 The Riemann-Hurwitz formula 

Let f : X � Y be a finite separable morphism of curves (i.e., the induced field extension 
k(X)/k(Y ) is separable). The ramification divisor of f is defined as 

R = 
� 

length(�X/Y )P (P ), 
P �X(k) 

where as usual �X/Y is the module of Kähler differentials. 

Proposition. We have 
KX � f �KY + R. 

Proof. (Compare Hartshorne Proposition IV.2.3.) Note that 

0 � f ��Y/k � �X/k � �X/Y � 0 

is exact; this follows from properties of Kähler differentials except for the injectivity on the 
left. But that we can check at generic points, where it follows because k(X) is separable 
over k(Y ). 

We can then tensor with �� to obtain another exact sequence X/k 

0 � (f ��Y/k) → �� 
X/k � OX � �X/Y → �� 

X/k � 0. 

However, �X/Y is supported on finitely many points, so it is isomorphic to its twist by �� 
X/k. 

So we really have an isomorphism 

(f ��Y/k) → �� = OX /�X/Y .X/k 

We thus get an equality of associated divisors; these are f �KY − KX on the left and −R on 
the right. 
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Using Riemann-Roch, we deduce the Riemann-Hurwitz formula. 

Proposition. We have 

2g(X) − 2 = (deg(f))(2g(Y ) − 2) + deg(R), 

where deg(f) is the degree of f (i.e., the degree of the field extension k(X)/k(Y )). 

Moreover, the contribution of P ≤ X(k) can sometimes be computed very simply. 
Namely, put Q = f(P ), and pick t ≤ k(Y ) which generates mY,Q; then f �(t) generates 
mX,P 

e for some nonnegative integer e. We call e = eP the ramification index of P . Then 

length(�X/Y )P ∼ eP − 1, 

with equality if and only if f is tamely ramified, i.e., eP is not divisible by the characteristic 
of k. 

In case k = C, the Riemann-Hurwitz formula has a topological meaning: the quantity 
2 − 2g(X) turns out to compute the Euler characteristic of the associated Riemann surface. 
The Euler characteristic (computed using homology, or compactly supported cohomology) 
is an additive invariant of a topological space. If the map f were unramified, then we would 
have deg(R) = 0 and the space X would have Euler characteristic equal to deg(f) times 
that of Y . Otherwise, one must subtract eP − 1 for each point P with eP > 1, because you 
get X from an unramified cover of Y by removing eP different points from the fibre (each of 
which has Euler characteristic 1) and adding one point back in. 

4



