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18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009) 
Dualizing sheaves and Riemann-Roch (updated 6 May 09) 

In this lecture, we introduce dualizing sheaves for projective schemes over a field, then 
use them to derive the Riemann-Roch theorem for curves. Throughout, let k be a field (not 

P
Nnecessarily algebraically closed), let j : X → P = k be a closed immersion with X of 

dimension n, and let OX (1) be the corresponding twisting sheaf. 

1 Dualizing sheaves 

For V a k-vector space, let V ∨ denote the dual space Homk(V, k). A dualizing sheaf for X 
is a coherent sheaf ω◦ equipped with a trace morphism t : Hn(X, ω◦ ) → k, such that for all X X 

coherent sheaves F on X, the composition 

HomX (F , ω◦ 
→ Hn(X, ω◦ 

→ kX ) × Hn(X,F) X ) 
t 

of the natural pairing with the trace morphism induces an isomorphism 

∼HomX (F , ω◦ ) = Hn(X,F)∨ .X 

By interpreting this in terms of representing a certain functor, we see that a dualizing sheaf 
is unique up to unique isomorphism if it exists. 

Theorem. There exists a dualizing sheaf for X. 

This also holds when X is proper, but I won’t give the proof in this course (see the 
references at the end of Hartshorne III.7). 

The previous theorem is not so useful unless one can identify the dualizing sheaf explicitly. 
This is tricky in general, but can be done well in the smooth case. 

Theorem. Suppose that X is smooth and irreducible over k. Then the canonical sheaf ωX 

is a dualizing sheaf. 

2 Application to Riemann-Roch 

Modulo the previous two theorems, we can already deduce Riemann-Roch for curves. Sup­
pose in this section that k is algebraically closed, and that X is smooth over k, irreducible, 
and of dimension 1. 

∼For any divisor D on X, the identification of the canonical sheaf ωX = ΩX/k with the 
dualizing sheaf ω◦ gives us an isomorphism X 

H0(X, ωX ⊗ L(−D)) ∼ HomX (L(D), ωX )= 
∼ HomX (L(D), ω◦ = X ) 
∼= H1(X,L(D))∨ . 
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This tells us several useful things. First, the genus g = g(X), which is typically defined as 
dimk H

0(X, ωX ), is also equal to dimK H
1(X,O). Second, the desired statement of Riemann-

Roch is now 

deg(D) + 1 − g = 
? 

dimk H
0(X,L(D)) − dimk H

0(X, ωX ⊗ L(−D)) 

= dimk H
0(X,L(D)) − dimk H

1(X,L(D)) 

= χ(X,L(D)). 

Third, Riemann-Roch does indeed hold for D = 0 (by the previous two assertions). 
To finish the proof, it is enough to show that the Riemann-Roch equality for a given 

divisor D is equivalent to its truth for the divisor D + (Q) for any closed point Q ∈ X(k). 
(With that in hand, we can walk from 0 to any other divisor by adding or subtracting points.) 
So let us see how much both sides of the Riemann-Roch equality change when we add the 
point Q. On one hand, obviously 

(deg(D + (Q)) + 1 − g) − (deg(D) + 1 − g) = 1. 

On the other hand, we have a short exact sequence 

0 → L(D) → L(D + (Q)) → OQ → 0 

where OQ denotes the skyscraper sheaf k at the point Q. Since Euler characteristics add in 
short exact sequences, 

χ(X,L(D + (Q))) − χ(X,L(D)) = χ(X,OQ) = 1. 

Hence Riemann-Roch for D is equivalent to Riemann-Roch for D + (Q). 

3 Construction of the dualizing sheaf 

We now go back and construct dualizing sheaves following the argument in Hartshorne (but 
fleshing out some details which he leaves opaque). Recall that we already know the duality 
theorem for X = P , with the dualizing sheaf being the canonical sheaf ωP . The plan is to 
manufacture a dualizing sheaf on X out of ωP , using Serre duality for P . That tells us that 

∼if we fix an isomorphism HN (P, ωP ) = k of k-vector spaces, then for any coherent sheaf F 
on X, 

Hn(X,F) = = P (j∗F , ωP )
∨ .Hn(P, j∗F) ∼ ExtN−n 

So we are reduced to finding a sheaf ω◦ on X for which there is a functorial isomorphism X 

HomX (F , ωX 
◦ ) = P 

∼ ExtN−n(j∗F , ωP ). 

(We then get the required trace map Hn(X, ω◦ ) → k by tracing the identity element of X 

HomX (ω
◦ , ω◦ ) through the identifications.) X X 
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One might imagine that this isomorphism comes from an isomorphism of sheaves 

? 
HomX (F , ω◦ ) ∼ ExtN−n(j∗F , ωP )= X P 

by taking global sections. Taking F = OX in this hypothetical isomorphism suggests the 
right definition: 

ω◦ = j∗ ExtN−n(j∗OX , ωP ).X P 

We would like to get back from this to the claimed isomorphism 

∼HomX (F , ω◦ ) = ExtN−n(j∗F , ωP ).X P 

by first forming the canonical identification 

HomX (F , j∗ HomP (j∗OX , = ·)·)) ∼ HomP (j∗F ,

(local version: for A a ring, I an ideal, M ∈ ModA/I , N ∈ ModA, we identify HomA(M, N) ∼= 
HomA/I (M, HomA(A/I, N))), then evaluating the resulting derived functors at ωP , then 
taking global sections. This is complicated by the fact that in the second step, HomX (F , ·) 
is not exact, and in the third step, taking global sections is not exact. 

To straighten these things out, we need to know more about the relationship between the 
sheaf Ext and the global Ext. For starters, here is one thing I can say using Serre vanishing. 
(See Hartshorne Proposition III.6.9.) 

Proposition. Let F and G be coherent sheaves on X. Then there exists an integer q0 

depending on F and G, such that for every q ≥ q0, we have 

Exti (F ,G(q)) ∼ Γ(X, Ext i = (F ,G)(q)).X X 

Proof. This holds for i = 0 without any restriction on q. For F locally free, the right side is 
zero for i > 0, whereas the left side vanishes for n large enough by Serre’s vanishing theorem. 
The general case then follows by a dimension shifting argument; see Hartshorne Proposition 
III.6.9. 

Next, I must recall a theorem which I skipped over earlier. 

Theorem (Grothendieck). For any F ∈ ShAb(X), H i(X,F) = 0 for i > n. 

Proof. This holds with X replaced by any noetherian topological space of dimension n. The 
argument is a rather elaborate dimension-shifting argument; see Hartshorne Theorem III.2.7. 
(See also Hartshorne exercise III.4.8(d), which is enough for this discussion.) 

Corollary. For any coherent sheaf F on X, we have ExtP
i (j∗F , ωP ) = 0 for i < N − n. 

Proof. Put Fi = Ext i
P (j∗F , ωP ). On one hand, for q large, 

∼Γ(P,Fi(q)) = Exti
P (j∗F , ωP (q)) = HN−i(P, j∗F(−q))∨ 

by Serre duality for P . For i < N − n, HN−i(P, j∗F(−q)) = 0 by the theorem. Hence 
Γ(P,Fi(q)) = 0 for q large. On the other hand, since Fi is coherent, for q large, Fi(q) is 
generated by global sections. This forces Fi(q) = 0 for q large, whence Fi = 0. 
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At this point, we can finish with the following argument; compare Hartshorne Lemma 
III.7.4. (Once again, there is a spectral sequence hiding behind this, but never mind.) 
Take an injective resolution I · of ωP , so we can compute Ext · (j∗F , ωP ) as the cohomology 
of HomP (j∗F , I · ), and similarly for Ext and Hom. But using the canonical identification 
from earlier, if we write J · = j∗HomP (j∗OX , I

· ), we can also compute Ext ·(j∗F , ωP ) as the 
cohomology of HomX (F ,J ·), and similarly for Ext and Hom. So now what we need to 
know is that 

? 
∼HomX (F , ωX 

◦ ) = hN−n(HomX (F ,J ·)) 

and similarly with straight Homs. 
However, the sheaves J · are injective OX -modules. (Local version: if A is a ring, I 

an ideal, and I ∈ ModA is injective, then HomA(A/I, M) is an injective A/I-module; this 
uses the previous local identification.) By the previous corollary, the complex J · (whose 
cohomology computes Ext ·(j∗OX , ωP )) is acyclic in degrees up to N − n − 1. We can then 
split it into two complexes of injectives J1

· ,J2
· , where J1 

· is exact and only has terms in 
degrees up to N − n, and J

2 
· only has terms in degrees at least N − n (exercise). 

Since J
1 
· is a bounded complex of injectives, it splits into a series of split short exact 

sequences; thus it stays exact no matter what left exact functors you apply to it. So we can 
replace J by J

2 
· for the purposes of computing derived functors, i.e., what we need to prove 

is reduced to 
? 
∼ · 

HomX (F , ω◦ ) = hN−n(HomX (F ,J )) X 2

and similarly for straight Hom. But J
2 
· only starts in degree N −n, and Hom and Hom are 

left exact, so we have 

N−n ∼ · 
ExtP (j∗F , ωP ) = hN−n(HomX (F ,J2)) 

∼ · = HomX (F , hN−n(J
2
)) 

·∼= HomX (F , hN−n(HomX (OX ,J2
))) 

∼= HomX (F , ExtN−n(j∗OX , ωP )) 
∼= HomX (F , ω◦ 

X ) 

and similarly 

∼ · ∼ExtN−n(j∗F , ωP ) = hN−n(HomX (F ,J )) = HomX (F , ω◦ ).P 2 X 

That completes the proof that 

ω◦ = ExtN−n(j∗OX , ωP )X P 

is a dualizing sheaf for X. 

4 Calculation of the dualizing sheaf for smooth schemes 

To finish the proof of Riemann-Roch, we must still show that we can take ω◦ = when X ωX 

X is smooth over k. Fortunately, this is a local problem. 
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Theorem. Suppose that X is a local complete intersection in P . Let I be the ideal sheaf of 
X. Then there is a canonical isomorphism 

r ∼ExtP (j∗OX , ωP ) = ωP ⊗ j∗OX ⊗ ∧r(I/I2)∨ . 

The local complete intersection condition asserts that I is locally generated by N − n 
elements; this is true for X smooth basically by the Jacobian criterion. See Hartshorne 
Theorem II.8.17. The fact that the right side gives ωX comes from the exact sequence 

0 → I/I2 → ΩP/k ⊗ j∗OY → j∗ΩY/k 

by taking exterior powers; see Hartshorne Proposition II.8.20. The stated theorem itself is 
proved by computing in local coordinates; see Hartshorne Theorem III.7.11 
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