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18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009) 
´ Etale cohomology (updated 13 May 09) 

In this lecture, we give a hint of the theory of étale cohomology. Standard references: 
´ Milne, Etale Cohomology (he also has some more accessible lecture notes online at jmilne.org); 

´ Tamme, Introduction to ´ Etale Cohomology and the Weil Etale Cohomology ; Freitag-Kiehl, 
Conjectures. You might want to read Hartshorne Appendix C first for an overview. Also, 
note that there is a “rogue” volume of SGA called SGA 4 1/2, written mostly by Deligne 
after the fact, which gives a surprisingly legible (albeit in French) account of this stuff. 

Since this is the last lecture of the course, I would like to take the opportunity to thank 
you, the participants, for all the hard work you put in on the problem sets, and especially 
for all your feedback on the notes. If you have further questions about algebraic geometry, 
from the general to the specific, I would be happy to discuss them! 

1 Motivation: the Weil conjectures 

Let X be a variety over a finite field Fq. Weil predicted that the zeta function of X, defined 
as an Euler product 

ζX (T ) = 
�

(1 − T deg(x→Fq ))−1 

x 

over the closed points of X, could always be interpreted as the power series expansion of a 
rational function of T ; this analogizes the analytic continuation of the Riemann zeta function. 
For instance, for X = P1 , 

1 
ζX (T ) = . 

(1 − T )(1 − qT ) 

Weil also predicted analogues of the functional equation of the zeta function, and the Rie­
mann hypothesis. For instance, for X an elliptic curve, Hasse proved that 

1 − aT + qT 2 

ζX (T ) = 
(1 − T )(1 − qT ) 

for some a ∈ Z. This expression has the symmetry property that 

ζX (q 
−1/T ) = ζX (T ). 

(This example is a bit lucky; more generally, you might be off by a factor of qaT b for some 
a, b ∈ Z. For X of pure dimension n, you should compare ζX (T ) with ζX (q

−n/T ).) Hasse 
also proved that 

|a| ≤ 2
√

q, 

or equivalently, the numerator polynomial 1 − aT + qT 2 has complex roots of norm q−1/2 . 
Weil also noticed that the degrees of the factors in the zeta function appeared to have 

topological meaning. Namely, if X is obtained from a smooth proper scheme over some 
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arithmetic ring (i.e., a localization of the ring of integers in a number field) by reduction 
modulo a prime, then the degrees of the factors in ζX (T ) correspond to the Betti numbers 
of (X × C)an . For example, the degrees of the factors 1 − T, 1 − aT + qT 2 , 1 − qT in the 
elliptic curve case match the Betti numbers 1, 2, 1 of a genus 1 Riemann surface. 

Weil proved analogues of all these assertions for arbitrary curves, and (based on some 
evidence from Fermat hypersurfaces) conjectured analogues for higher dimensional varieties. 
More precisely, he predicted the existence of a cohomology theory H i( ) for varieties over ·
Fq, taking values in finite dimensional vector spaces over a field K of characteristic zero, in 
which the number of Fq-rational points (i.e., the fixed points of the q-power Frobenius map) 
could be computed using an analogue of the Lefschetz fixed point formula in topology: 

2 dim(X) 
n#X(Fqn ) = 

� 
(−1)i Trace(F , H i(X)).q 

i=0 

This immediately implies rationality of ζX (T ). Symmetry should follow from a form of 
Poincaré duality, i.e., a perfect pairing 

H i(X) × H2 dim(X)−i(X) H2 dim(X)(X) K. → →

The Riemann hypothesis is not quite as purely formal a consequence, since it is basically a 
nonnegativity condition, whereas K need not have anything to do with R. But never mind 
that for now. 

2 Curves 

For curves, Weil proved his conjectures by constructing an algebraic group associated to a 
curve C, called the Jacobian variety J(C). Over C, this gives a complex torus which had 
been constructed by Abel-Jacobi using abelian integrals. 

For a prime ℓ not equal to the characteristic of Fq, and a positive integer n, the group 
J(C)(Fq)[ℓ

n] of geometric ℓn-torsion points is abstractly isomorphic to (Z/ℓnZ)2g, for g the 
genus of C. The absolute Galois group of Fq acts by (Z/ℓnZ)-module endomorphisms. If we 
take the inverse limit over n, we get a Zℓ-module Tℓ(J(C)) equipped with an action of the 
absolute Galois group; it is nowadays called the Tate module of C. (For instance, if C is an 
elliptic curve, then J(C) = C.) 

This gives the H1 (or really its dual) in a good cohomology theory. The symmetry comes 
from the Tate pairing. The Riemann hypothesis can be deduced using the Hodge index 
theorem, which gives a nonnegativity (or really a nonpositivity) assertion for the intersection 
pairing on C ×Fq C. 

Aside: a noncohomological proof, using only Riemann-Roch and some clever estimates, 
was found later by Stepanov (and simplified by Bombieri). Good reference: Lorenzini’s 
Invitation to Arithmetic Geometry. 
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3 Why étale? 

One might think that coherent sheaf cohomology, as we have developed in this course, 
might be useful against the Weil conjectures. However, it has several problems: it lives in 
characteristic p rather than characteristic 0 (so it can only aspire to prove rationality mod p, 
rather than integrally), and its dimensions do not match Betti numbers. For instance, sheaf 
cohomology on a scheme of dimension n only goes up to index n, rather than 2n. 

Grothendieck realized that one might get around this by trying to make an analogue of 
topological cohomology in which étale maps play the role of local homeomorphisms. For 
instance, recall one of the consequences of GAGA: for a smooth proper variety X over C, 
every finite covering space map comes from a unique finite étale cover of X. Thus the 
profinite completion of the topological fundamental group can be recovered as an inverse 
limit of Galois groups of these étale covers. 

Perhaps a better justification for considering étale covers is the following. For X a 
complex analytic variety and x ∈ X, the local ring OX,x, while not complete, is henselian: 
the conclusion of Hensel’s lemma still holds. (That is, given a polynomial over OX,x, any 
simple root of the reduction modulo the maximal ideal lifts uniquely to a root.) This is 
not true for schemes, though. A related geometric statement is that if f : Y X is an →
étale morphism of schemes, and x ∈ X is a point, then there is no way to draw disjoint 
open neighborhoods of the points of f−1(x), so you cannot view the étale map as a local 
homeomorphism. 

4 Topology revisited 

In order to combine the ideas about étale covers with sheaf cohomology, Grothendieck had 
to take the apparently drastic step of modifying the notion of a topology on a space. But 
in retrospect, this isn’t such a strange modification to make. After all, presheaves on a 
topological space X are nothing more than contravariant functors on the category X of open 
sets. Why not state all the sheaf axioms in terms of the structure of that category? 

Grothendieck realized that stating the sheaf axiom really only requires knowing what 
an open cover is, leading to the following definition. Let C be a category admitting fibre 
products. A Grothendieck topology consists of the following data. For each X ∈ C, you must 
tell me which collections of morphisms {Ui → X}i∈I are coverings of X. This prescription 
must satisfy some hypotheses. 

Any isomorphism X Y is by itself a cover of Y .•	 →

•	 For any Y → X, if {Ui → X} is a cover, then {Ui ×X Y → Y } is a cover. That is, 
open covers can be restricted to open subsets. 

•	 If {Ui → X} is a cover, and for each i {Vij → Ui} is a cover, then {Vij → X} is also a 
cover. That is, covering each open in a cover gives a cover. 
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(Strictly speaking, this is a Grothendieck pretopology because it only gives you the analogue 
of a basis for a topology. You should really throw in all coverings “generated” by these too.) 

A category equipped with a Grothendieck topology is called a site. For instance, the big 
étale site of a scheme S is the category of all S-schemes, in which coverings are collections of 
étale morphisms which form a set-theoretic cover. That is, {Ui → X} is a cover if and only 
if each Ui is étale and the union of their images is X. (If you only bother keeping objects 
which are themselves étale over S, you get the small étale site.) 

There are many other useful Grothendieck topologies that occur frequently in algebraic 
geometry. These include the fppf topology (fidèlement plat de présentation finie = faithfully 
flat of finite presentation), the fpqc topology (fidèlement plat et quasicompact = faithfully 
flat quasicompact), the smooth topology, the flat topology, the syntomic topology (flat and 
locally of finite presentation), the Nisnevich topology (étale, but each point must be covered 
by a point with the same residue field), etc. There are also useful examples where you start 
with a usual topological space but use only some of the available open covers; this occurs in 
the definition of rigid analytic spaces (i.e., analytic spaces over a nonarchimedean complete 
field like Qp). 

Anyway, once you know what a Grothendieck topology is, you can define a sheaf of 
abelian groups (say) on it. Namely, you want a contravariant functor F from your category 
to Ab, such that for any cover {Ui → X}, we have an exact sequence 

0 F (X)
� 

F (Ui)
� 

F (Ui ×X Uj)→ → →
i i,j 

where the last map computes a section on F (Ui ×X Uj ) as the restriction from Ui minus the 
restriction from Uj . For instance, in most reasonable cases, the structure sheaf F (X) = OX 

is a sheaf. 
There is also a notion of sheafification but this is complicated by the fact that we don’t 

have points with with to define stalks. No matter: what are points anyway but decreasing 
families of open sets? One can make an artificial definition of “points” in that fashion; this 
brings one dangerously close to the notion of a topos, which I will skip over entirely. (Roughly 
speaking, a topos is the category of sheaves on a site with values in a given category, like 
sets or abelian groups.) 

´ 5 Etale cohomology in practice 

We can now define sheaf cohomology on any site with a final object as the derived functors 
of global sections, meaning sections over the final object. (One can fix this even if there is no 
final object, by taking a compatible family of sections over every element of the site. Yeesh.) 

However, it’s not so straightforward to compute étale cohomology of a scheme X with 
coefficients in a sheaf F . On one hand, writing down étale cochains is not a problem: you 
specify an étale cover of X and then some sections on each element of the cover. Writing 
down cocycles isn’t that much harder: you have to write down another étale cover on which 
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�

you can check that the differential of your cochain vanishes. The hard part is, given a 
cochain, how do you tell whether it is zero or not? 

Despite this complication, one can prove quite a lot. For instance, if you start with a 
quasicoherent sheaf F on a scheme X, you get a sheaf on its big and small étale sites by 
setting the sections over an open i : U X to be i∗ F . But this is a boring example, →
because the resulting sheaf cohomology turns out to agree with usual sheaf cohomology on 
the “Zariski site” (i.e., what we already know). 

What makes the étale site fun is that you get strange new sheaves, much more akin 
to the locally constant sheaves in topology, and their cohomology is quite interesting. For 
instance, you can make a locally constant sheaf associated to any (pro)finite abelian group (by 
sheafifying the constant presheaf), and this gives you something with topological meaning. 

Theorem. Let X be a smooth proper scheme over C. Then for any prime ℓ, the cohomology 
of the étale locally constant sheaf associated to the ℓ-adic integers Zℓ computes the topological 
Betti numbers of X. 

The fun comes when you start with a scheme over an arithmetic base, like Q. If you 
extend the base to Q and then take étale cohomology with coefficients in Zℓ, the result 
carries an action of the absolute Galois group of Q. E.g., for an elliptic curve, the first étale 
cohomology is (dual to) the ℓ-adic Tate module, i.e., the inverse limit of the ℓ-power torsion 
groups viewed as a Galois representation. 

6 Back to the Weil conjectures 

Let X be a smooth proper scheme over the finite field Fq. Pick any prime ℓ = q. For each 
positive integer n, we can consider the locally constant étale sheaf Z/ℓnZ on X. Let ZℓX 

be 
X 

the inverse limit of these; this is not the same as the locally constant étale sheaf generated 
by Zℓ. (E.g., in the example of the elliptic curve, that is because the ℓ∞-power torsion is not 
defined over a finite extension of the base field.) 

Nonetheless, Zℓ is a good sheaf to work with. (It is an example of a sheaf which is lisse, 
or smooth if you prefer to translate from the French.) We will be interested in working with 
the 

H iH i(X) = et(X ×Fq Fq, Zℓ) ⊗Zℓ Qℓ, 

which is a collection of Qℓ-vector spaces. These turn out (with some effort) to be finite 
dimensional over Qℓ, and carry a Lefschetz trace formula. This proves rationality of the zeta 
function. 

Aside: rationality had already been proved by Dwork around 1960 using p-adic analytic 
methods, but not using cohomology. Nowadays, though, Dwork’s proof has been reinter­
preted in terms of a different Weil cohomology, called rigid cohomology, taking values in a 
p-adic field. (Remember that ℓ = p is excluded in étale cohomology, because this case be­
haves badly. For instance, an elliptic curve over an algebraically closed field of characteristic 
p has at most p points killed by p, not p2.) 
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Returning to étale cohomology, there is also a Poincaré duality which implies symmetry. 
The Riemann hypothesis, of course, is more subtle; Grothendieck had predicted it would 
follow from a suitable analogue of the Hodge index theorem, which was one of his standard 
conjectures. This analogue is still open; instead, Deligne proved the Riemann hypothesis by 
a rather clever combination of ideas, including an algebro-geometric variant of the “Rankin 
squaring” argument from classical modular forms. Laumon later gave a similar but techni­
cally simpler proof by adding the use of a cohomological Fourier transform. (These proofs 
are largely independent of which Weil cohomology you are using. In particular, with some 
effort they can be transposed into rigid cohomology.) 
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