
THE COHOMOLOGY OF THE MODULI SPACE OF CURVES 

The purpose of this unit is to give a brief survey about the cohomology and 
the tautological rings of the moduli space of curves. Unfortunately, for the most 
part the cohomology of Mg remains mysterious. Some of the outstanding problems 
include: 

Problem 0.1. What is the cohomological dimension of Mg ? 

Problem 0.2. Which classes generate the cohomology of Mg ? 

Problem 0.3. What are the largest dimensional subvarieties of Mg ? What are the 
largest dimensional subvarieties of Mg that pass through a general point? 

These are a few problems from an endless list of unknowns about the cohomology 
of Mg . Despite our ignorance there has been a tremendous effort to study the 
cohomology of Mg in the last three decades. Especially Harer and his students 
using cohomological methods applied to the mapping class group have obtained 
major results about the cohomology of Mg . In this unit we will survey some of 
these results. 

1. Teichmüller theory 

There are many good references for Teichmüller theory. Two books that are 
friendly to algebraic geometers are [IT] and [Ab]. A more analytic introduction can 
be found in [Le]. Curt McMullen regularly teaches courses on the subject and he 
has really nice course notes on the subject. 

From now on we will be working over the complex numbers C. Accordingly we 
will use the Let S be a closed, oriented surface of genus g. 

Definition 1.1. A marked Riemann surface is a pair (R, [f ]) consisting of a Rie­
mann surface and the homotopy class of an oriantation preserving homeomorphism 
f : R � S. Two marked Riemann surfaces (R1, [f1]), (R2, f2) are equivalent if 
there exists a holomorphic map h : R1 � R2 such that [f2 √ h] = [f1]. 

Definition 1.2. The set of equivalence classes of marked Riemann surfaces is called 
the Teichmüller space Tg of genus g. 

We will shortly describe the Fenchel-Nielsen coordinates on Teichmüller space. 
Under the topology induced by these coordinates Tg becomes homeomorphic to 
R6g−g ; hence it is a contractible space. On the other hand, Tg is very closely 
related to Mg . Certainly if (R1, f1) is equivalent to (R2, f2), then R1 and R2 have 
to be isomorphic as Riemann surfaces. This suggests that the moduli space Mg 

should be a quotient of Tg . 

Definition 1.3. Define the mapping class group �g of genus g to be the isotopy 
classes of orientation preserving homeomorphisms of F . 
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�g acts on Tg by 

[w]�(R, [f ]) = (R, [w √ f ]) for [w] ∪ �g . 

This action of �g on Tg is properly discontinuous: for any two compact subsets K1 

and K2 of Tg there exists only finitely many [w] ∪ �g for which K1 ⊗ [w]�K2 = ∞.⊂
If (R1, [f1]) and (R2, [f2]) become identified under the action of �g , then R1 and 
R2 are isomorphic as Riemann surfaces. Conversely, if there is an isomorphism 
h : R1 � R2 between R1 and R2, we get an element of �g by taking [f2 √ h √ f−1 . 
In fact Tg may be embedded in C3g−3 as a bounded, contractible domain by the 
Bers embedding. Once we know this fact, we obtain a new construction of Mg as 
a complex orbifold. 

In the sequel we will frequently invoke the Uniformization Theorem from ele­
mentary complex analysis, so we recall its statement. 

Theorem 1.4 (Uniformization). Any simply connected Riemann surface is biholo­
morphic to the Riemann sphere Ĉ, the complex plane C or the upper half-plane H. 
Furthermore, among Ĉ, C and H no two are mutually biholomorphic. 

Example 1.5. The uniformization theorem together with the following theorem 
from elementary topology 

Theorem 1.6. Any orientation preserving homeomorphism of the two-dimensional 
sphere to itself is isotopic to the identity. 

we conclude that T0 consists of a single point. 

Example 1.7. The universal cover of a Riemann surface naturally has the structure 
of a Riemann surface. The uniformization theorem implies that the universal cover 
of a genus one Riemann surface is the complex plane. Every genus one Riemann 
surface is the quotient of the complex plane by a rank 2 lattice. We can normalize 
the lattice so that it is generated by (1, φ) where φ ∪ H. It is well known that two 
complex tori represented by φ and φ ≥ are biholomorphic if and only if there exists 
M ∪ PSL2(Z) such that φ = Mφ ≥ . If in addition, we want the map to be isotopic 
to the identity, we can assume that in the lift of the map 1 maps to 1. It follows 
that then two tori represent the same point in T1 if and only if φ = φ ≥ . Thus we 
identify T1 with H. 

Now that we have described the spaces T0 and T1, we will assume that g ∼ 2. 
Every subgroup of Aut(C) that acts properly discontinuously and fixed point free 
on C is abelian. It follows that any Riemann surface of genus at least two is 
uniformized by the upper half plane. The upper half plane with the Poincaré metric 
is also a model for hyperbolic two space. Since the Poincaré metric on H is invariant 
under PSL2(R), hence Riemann surfaces of genus g > 1 inherit a hyperbolic metric. 
Furthermore, two Riemann surfaces of genus g > 1 are conformally equivalent if and 
only if they are isometric with respect to the hyperbolic metric they inherit from H 
since PSL2(R) is both the group of conformal self maps of H and the isometries of 
the Poincaré metric on H. We thus obtain a different description of the Teichmüller 
space for hyperbolic surfaces. Consider marked hyperbolic surfaces (X, [f ]), where 
X is a smooth, oriented surface equipped with a complete Riemannian metric of 
constant curvature −1 and [f ] is the homotopy class of an orientation preserving 
homeomorphism f : X � F to a fixed compact, oriented genus g surface F . Two 
marked hyperbolic surfaces (X1, [f1]) and (X2, [f2]) are equivalent if there exists an 
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isometry h : X1 � X2 such that [f2 √ h] = [f1]. The resulting space is again the 
Teichmüller space Tg of genus g. 

We next introduce the Fenchel-Nielsen coordinates on Teichmüller space. Given 
a hyperbolic surface of genus g > 1, we can cut the surface along 3g − 3 simple, 
closed curves to obtain 2g − 2 pieces called pants that are homeomorphic to a disc 
with two smaller inner discs removed. In a hyperbolic surface each free-homotopy 
(equivalently isotopy) class contains a unique geodesic loop. Moreover, if ω1, · · · , ωn 

are pair wise non-isotopic, non-intersecting simple loops, then we can find non-
intersecting simple closed geodesics ρ1, · · · , ρn with ρi isotopic to ωi. The ρi are 
uniquely determined. Therefore, we can assume that we are cutting the surface 
along geodesics. Note that the conformal structure of the pants is determined by 
the lengths of the ordered (geodesic) boundary components of the pants. Consider 
a Fuchsian model for the surface. Then the stabilizer of a connected component of 
the inverse image of the pants is a free subgroup GP of Aut(H) generated by two 
hyperbolic elements. We can realize the pants as the quotient of the upper half 
plane by GP . We can conjugate GP so that its generators are of the form 

g1 = (∂)2 z, 0 < ∂ < 1, g2 = 
az + b

, ad − bc = 1, a + d = b + c, c > 0 
cz + d 

and we can assume that g1, g2 and (g2 √g1)
−1 cover the boundary geodesics ρ1, ρ2, ρ3, 

respectively. There is a useful relation between the length of ρi and the square of 
the trace of gi. 

Lemma 1.8. Let R be a Riemann surface uniformized by H. Let g 

az + b 
g(z) = , ad − bc = 1 

cz + d 
be a hyperbolic element in the Fuchsian group of R and let ρ be the closed geodesic 
on R corresponding to g. Then 

2tr (g) = 4 cosh2 l(ρ) 
(1)

2 

Proof. Since both sides of the equation are invariant under conjugation, we can 
assume that g = ∂z with ∂ > 1. The length of the geodesic covered by g is given 
by 

� � dy 
= log ∂. 

1 y 
The lemma follows from the equality 

log ∂ 
(
∅

∂ + 1/
∅

∂)2 = 4 cosh2 . 
2 

By equation (1) the lengths of the boundary components of the pants determine 
the generators of GP and consequently the conformal structure of the pants. � 

Next, observe that given any two boundary components of the pants, there 
is a unique geodesic that intersects both perpendicularly. Join the two boundary 
components by an arc. Double the pants to obtain a hyperbolic genus 2 surface. The 
arcs form a simple closed loop, hence there is a unique simple closed geodesic in the 
isotopy class of the loop. By symmetry this geodesic must intersect the boundary of 
the pants perpendicularly. The intersection point of this geodesic with a boundary 
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component serves as a reference point to measure any twisting in the boundary 
when gluing two pants. The ordered pair of lengths of the 3g− 3 geodesics and the 
3g − 3 twist parameters give a map from Tg into (R+)3g−3 × (R)3g−3 . This is in 
fact a bijection. We thus obtain a topology on Tg under which Tg is homeomorphic 
to a contractible open subset of R6g−6 . Let us briefly recall some of the ingredients 
of the proof. 

Lemma 1.9. Given an arbitrary ordered triple of positive real numbers (l1, l2, l3) 
there exists a right hexagon in the hyperbolic plane such that the length of every 
other side is equal to li. 

Proof. Consider the unit circle model of the hyperbolic plane. Fix a portion C1 of 
the imaginary axis. Find another geodesic C2 such that the distance from C1 to 
this geodesic is l1. There is a one parameter family of geodesics a distance l2 away 
from C1, hence one that is a distance l3 away from C2. This gives the desired right 
hexagon. Observe that by letting one or two of the lengths go to zero, we obtain an 
ideal pentagon and an ideal quadrilateral, respectively. This will be important later 
when we generalize the discussion to Riemann surfaces with marked points. � 

The right hexagons are closely related to the pants decomposition of surfaces. If 
we take a pair of pants with geodesic boundaries and cut them along the perpendic­
ular geodesics that join the boundaries pair wise, we obtain a pair of equivalent right 
hexagons. (Observe that two perpendicular geodesics that join different boundary 
components are disjoint.) Conversely, to obtain a pair of pants identify every other 
side of two equivalent right hexagons. When identifying the hexagons, give them 
opposite orientations and glue them along their boundaries respecting the orienta­
tion. The correspondence between pants and hexagons together with Lemma 1.9 
allows us to conclude that there is a pair of pants with any ordered triple of posi­
tive numbers as the lengths of its boundary components. Moreover, the conformal 
structure of the pants is uniquely determined by these lengths. We obtain a surjec­
tive map from Teichmüller space to (R+)3(g−1). Fix 3(g − 1) simple closed curves 
ωi (see Figure 1) that cut the surface into pants. As we vary the hyperbolic metric 
on the surface the lengths of the geodesics in the isotopy classes of these simple 
closed curves assume all values in (R+)3(g−1). Observe that we can glue two pants 
(metrically) along two geodesic boundary components if and only if the boundary 
components have the same length. We identify two points on the boundary and 
then glue according to arc length. But we can also twist the boundary components 
by an angle before we glue. There remains to show that any twisting in any of 
the curves leads to different points of Teichmüller space. For the proof one fixes a 
non-trivial loop λi that intersects ωi at two points. Then there is a function from 
R3(g−1) to R given by the length of the geodesic loop in the homotopy class of λi as 
one varies the metric by twisting the 3(g− 1) curves. One proves that the functions 
so obtained are strictly convex and have minima. This implies then that there is a 
bijection between Teichmüller space and (R+ × R)3(g−1). 

Remark 1.10. It is possible to give a third definition of Teichmüller space in terms 
of quasiconformal mappings. Using this point of view one can introduce a complex 
structure on Teichmüller space so that Tg becomes a bounded domain in C3g−3 . 
Let {zi} be local parameters on an open cover S = Ui of the Riemann surface S. 
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Figure 1. Cutting a genus 2 surface into pairs of pants. 

A collection of complex valued functions πi on Ui is a differential of type (m, n) if 
the functions transform according to the rule 

� �m � �n 
dzi dzi

πi = πj
dzj dzj 

whenever Ui ⊗ Uj = A differential of type (2, 0) is called a quadratic differen-∞.⊂
tial. A differential of type (−1, 1) where π is measurable and ||π||∗ < 1 is called 
a Beltrami differential. A homeomorphism f from one Riemann surface to an­
other is called quasiconformal if f is an L2 solution of the differential equation 
�f = µ�f for some Beltrami differential µ. Given a Beltrami differential µ on a 
Riemann surface S, there exists a quasiconformal map of S onto another Riemann 
surface with complex dilation µ. This map is uniquely determined up to a conformal 
map. Hence, a Beltrami differential on a Riemann surface S determines a complex 
structure on S. To define Teichmüller space consider all quasiconformal mappings 
of a Riemann surface F onto other Riemann surfaces. Let two maps f1 and f2 be 
equivalent when f2 √ f −1 is homotopic to a conformal map. The set of equivalence 1 
classes is Teichmüller space. In case the Riemann surface is compact each homotopy 
class of an orientation preserving homeomorphism contains a quasiconformal map, 
so this definition agrees with the previous ones. Suppose a Riemann surface R is 
uniformized by the upper half plane. Let GR be the Fuchsian model of R. Given 
a Beltrami differential µ on R, it is possible to lift µ to H in a GR invariant way. 
Extend this differential to the complex plane by setting it to zero in the complement 
of the upper half plane. There is a quasiconformal map fµ corresponding to this 
extended Beltrami differential. If we require fµ to fix 0, 1, →, then fµ is unique. 
Note that fµ is conformal in the lower half plane. The Schwarzian derivative of 
fµ gives a holomorphic automorphic form of weight −4 with respect to GR on the 
lower half plane. Let A2(H

�, GR) be the complex vector space of holomorphic au­
tomorphic forms of weight −4 on the lower half plane. We can define the Bers’ 
embedding by sending µ to the Schwarzian derivative S(fµ|H� ). A fundamental 
theorem states that the Bers’ embedding realizes Teichmüller space as a bounded 
domain in A2(H

�, GR). We thus obtain a complex structure on Teichmüller space 
via the Bers’ embedding. The mapping class group acts as a group of biholomorphic 
automorphisms of Teichm¨ uller space as a uller space. Since we can realize Teichm¨
bounded domain in a complex vector space we can apply normality arguments to 
the mapping class group. For example, we can prove that the mapping class group 
acts properly discontinuously on Teichmüller space. 

Proposition 1.11. The Teichmüller modular group acts properly discontinuously 
on Teichmüller space. 
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The proof is by contradiction. The strategy is to find a sequence fn �g∪
converging to f uniformly on compact subsets of Tg . Consider the elements hn = 
f −1 

n+1 √ fn converging to an element h ∪ �g . Using the fact that the square of the 
traces of the elements of a Fuchsian group is discrete in R, we conclude that hn 

must be in the isotropy group of some point in Tg after some large n. We thus 
obtain an infinite sequence of elements in the isotropy group of a point in Tg . But 
the isotropy group of a point is isomorphic to the biholomorphic automorphisms of 
the Riemann surface, which is a finite group. This contradicts the fact that we had 
an infinite sequence. Now let us flesh out the details. 

Lemma 1.12. The set of hyperbolic lengths of all closed geodesics on a closed 
Riemann surface R of genus g ∼ 2 is a discrete set of real numbers. Moreover, 
for any positive number there are at most finitely many closed geodesics with that 
hyperbolic length. 

Proof. Suppose there exists a sequence {Cn} ∗ of simple closed geodesics on Rn=1 
with l(Cn) ≡ M for some finite positive number M . We derive a contradiction by 
showing that the Fuchsian group of covering transformations of R cannot be discrete 
in Aut(H). Choose a relatively compact fundamental domain for the Fuchsian 
group and choose elements of the group representing the closed geodesics. We 
thus obtain a sequence of mutually distinct elements ρn of the Fuchsian group for 
which min z≤F χ(z, ρn(z)) ≡ M , where F is the closure (compact by choice) of the 
fundamental domain. Now ρn is a normal family, hence, by choosing a subsequence 
if necessary, we see that they converge to an automorphism of H . Hence the 
Fuchsian group is not discrete. This is a contradiction. � 

We may conclude from this lemma that {tr2(ρ) : ρ ∪ �} is a discrete set of real 
numbers. In lemma 1.8 we proved that 

tr(ρ)2 = 4 cosh2( 
l(L� )

). 
2 

Since the lengths of the geodesics are discrete, so must the square of the traces of 
the group elements. 

A final observation is that given a system of generators {gi} for a Fuchsian model 
of a closed Riemann surface such that g1 has a repelling fixed point at 0 and an 
attractive fixed point at → and g2 has an attractive fixed point at 1 and a repelling 
fixed point at r < 0, the generators are determined by the absolute values of the 
traces in 

−1 −1 {gi, g1 √ gi, g √ gi, g2 √ gi, g2 √ gi, g1 √ g2 √ gi, (g1 √ g2)
−1 √ gi}1 

Let us return to the proof that the mapping class group acts properly discontinu­
ously on Teichmüller space. Suppose not. Then we can find a sequence of distinct 
elements in the mapping class group and a sequence of points pn in Teichmüller 
space converging to a point p such that 

fn(pn) � p ∪ Tg . 

By the normality of the family, selecting a subsequence if necessary, we can assume 
that fn converges to f uniformly on compact subsets of the Teichmüller space. Set 
hn = f −1 

n+1 √ fn. Observe that hn converges to some h uniformly on compact subsets 
of Teichmüller space and h fixes the point p. By translating p to the identity we 
can assume that h fixes the identity. We want to deduce that after some n each hn 
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fixes the identity. If we let wn represent hn, then for any g in the Fuchsian group 
we have 

2 2lim tr (w −1 gwn) = tr (g).n 
n�∗ 

Since the traces are discrete, after some n equality must hold without the limit. 
Since the group is determined by the traces of finitely many elements, after some n 
each hn must be in the normalizer of the group. Hence hn is in the isotropy group 
of the identity for all sufficiently large n. This is a contradiction. We conclude that 
the mapping class group acts properly discontinuously on Teichmüller space. 

The action of the mapping class group, however, is not fixed point free. Rie­
mann surfaces with non-trivial biholomorphic automorphisms are fixed by suitable 
elements of the group. In general, the moduli space is not a manifold. However, as 
we observed in the beginning of this section, Proposition 1.11 implies that Mg has 
an orbifold structure. 

Remark 1.13. In this section to make the exposition more manageable I described 
the Teichmüller space of compact genus g surfaces. In the sequel we will need to 
consider the case when the surface has marked points and boundary components. 
Let Fg,n be a surface of genus g with n marked points p1, · · · , pn. Consider triples 
(R, qi, [f ]) consisting of a Riemann surface R with n parked points q1, · · · , qn and the 
homotopy class (relative to the qi) of an orientation preserving homeomorphisms f : 
R � F such that f(qi) = pi. Call two triples (R1, qi , [f1]) �1 = (R2, qi 

2 , [f2]) equivalent 
1iff there exists a conformal homeomorphism h : R1 � R2 such that h(qi ) = q2 andi 

[f2 √ h] = [f1]. The Teichmüller space Tg,n is the set of equivalence classes of 
triples. More generally, we can allow F to have boundary components. In this case 
we require the homotopies to fix the boundary. We obtain the Teichmüller space 
T r . There is a corresponding mapping class group �r consisting of orientation g,n	 g,n 
preserving homeomorphisms of F r that fix the marked points and the boundary g,n 
components. We can interpret Tg,n from the point of view of hyperbolic geometry 
by considering complete hyperbolic surfaces of finite area. Here the marked points 
can be thought of as cusps. There is a pants decomposition provided that we allow 
ideal pants with one or two boundary components of length zero. The analysis in 
the Fenchel-Nielsen coordinates goes through to show that the Teichmüller space 
is homeomorphic to (R+ × R)3(g−1)+n provided that 2g − 2 + n > 0. 

2.	 The Harer-Zagier Formula for the orbifold Euler characteristic 
of the mapping class group 

The main references for this section are [HZ] and [Har4]. 

Here we will discuss remarkable formula due to Harer and Zagier, which relates 
the orbifold Euler characteristic of the mapping class group �1,g to the values of 
the zeta function at the negative odd integers. 

νorb(�g, 1) = α(1 − 2g) = − 
B2g	

(2)
2g 

Pick a torsion free subgroup �≥ of finite index in �g,1. Note that �≥ acts on Te-
ichm¨ ulleruller space freely and properly discontinuously, so the quotient of Teichm¨
space by �≥ is a manifold. Define the orbifold Euler characteristic of �1,g as the 
Euler characteristic of this manifold divided by the index of �≥ in �1,g . Note that 
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the orbifold Euler characteristic does not depend on the choice of �≥ . Given a dif­
ferent subgroup �≥≥ we can find a common subgroup H of �≥ and �≥≥ so that H has 
finite index in �1,g . By the multiplicativity of indexes and of the Euler character­
istics of covering spaces we conclude that the orbifold Euler characteristic of �1,g 

is independent of the choice of finite index subgroup. 
Suppose a group acts on a contractible cell complex respecting the cell structure 

of the complex. Under some finiteness conditions a theorem of Quillen gives a 
method for calculating the orbifold Euler characteristic of a group. Splitting the 
cell complex to orbits leads to a spectral sequence. Denoting the stabilizers of a 
representative of each orbit by Gi 

p, we can write Quillen’s formula as 

νorb(�1,g ) = (−1)p ν(Gi 
p). 

p i 

We will now describe a contractible cell complex on which �1,g acts preserving the 
cell structure. Let F be a Riemann surface of genus g with a base point q. An arc 
system of rank k is a collection of k + 1 isotopy classes of curves < ω0, · · ·ωk > 
that intersect only at the base point q and satisfy the non-triviality condition that 
none of the curves are null-homotopic and no two of the curves are homotopic to 
each other. Here and in what follows homotopy and isotopy should be interpreted 
to be relative to the base point q. An arc system fills the surface F if all the 
components of the complement of the curves F −{ωi} are simply connected. Build 
a cell complex Y which has a k-cell for each rank 6g−4 −k arc system that fills the 
surface. An l-cell < λ0, · · · , λl > is a face of a k-cell < ω0, · · · , ωk > exactly when 

. Observe that by the non-triviality conditions the largest possible rank {λi} ∩ {ωj }
for an arc system is 6g − 4 since 6g − 3 curves separate the surface into disjoint 
triangles. Also observe that an arc system of rank less than or equal to 2g − 2 
cannot fill the surface. The cell complex Y that we obtain is contractible. (We will 
assume this result without proof.) The group �1,g acts on Y . We will compute 
the orbifold Euler characteristic using this action. Take a rank n = 6g − 3 − p arc 
system < ω0, · · · , ωn > which fills F . We will construct a dual graph Γ to this 
arc system. Γ has a vertex for each connected component of F − {ωi} and one 
edge that meets ωi transversely for each ωi. Cutting the surface along this graph 

=gives a 2n-gon Pn with a pairing φ of the edges so that F � Pn/φ . We take the 
marked point to be the center of the 2n-gon. Observe that every vertex of the 
dual graph has valence at least 3. If a vertex had valence 1, then the boundary 
of the connected component corresponding to that vertex would have to consist 
of one curve. However, that curve would be contractible (recall the pieces are 
simply connected) contradicting the assumption that none of the curves in the arc 
system were null homotopic. If a vertex had valence 2, then the boundary of the 
connected component corresponding to that vertex would have only two curves. 
Those curves would have to be homotopic. This violates the other non-triviality 
condition. These conditions imply two conditions A and B on the way the sides of 
Pn can be identified. First, no two adjacent sides of Pn are identified (A). Otherwise, 
the vertex common to both would have valence 1. Second, no two adjacent sides 
are identified to two other adjacent sides in the reverse order (B). Otherwise, the 
vertex common to the pair of adjacent sides would be a vertex of valence 2. These 
are the only requirements on the identification. Denote by ∂g (n) the number of 
possible pairings of the sides of Pn satisfying both these conditions and giving an 
orientable genus g surface. Denote by µg (n) the number of possible pairings that 
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satisfy only the first condition but not necessarily the second. Finally denote by 
γg (n) the number of possible pairings of the sides of Pn that gives an orientable 
genus g surface (no conditions imposed). Note that these three numbers satisfy the 
following two equations: 

� 2n 
γg (n) = µg (n − i) (3)

i 
i 

� n 
µg (n) = ∂g (n − i) (4)

i 
i 

To prove equation (4) start with an arbitrary pairing on the 2n-gon that gives a 
genus g surface. If two adjacent sides are identified, we can eliminate them by 
making their common vertex an interior point of a 2n − 2-gon. The 2n − 2-gon 
has an identification of its sides that gives a genus g surface. There might still 
be adjacent sides which are identified. (In fact, two sides that are identified can 
become adjacent as a result of this process.) If we continue to eliminate the adjacent 
sides that are identified, we eventually obtain a 2n − 2i-gon with no adjacent sides 
identified. Observe that this process does not change the genus of the surface. All 
the µg (n − i) possibilities can occur for each i. Moreover, a particular identification 
of Pn−i occurs 2

i
n times since we are free to choose any of the i vertices of Pn as 

the vertices that become the interior points of Pn−i. 
The proof of equation (5) is similar in flavor. Suppose we start with an arbitrary 

identification satisfying condition (A) but not necessarily condition (B). We can 
make a pair of edges into one edge if this pair is identified to another pair in the 
reverse order. We get P2n−2 with an identification of its sides, which still gives a 
genus g surface. Continuing we eventually obtain P2n−2i with an identification that 
satisfies both conditions. Given an admissible identification of the sides of P2n−2i 

there are n ways that it can occur under this reduction. Orient the boundary i 
of P2n−2i and number its edges consecutively starting from some vertex. For each 
pair of identified edges take the smaller of the numbers. This leads to a sequence 
of numbers 1 < j1 < Given any n − i non negative integers that sum to · · · < jn−i. 
i, we can split the side corresponding to jk to mk + 1 pieces. The only ambiguity 
is in choosing which of the m1 + 1 edges becomes edge 1 in Pn. Summing the 
possibilities leads to equation (5). 

The stabilizer of a p-cell in Y corresponds to the rotational symmetries of an 
identification of Pn where n = 6g − 3 − p. The stabilizer of this cell is of finite 
order, say 2n/m, with Euler characteristic m/2n. Consider pairings of the edges of 
Pn that satisfy both (A) and (B). Let two pairings be equivalent if they differ by a 
rotation of Pn. Choose a representative of each equivalence class. If an equivalence 
class has order m, then the cells have cyclic symmetry of order 2n/m. Hence we 
can count over each possible pairing giving each pairing the weight 1/2n. Using 
Quillen’s formula we conclude that 

6g−3 

νorb(�1,g ) = (−1)p ν(Gi 
p) = (−1)n−1∂g (n). (5) 

p i n=2g 

Note that the non-triviality condition on the arc systems means that there cannot 
be any arc systems of rank bigger than 6g − 4. The fact that they fill the surface 
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implies that the rank is at least 2g − 1. This justifies letting the sum run from 2g 
to 6g − 3. 

Now that we have obtained an expression for the orbifold Euler characteristic of 
�1,g , there remains to relate this expression to the zeta function. The main task 
will be to prove the equation 

� �n+1 

γg (n) = 
(2n)! 

Co x 2g , 
x/2 

(6)
(n + 1)!(n − 2g)! tanh(x/2) 

where Co(xk , f (x)) denotes the coefficient of xk in the power series expansion of f . 
It is convenient to define an auxiliary polynomial whose value at 0 is the orbifold 
Euler characteristic. Let 

2n 
γg (n) = Fg (n) 

n + 1 

If we assume the previous claim about γg (n), then we observe that Fg (n) is a 
polynomial of degree 3g − 1. It vanishes at −1, hence n + 1 divides it. Taking 
(n − 1), (n − 1)(n − 2), · · · as our basis for polynomials we can express F as 

d 
� r! 

Fg (n) = (n + 1) 
(2r)! 

�g (r)(n − 1)(n − 2) · · · (n − r + 1). 
r=1 

The factor r!/(2r)! will simplify some of the equations that will occur later. Observe 
that we can express γg (n) as 

d 
� r!�g (r)(2n)!

γg (n) = . 
n! (2r)!(n − r)!

r=1 

To complete the proof of the theorem we have to justify two assertions. First, Fg (0) 
is the orbifold Euler characteristic of �g,1. Second, γg (n) is given by equation (7). 
Observe that the Taylor expansion of (t/2)/ tanh(t/2) leads to the Harer-Zagier 
formula. We begin by verifying the first claim. Form the generating functions 

∂g (n)x n µg (n)x nLg (x) = Mg (x) = 
n→0 n→0 

γg (n)x n �g (n)x nEg (x) = Kg (x) = 
n→0 n 

It is possible to relate these functions to each other by using the relations between 
the coefficients. The following formula will be useful. 

� � � �k 
� 2i + k i 1 1 −

∅
1 − 4x 

x = . 
i 

∅
1 − 4x 2x 

i 

To prove this formula observe that when k = 0 we have the well known case 
(1 − 4x)−1/2 . Let the sum on the left be fk . Writing 

2i + k 2i + k − 1 2(i − 1) + k + 1 
= + 

i i i − 1 

we obtain the recursion relation fk−2 = fk−1 + xfk valid for k ∼ 2. For k = 1 one 
has to fix the first few terms to obtain f0 = 2xf1 + 1. The rest follows by induction. 
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� � � � � � � 

� � � � � � � � 

� � 

� 

� 

� 

We can now obtain the relations among the generating functions we defined. To 
relate E and M write 

� � � 2n 
γg(n)x nEg(x) = = µg(n − i) x n 

i 
n n i 

2i + 2j
µg(j)x i+j µg(j)x

j 
� 2i + 2j i = = x 

i i 
j→0 i j i 

1 1 − 2x −
∅

1 − 4x 
= Mg( )
∅

1 − 4x
 2x 

To relate E and K we write 
d d 
� r!�g(r)x

n 
� r!�g(r) � n 

� (2n)! (2n)!x
Eg(x) = = 

n! (2r)!(n − r)! (2r)! n!(n − r)!
n r=1 r=1 n 

d d 
� r!�g(r) dr 

� (2n)!xn 
� r!�g (r) dr(1 − 4x)−1/2 

r r = x = x 
(2r)! dxr n!(n)! (2r)! dxr 

r=1 n r=1 
� �r � � 

� x1 1 x 
= �g(r) = Kg∅

1 − 4x 1 − 4x 
∅

1 − 4x 1 − 4x 
r 

Finally to relate L to the rest 

n
∂g(n − i)x n ∂g(j)x

j i + j iMg(x) = = x 
i i 

n i j i 

� 1 
= ∂g(j)x

j 

(1 − x)j+1 
=

1 
Lg 

x 
1 − x 1 − x 

j 

Combining these relations we obtain 

1 
Lg(x) = Kg(x(1 + x)). (7)

1 + x 
This formula allows us to relate the orbifold Euler characteristic of �g,1 to the value 
Fg(0). We have an expression for the Euler characteristic in terms of ∂g . Using the 
previous equation we can turn this expression into a beta integral. 

� 1 

νorb(g) = 
(−1)n−1∂g(n)

= 
1 

� 
n ∂g(n)(−x)ndx 

2n 
−

2 0 x 
i 

1 
� 1 Lg(−x)dx 1 

� 1 Kg(−x(1 − x))dx 
= =−

2 0 x 
−

2 0 x(1 − x) 

1 
� 1 

r−1= (−1)r−1�g(r) x (1 − x)r−1dx 
2 0r 

(−1)r−1 r!(r − 1)!�g(r) 
= = Fg(0)

(2r)!
r 

There remains to prove equation (7). We will first relate γg(n) to the number of 
pairs consisting of a coloring of the vertices of Pn and an identification of the edges 
compatible with the coloring that gives an orientable surface. Counting the number 
of pairs a different way will yield an integral formula for γg(n). More precisely let 
C(n, k) denote the number of pairs (π, φ ) where π is a k-coloring of the vertices 
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� � 

of Pn and φ is a compatible identification of the edges. Suppose we are given an 
identification that yields a genus g surface. In Pn there are n + 1 − 2g inequivalent 
vertices. These can be colored arbitrarily. So given an identification that yields a 
genus g surface there are kn+1−2g possible ways to color the vertices. On the other 
hand, the sides can be paired to give any surface of genus between 0 and n/2. We 
conclude 

n/2 

γg (n)kn+1−2gC(n, k) = . 
0 

It is convenient to introduce another auxiliary function D(n, k), which will be re­
lated to C(n, k) by the equation 

C(n, k) = (2n − 1)!!D(n, k). 

However, to make D(n, k)’s connection to the zeta function more apparent it is 
more convenient to define it by the equality 

∗ � �k 
� 1 + x 

1 + 2 D(n, k)x n+1 = . 
1 − x 

n=0 

Showing the relation between C(n, k) and D(n, k) will be the hard work. Once 
we assume this relation the main theorem follows. Differentiate both sides of the 
defining equation of D(n, k). To extract D(n, k) we can divide both sides of the 
resulting equation by xn+1 . The residue at 0 will be (n + 1)D(n, k). Substituting 
x = tanh(t/2) we obtain 

� �n+1
k 1 

(n + 1)D(n, k) = rest=0 e ktdt 
2 tanh(t/2) 

Consider the function ekt((t/2)/ tanh(t/2))n+1 . The above residue will be 2nk times 
the coefficient of tn of this function. ((t/2)/ tanh(t/2))n+1 is an even function and 
we know the power series expansion of ekt . Multiplying these out and using the 
equation that relates C(n, k) and D(n, k) we obtain 

n/2 

C(n, k) = 
� (2n)!kn+1−2g 

Co t2g , 

� 
t/2 

�n+1 

. 
(n + 1)!(n − 2g)! tanh(t/2)

g=0 

Comparing the coefficients of k in this expression and in the expression defining 
C(n, k), we obtain equation (7). This completes the proof of the theorem that 

νorb(�1,g ) = α(1 − 2g) 

modulo the equality C(n, k) = (2n − 1)!!D(n, k). We now sketch a proof of this 
equality. 

Observe that D(n, k) is a polynomial of degree k−1 in n. To be precise expanding 
((1 + x)/(1 − x))k using the binomial coefficients theorem we see that 

k � �� � 
� 

2l−1 k n 
D(n, k) = . 

l l − 1 
l=1 

Suppose C(n, k) could be expressed as (2n − 1)!!Q(n, k), where Q(n, k) is a poly­
nomial of degree k − 1 in n. Then we can identify Q(n, k) and C(n, k). Note that 
this statement should be the content of lemma 8.7 in Harer’s C.I.M.E. notes. Re­
call that C(n, k) was the number of pairs consisting of a coloring of the vertices of 
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� � 

� 

� � 

� � 

� 

� 

l 

Pn and a compatible identification of the edges. The number of compatible pairs 
where the coloring uses all k available colors at least once generates a new function 
S(n, k). Since any pair counted in C(n, k) uses l different colors and since there are 
k choices for the colors, we obtain 

k � � 
� k 

C(n, k) = S(n, l). 
l 

l=0 

or equivalently 

k � � k � � 

S(n, k) = (−1)k−l k
C(n, l) = (2n − 1)!! (−1)k−l k

Q(n, k)
l l 

l=0 l=0 

(2n − 1)!!Q≥(n, k). 

Observe that our assumptions about Q(n, k) imply that Q≥(n, k) is a polynomial of 
degree k − 1 in n. Since there cannot be any surjective coloring of Pn by k colors 
if n < k − 1 this polynomial vanishes at 0, 1, · · · k − 2, so 

Q≥(n, k) = ζk 
n 

k − 1 

where ζk does not depend on n. We have to identify ζk . Since ζk does not depend 
on n but only on k we can determine it in the case when n = k − 1. S(k − 1, k) is 
k!γ0(k − 1) since the only genus that one can obtain from Pk−1 by using k colors 
is a genus 0 surface and there are k! choices of colors for each surface. γ0(k) is the 
k-th Catalan number. Putting these facts together gives ζk = 2k−1 . We proved 

k � � k−1 � �� � 
� k n 

C(n, k) = S(n, l) = (2n − 1)!! 
� 

2l−1 k 
l l k − 1 

l=0 l=1 

= (2n − 1)!!D(n, k) 

except for the assertion that C(n, k) can be expressed as a polynomial of degree 
k − 1 in n times (2n − 1)!!. To conclude the proof we exhibit C(n, k) as such a 
polynomial. 

We are going to obtain a different formula for C(n, k) by first fixing a coloring, 
then counting all the possible ways to identify the sides compatible with that col­
oring. Fix an orientation of the boundary of Pn. Denote by nij the number of 
edges that have the coloring i − j. First, observe that for there to be a compatible 
identification nij = nji and 2 nii. Note that the matrix N = (nij ) is symmetric |
and the entries along the diagonal are even. Call such matrices even symmetric 
matrices. Once these conditions on nij are satisfied for every i, j the number of 
ways to identify the sides in a compatible way is i<j nij ! i(nii − 1)!!. We can 
express C(n, k) as a sum over matrices with non-negative integer coefficients such 
that i,j nij = 2n. We sum the product of the number of ways C(N) of coloring 
Pn with nij edges having color i − j and the number of ways E(N) of identifying 
the edges compatible with that coloring to obtain an orientable surface: 

C(n, k) = C(N)E(N). 
N 
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� � 

Using the integral representations of the delta function and the gamma function, 
we can express C(n, k) as 

� 
− 1 tr(Z2 )dκH ,2C(n, k) = 2−k/2β−k2 /2 tr(Z2n)e 

Hk 

where the integral is over k ×k Hermitian matrices. Every Hermitian matrix can be 
diagonalized by conjugation. The diagonal matrix is unique up to a permutation. 
This allows to rewrite the integral as an integral over diagonal matrices. (Observe 
that the function we are integrating is invariant under conjugation.) Our function 
is easy to evaluate on diagonal matrices. One obtains the formula 

� k 
2 

2 (
Pk2n − 1 

e i=1C(n, k) = ck 

� 
ti

ti ) 
� 

(ti − tj )
2dt1 · · · dtk . 

Rk 
i=1 1�i,j�k 

Using the symmetry of the integral one can integrate over t1 to express C(n, k) 
as a polynomial of degree k − 1 times (2n − 1)!!. This completes the proof of the 
theorem. 

Remark: There are ways of obtaining the actual Euler characteristic of the 
Moduli space using the orbifold Euler characteristic. Harer and Zagier have given 
a generating function for the Euler characteristic of �g . In view of the techniques 
Arbarello and Cornalba use, knowing the Euler characteristics of various Moduli 
spaces becomes important. Hence, as our knowledge about the homology groups 
of various moduli spaces increases, the Harer Zagier formula might have many 
applications. Also note that in the process of the proof we have counted the ways 
of identifying the sides of a polygon to obtain a genus g surface. This seems to be 
an interesting geometric fact that is not immediately apparent. 

3. The stable cohomology of Mg , Mumford’s conjecture 

The basic strategy in calculating the orbifold Euler characteristic of moduli space 
was to relate the Euler characteristic to an invariant of the mapping class group. 
Then using the action of the mapping class group on another suitable space one 
was able to calculate the Euler characteristic. In fact, Harer has used this basic 
strategy in many other circumstances to obtain information about the cohomology 
of the moduli space of curves. In this section we briefly summarize some of his 
results without giving any proofs. For the proofs the reader may consult [Har2], 
[Har3], [Har1] and [Har4]. 

An important corollary of the construction of the moduli space of curves as the 
quotient of Teichmüller space by the action of the mapping class group is that the 
homology with Q-coefficients of Mg is isomorphic to the homology of the mapping 
class group. This allows Harer to compute the homology of Mg via the homology 
of the mapping class group. 

An initial result about the homology or more precisely the homotopy type of Mg,n 

is that it has the homotopy type of a finite cell complex of dimension 4g − 4 + n 
when n > 0. This allows us to conclude that the k-th homology groups of Mg,n 

vanish for sufficiently large values of k. The precise statements and proofs may be 
found in [Har3]. 
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Theorem 3.1. The moduli space Mg,n has the homotopy type of a finite cell-
complex of dimension 4g − 4 + n, n > 0. Using this one may deduce that 

Hk(Mg,n, Z) = 0 

if n > 0 and k > 4g − 4 + n and 

Hk (Mg , Q) = 0 

if k > 4g − 5.


Problem 3.2. Determine the precise homological dimension of the moduli space

of curves.


Harer’s next result is that the k-th homology group of Mg,n does not depend 
on g provided k is small compared to g. Again the details and precise statements 
may be found in [Har2]. One advantage of working with the mapping class group 
is that we can allow the Riemann surfaces to have boundaries. Let �r denoteg,n 
a Riemann surface of genus g with n marked points and r boundary components. 
Define the mapping class group Mapr 

g,n to be the homotopy classes of orientation 
preserving diffeomorphisms of �r that restrict to the identity on the boundary g,n 
and the marked points. 

There are the following inclusions between these mapping class group given by 
the geometric operations depicted in Figure 2. 

* 

* 

* 

* 

r � r+1 

�3 
3,2 

The map � : M ap g,n M ap g,n 

The map � : M ap r g+1,n The map � : M ap r 
g,n � M ap r−1 

g,n � M ap r−2 
g+1,n 

* 

* 

* 

* 

Figure 2. The maps that occur in Harer’s Stability Theorem 

(1) There is a map � : Mapr 
g,n g,n � Mapr+1 induced by attaching a pair of pants 

along one of the boundary components of �r . In particular, we need to g,n

assume that r ∼ 1 for this map to make sense. 
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(2) There is a map Φ : Mapr � Map r−1 
g+1,n induced by attaching a pair of g,n 

pants to �r along two boundary components. Here we need to assume g,n 
that r ∼ 2. 

(3) Finally there is a map σ : Mapr � Map r−2 
g+1,n induced by gluing two g,n 

boundary components of �r . We again need to assume that r ∼ 2.g,n

Harer’s stability theorem asserts that the maps �, Φ and σ induce isomorphisms 
on homology in a certain range. 

Theorem 3.3. (1) �� : Hk (Mapr 
g,n ) is an isomorphism if 

g ∼ 3k − 2 and r ∼ 1. 
g,n) � Hk (Mapr+1 

(2) Φ� : Hk (Mapr
g+1,n) is an isomorphism if g ∼ 3k − 1 andg,n) � Hk (Map r−1


r ∼ 2.


(3) σ� : Hk (Mapr
g+1,n) is an isomorphism if g ∼ 3k and r ∼ 2.g,n) � Hk (Map r−2 

In particular, combining these isomorphisms we see that Hk (Mg,n, Q) does not 
depend on g provided g ∼ 3k+ 1. Using the universal coefficients theorem similarly 
we can say that Hk (Mg,n, Q) does not depend on g provided g ∼ 3k + 1. Moreover, 
the isomorphisms are compatible with cup products. This allows one to define a 
stable cohomology ring H� 

stab(M, Q) of moduli spaces of curves by setting the k-th 
cohomology group to be Hk(Mg , Q) for g > 3k + 1. 

The first question that presents itself is to describe H� Consider the stab(M, Q). 
tautological map 

β : Mg,1 � Mg 

given by forgetting the marked point. Let α = c1(�Mg,1 /Mg ). We obtain a col­

lection of natural even cohomology classes on Mg by considering �i = β�(α
i+1). 

The celebrated Mumford conjecture states that these classes generate the stable 
cohomology of curves. 

Theorem 3.4 (Mumford’s Conjecture). The stable cohomology ring of curves is 
isomorphic to the polynomial algebra generated by the classes �i 

H� = Q[�1, �2, . . . ].stab(M, Q) �

One of the major achievements of the last few years has been the proof of Mum-
ford’s conjecture by the efforts of Madsen, Weiss, Ullrike, Tillman, Galatius among 
many others. For proofs, references and discussion consult Madsen and Weiss’ 
paper math.AT/0212321, [MW], [MT] and [Gal]. The proof is well-beyond the 
techniques developed in this class. 

Problem 3.5. Harer’s vanishing results and Mumford’s conjecture allows us to 
understand the cohomology of Mg in a certain range. Note however that the com­
putation of the Euler characteristic suggests that the dimension of the cohomology 
groups grow more than exponentially. The fact that the Euler characteristic is often 
negative means that Mg has a lot of odd cohomology. Construct odd cohomology 
classes on Mg . Construct cohomology classes on Mg in general. In particular, are 
there constructions that would explain the more than exponential growth of the 
Euler characteristic? Despite the incredible efforts of many mathematicians our 
knowledge of the cohomology of Mg remains fairly limited. 
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4. Some small homology groups of the moduli space of curves 

In this section we will give a rough sketch of Harer’s celebrated theorem 

Theorem 4.1. H2(M apr 
g,n; Z) = Zn+1; g ∼ 5. 

We will later give an algebraic proof of this result due to Arbarello and Cornalba. 
By a theorem of Mumford P ic(Mg,n) �= H2(M apg,n), where P ic(Mg,n) denotes the 
Picard group of Mg,n. Hence, Harer’s theorem determines the rank of the Picard 
group of the moduli space. In particular, when n = 0 and g ∼ 5 the rank of the 
Picard group of Mg is one. 

4.1. Preliminaries about the mapping class group. In this section, following 
Birman [Bir], we will outline a proof of the fact that the mapping class group of 
a genus g surface is generated by Dehn twists. In fact, Dehn twists on finitely 
many simple closed curves suffice to generate the group. Recall that a Dehn twist 
is the homeomorphism of the surface obtained by cutting the surface along a simple 
closed curve and re-gluing after a twist of 2β. 

The proof is by induction on the genus of the surface. We have already encoun­
tered the base case in our discussion of the Teichmüller space of the sphere: Every 
orientation preserving homeomorphism of the sphere is isotopic to the identity. To 
carry out the induction step we establish that given any orientation preserving 
homeomorphism h of the surface, there exists a sequence of Dehn twists and a 
meridian m such that if h is followed by a suitable sequence of Dehn twists, then m 
stays fixed. By cutting the surface along m we obtain a surface of genus g − 1 with 
two disks D1, D2 removed. h composed with the sequence of Dehn twists gives 
rise to a homeomorphism of the genus g − 1 surface with the disks removed. This 
homeomorphism extends to a homeomorphism h̃ of the genus g − 1 surface that 
fixes an interior point in each disc. We patch discs to the holes. h is the identity 
on the boundary of the discs, so we can extend it to the disc. There is a natural 
surjective homomorphism from the mapping class group of a surface of genus g − 1 
with two marked points to the mapping class group of a surface of genus g − 1. The 
kernel is a braid group that can be shown to be generated by Dehn twists. The 
result follows by induction. There remains to exhibit a meridian that is fixed when 
h is followed by a suitable sequence of Dehn twists. 

First, observe that if two simple closed curves are isotopic, then the Dehn twists 
generated by the two curves are isotopic. Next observe that if two simple closed 
curves C1 and C2 intersect at exactly one point, then there exists (up to a home­
omorphism isotopic to the identity) a Dehn twist that takes one to the other. Act 
on C1 by the Dehn twist generated by C2. This adds a copy of C2 to C1, now 
follow this with a Dehn twist on C1 with the appropriate orientation. To state the 
main lemma we need a definition. Two paths p and q have algebraically zero 
intersection if they intersect at exactly two points and if it is possible to orient p so 
that p has different directions with respect to a given orientation of q at the points 
of intersections. The key lemma is: 

Lemma 4.2. Let p be a simple closed path and let m be a simple path on a surface 
of genus g. Let N be a regular neighborhood of m. Then there exists a path u on 
the surface that lies in p ⊕ N , is related to p by a sequence of Dehn twists and has 
either zero or algebraically zero intersection with m. 
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Proof. The proof is by induction on the cardinality of intersection between p and 
m. If p and m do not intersect, then we can take u to be p. If p and m intersect at 
exactly one point and m is closed, then p and m are related by Dehn twists. Hence 
we can take u to be m, but we isotope it slightly in the neighborhood so that it 
actually becomes disjoint from m. If m is not closed, we can isotope it off p by an 
isotopy that is the identity outside N ⊕ p. To complete the induction we assume 
that the lemma holds whenever the cardinality of intersection between p and m is 
less than k. We have to consider two cases. The first is, if we orient p and m, then 
there are two adjacent points of intersection on m with the same orientation. In 
this case we take two points slightly off m in the neighborhood N (see Figure 3) 
and consider a curve that goes close to p and intersects m once in a neighborhood. 
Doing a Dehn twist in this curve allows one to reduce the number of intersections. 
The induction hypothesis applies. 

The second case we have to consider is the case when there are no two adjacent 
points with the same orientation. In this case choose three adjacent points of 
intersection on m such that the middle one has different orientation then the outer 
ones. Choose a curve that intersects m at one point in the neighborhood and is very 
close to p elsewhere. A Dehn twist in this curve allows us to reduce the number of 
intersection. We are done by the induction hypothesis. � 

The lemma has an immediate strengthening from the case of a single m to 
finitely many disjoint mi. We are interested in this lemma since meridians satisfy 
the hypotheses. 

Lemma 4.3. Let p be a simple closed path and let m1, · · · , mr be disjoint, simple 
paths, then there exists a path u which is related to p by a sequence of Dehn twists 
and has zero or algebraically zero intersection with each of the mi. 

Choose mutually distinct neighborhoods of the paths mi and apply the previous 
lemma multiple times. Note that if at some step we have pi which has algebraically 
zero intersection with mj for j ≡ i repeating the process of the previous lemma 
may result in changing an algebraically zero intersection to one intersection. We 
can always eliminate that case using the technique described in the beginning of 
the proof of the previous lemma. 

Lemma 4.4. Let h be an orientation preserving homeomorphism of the genus g 
surface, let p be the image of the meridian m1. Then there exists a simple closed 
curve v related to p by a sequence of Dehn twists such that v does not intersect 
any of the other meridians, v ⊗ mi = ∞ and the intersection of v with curves di 

that cut the genus g surface into tori is either zero or algebraically zero. (see figure 
2) Moreover, v is related to m1 by a sequence of Dehn twists. Consequently, p is 
related to m1 by a sequence of Dehn twists. 

Proof. By the previous lemma we can choose u so that the intersection of u with 
mi and di is either zero or algebraically zero. If u intersects mj , then it must also 
intersect dj . dj bounds a torus. If u did not intersect dj , in this torus u would 
either have to intersect itself or it would bound a disc. Neither can happen since the 
original meridian did not have these properties and these are properties invariant 
under a homeomorphism. Now it is not hard to push u off mj by finding a disc 
that u and mj bound. Repeating for every j we obtain the desired curve v. To 
see that v is related to m1 by Dehn twists, remove the g meridians to obtain a 
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sphere with 2g holes. v must separate the sphere, but since v is non-separating 
in the surface it must bound a boundary component. v intersects a simple closed 
curve ak going once around a hole in the original surface. We can assume that the 
cardinality of intersection is one (or we can reduce it to that case by a sequence of 
Dehn twists and isotopies.) We conclude that v is related to ak by a Dehn twist. 
Finally choosing a curve that intersects ak and m1 once we see that v is related 
to m1 by Dehn twists. This completes the proof that the mapping class group is 
generated by Dehn twists. � 

4.2. Computation of H1(M ap). In this subsection using the fact that the map­
ping class group is generated by Dehn twists we will prove that the first homology 
group of the mapping class group with Z coefficients vanishes when the genus is 
bigger than 2. First, recall the basic definitions of group homology. Let ZG denote 
the group ring and let B be a right ZG module. The n-th homology group with 
coefficients in A is defined to be 

Hn(G, A) = T or ZG(A, Z),n 

where Z is regarded as a trivial ZG module. More explicitly, take a ZG-projective 
resolution of the trivial ZG module Z. 

= ZP2 � P1 � P0 � 0, H0(P ) �· · ·
Tensor this complex over ZG by A to obtain the complex 

· · · � P1 ≤ZG A � P0 ≤ZG A � 0 

The n-th homology group of G with A coefficients is the n-th homology group of this 
complex. It is a fact that this group is independent (up to canonical isomorphism) 
of the chosen projective resolution. It is useful to have explicit descriptions of the 
groups H0 and H1. First, observe that by the right exactness of the tensor product, 
we conclude that 

H0(G, A) �= A ≤ZG Z. 

The kernel of the map ZG � Z sending an element of G to 1 is called the augmen­
tation ideal IG and as a free group it is generated on the set 

S = {x − e x = e ∪ G}.| ⊂
Since the G action on Z is trivial, we can write 

A ≤ZG Z = A/(A √ IG). 

To compute H1(G, Z), we take the free resolution of Z given by 

0 � IG � ZG � Z � 0 

The long exact sequence of homology 
i

0 � H1(G, Z) � A ≤ZG IG � A � H0(G, Z) � 0 

implies that H1(G, Z) �= A≤ZG IG. Here we used the facts that the higher homology 
groups of free modules vanish and that i is trivial. Recalling that G acts trivially 
on Z we obtain 

H1(G, Z) = Z ≤ZG IG = IG/(IG)2 . 

The latter group is isomorphic to the quotient of G by its commutator subgroup. 
We conclude from this discussion that the first homology group of G with integer 
coefficients is isomorphic to the abelianization of the group. In this section whenever 
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I omit the coefficients I mean homology with integer coefficients. Having mentioned 
the facts we will use from group homology, we can compute the first homology of 
the mapping class group. 

Proposition 4.5. H1(Mapr 
g,n) = 0 for g ∼ 3 and r, n arbitrary. 

Proof. We will show that the abelianization of Mapr is trivial for g ∼ 3 by g,n 
exhibiting relations among the Dehn twists that generate it. We will show these 
relations by explicit calculation on a sphere S4 with four discs removed. We will 
conclude that they also hold on �r 

g,n, which we can do g,n by embedding S4 into �r 

when g ∼ 3. 

Take a sphere and remove four discs. Label the boundary components as C0, · · · , C3. 
Let φi denote the Dehn twist generated by a curve parallel to the boundary Ci. Let 
Cij denote a curve circling Ci and Cj , and let φij be the Dehn twist on Cij . In the 
mapping class group the following relation holds between these Dehn twists: 

φ0φ1φ2φ3 = φ12φ13φ23 (8) 

To prove this relation observe that we can cut S4 along three arcs to obtain a disc. 
If we can show that the action of the Dehn twists on the right and left hand sides of 
equation (2) agree on these arcs, we can conclude that equality holds. This follows 
from the fact that any orientation preserving homeomorphism of the closed disc 
fixing the boundary is isotopic to the identity. For the calculation that the action 
on the arcs agree see Figure 4. 

This relation allows us to conclude that the mapping class group is generated by 
non-separating curves for g > 2. Embed S4 into the surface of interest such that 
boundary of one of the discs is the separating curve and the others are not. Then 
using the relation we can eliminate the disc that is separating. Any non-separating 
curve can be mapped onto another non-separating curve by an orientation preserv­
ing homeomorphism of the surface. Find two canonical systems of generators one 
system containing one of the curves, the other system containing the other curve. 
If we cut the surface along these systems, we get a polygonal region. We can find 
a homeomorphism of the boundary taking one curve to the other. This induces a 
homeomorphism of the surface. We thus obtain a relation between the Dehn twists 
of two non-separating curves differing by a homeomorphism h 

φA = hφB h
−1 . 

It follows that the first homology group is cyclic since we can write all the generators 
as ωiφω−1 for a fixed Dehn twist φ and some element ωi ∪ �r . When we abelianize, i g,n

all the generators become equal. Hence, H1(�
r 
g,n) is cyclic for g ∼ 3. To show that 

H1 is actually zero when g ∼ 3, we use the fact that we can embed S4 into our 
surface such that all the seven curves that we considered are non-separating. We 
then obtain the relation (2) among the seven Dehn twists ωiφω−1 . Abelianizing we i 
see that φ4 = φ3 . In other words, the abelianization of the mapping class group is 
trivial. This proves the proposition. � 

>g4.3. Construction of the cut system complex. A cut system < Ci oni=1 
the genus g surface F is the isotopy classes of a collection of g disjoint, simple 
closed curves such that the complement of these curves F − (C1 ⊕ · · · ⊕Cg ) remains 
connected. There is no ordering or orientation on the curves. Observe that in 
general there will be infinitely many cut systems on a given surface. Given two 
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isotopy classes of curves define I(C, C ≥ ) as the minimum number of intersections 
among representatives intersecting transversely. 

We start building a cell complex X . X has one vertex for each cut system on F . 
We attach a one cell between vertices that represent cut systems that differ by a 
simple move. A cut system differs from another cut system by a simple move if 
the two cut systems differ in only one isotopy class and for these I(Ci, Ci 

≥) = 1. For 
example, on the torus a loop going around the hole once represents a cut system and 
a loop going around the handle represents another cut system. These cut systems 
differ by a simple move. There are three basic cycles of simple moves. (See Figure 
5) We adjoin a 2-cell each time one of these basic cycles of simple moves occurs. 
Usually when writing cycles, we omit any isotopy class that remains unchanged. 
Hatcher and Thurston [HT] proved that the resulting cell complex is connected and 
simply connected. 

The main idea of the proof is to realize cut systems as maximal trees in a graph, 
where the vertices of the graph correspond to the critical points of a C∗ function 
and the edges correspond to the connected components of the function’s level sets. 
Then drawing paths in the space of C∗ functions they are able to show that X 
is connected. Using a careful analysis of how non-degenerate critical points can 
change if a family of functions has a specified type of degenerate critical point, they 
show that one can contract any loop. Since the details are involved we will omit 
them here. 

The mapping class group � acts on the complex X by 

[w] < Ci >=< w(Ci ) > . 

Observe that since the cells are determined solely by configurations of simple closed 
curves on F , this action extends to the whole complex. Unfortunately the cell 
complex X is too large to work with. The next step is to select a Map invariant 
simply connected subcomplex of X whose combinatorics we can control. 

The definition is complicated. First, among the two cells corresponding to the 
R1 cycles we pick a subset corresponding to the Map orbit of the cycles where the 
changing isotopy classes correspond to ω1, λ1, ρi and the fixed ones correspond to 
ωi, 2 ≡ i ≡ g. (See Figures 6 and 7.) We take all the two cells corresponding to 
R2 cycles. Finally, we take the Map orbit of the R3 cycle shown in the figure. 
By definition this subcomplex Y2 is invariant under the action of the mapping class 
group. The main theorem is that Y2 like X is simply connected. The proof proceeds 
by showing that Y2 has enough cells of each type so that when contracting any loop 
contained in Y2 one can stay within Y2 and does not have to use any other cells in 
X . Finally, by adding two types of three cells Harer constructs a 3-complex Y3. See 
figures for a description of these three cells. We thus obtain a simply connected 3­
complex on which the mapping class group acts. The construction has been carried 
out in such a way that the action of the mapping class group decomposes into orbits 
since an orientation preserving homeomorphism cannot take a specific type of curve 
configuration to another. Moreover, we have a precise description of an element in 
each orbit. This allows us to compute stabilizers and compute homology groups. 
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4.4. The calculation of H2(Map). Until we explicitly remove the assumptions, 
we will assume that g ∼ 5, n = 0 and r ∼ 1. We will often write Map instead of 
Mapr . Let B be a CW complex and a K(Map, 1). In other words, B has trivial g,n

higher homotopy groups and β1(B) = Map. Let E be the universal cover of B. 
Consider the fiber product Σ = E ×M ap Y3. Recall that the fiber product is the 
quotient of the Cartesian product under the equivalence relation (eg, y) � (e, gy). 
There is a natural projection from Σ to B given by p̃(e, y) = p(e), where p is 
the projection map from E to B. The fiber of this projection is Y3. Since Y3 is 
simply connected and B is a K(Map, 1) the homotopy exact sequence for a fibration 
allows us to conclude that β1(Σ) = Map. Recall that we are trying to prove the 
statement that H2(Mapr = Zn+1 for g ∼ 5. A corollary of the Cartan-Leray g,n) �
spectral sequence establishes the existence of an exact sequence 

Σ) � H2(Σ) � H2(Map) � 0.H3(Map) � H2( ˜ � 

˜Here Σ denotes the universal cover of Σ and all the homology groups are with 
integer coefficients. Harer computes the image of π in the above sequence as Z. 
Since the map is surjective this shows that H2(Map) is Z. 

Using the cellular chain complexes we have for Y3 and E we can obtain a cellular 
complex for Σ. Let (C�, �

C 
� ) be the cellular chain complex of Y3 and (K�, �K ) be 

the cellular chain complex of E. Form the tensor product of these chain complexes 
over the group ring of Map. Denote the resulting chain complex by (M�, �

M ). 
Explicitly, M is given by 

Mk = ≥i+j=k Ci ≤ZM ap Kj . 

As usual the differential is 

�M = (≥(�C ≤ZM ap 1Kk−i )) + (≥(1Ci ≤ZM ap (−1)i�K 
k−i))k i 

There is a natural filtration on the chain complex (M�, �
M ) given by 

Fp(Mk ) = ≥i+j=k,i�p Ci ≤ZM ap Kj . 

This gives rise to a spectral sequence which abuts to 

∗ FpHp+q (Σ)
Ep,q = ,

Fp−1Hp+q (Σ) 

where Fp is the filtration of H�(Σ) obtained by taking the images of Hp+q (E×� Yp) 
in Hp+q (Σ) arising from the inclusion of E ×M ap Yp in Σ. 

The main observation is that Map cannot take a given cell of Y3 to any arbitrary 
cell of Y3. Map acts transitively on the zero cells. This follows from the fact that 
Y2 is connected. We can choose a path along the one skeleton going from one cut 
system to another. As we discussed above, there is a sequence of Dehn twists that 
takes a curve ω to a curve λ when ω intersects λ exactly once. This sequence does 
not affect any of the other curves in the cut system. Finally, any R2 type cell 
can be taken to any other one by Map. Using this information we can obtain a 
description of the decomposition of Cp, the p-th graded piece in the cell complex 
of Y into orbits of Map. For zero-cells we only need to take the zero-cell δ0 

corresponding to < ω1, ω2, · · · , ωg >. To make the notation less cumbersome we 
omit the ωi that do not change from the notation. For one cells we only need to 
take the 1-cell δ1 given by < ω1 > − < λ1 >. For the two cells of type R1 we 
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�

ineed the δ2 corresponding to < ω1 > − < λ1 > − < ρi > − < ω1 > for each ρi, 
N +11 ≡ i ≡ N . For the two cell of type R2 we need to include δ2 corresponding 

to < ω1, ω2 > − < λ1, ω2 > − < λ1, λ2 > − < ω1, λ2 >. Finally, for the 2-cell of 
N +2 2type R3 take δ2 . (See figure 7) For our two types of 3-cells take δ1 and δ3 as3 

pictured. 

The action of Map on Cp splits as 

Cp = C(δ1 
p 
np )p ) ≥ · · · ≥ C(δ

iwhere C(np) denotes the Map orbit of the p-cell δi . Let �i denote the stabilizer p p 

of δi . Then we can view Ci asp p 

Ci = ZMap ≤p i
p 

Z.Z�

This allows us to describe the E1 term of the spectral sequence as 
iE1 = ≥iHq (�

i , < δp >).p,q p

iRecall that H0 was given as Z≤ < δ >. To compute the various H0 we need to Z�i
p p 

know how �i 
p acts on < δi >. It is clear that �0 acts trivially on the single point p 

< δ0 >. We conclude that H0(�0, < δ0 >) �= Z. �1 can interchange ω1 and λ1, so 
it contains an element that reverses the orientation of the 1-cell < δ1 >. From this 
we can conclude that H0(�1, < δ1 >) �= Z/2Z since 1 ≤Z�0 m = 1 ≤Z�0 −m because 

iof the flip. Harer observes (?) that �i for 1 ≡ i ≡ N acts trivially on < δ2 >. It2 
ifollows that H0(�

i 
2, < δ2 >) = Z. �N +1 contains an orientation reversing element 2 

N +1given by switching ω1 and λ1. We conclude that H0(�
N +1, < δ >) � Z/2Z.= 

�N +2 1 
2 2 

and �1 act trivially on < δN +2 > and < δ3 >, respectively. Hence their 2 3 2 
homology groups are isomorphic to Z. �2 on the other hand has an orientation 3 
reversing element, hence its homology group is Z/2Z. This allows us to determine 
E2 

p,0 as


E2 = Z, E2 = E2
2,0 

�

0,0 

�
1,0 3,0 = 0, E2 = ZN ≥ Z/2Z 

The next step is to describe the subgroup �̂0 of �0 that fixes the curves which 
determine δ0 pointwise. There is an explicit description of ˆ ˆ�0. �0 = P2g+r−1 × 
Zg+r−1 ˆ. �0 is isomorphic to the direct product of the pure braid group on 2g+ r−1 
strings and the free abelian group generated by Dehn twists on the ωi and on r− 1 
curves parallel to the r − 1 boundary components Σr−1. On the other hand, the 
group of symmetries of δ0 is the group of signed permutations ±�g on g elements 
since the ωi can be permuted among each other and their orientations might be 
reversed. In other words, there is a short exact sequence 

1 � �̂0 � �0 � ±�g � 1 

Given a short exact sequence of groups there is a spectral sequence, the Lyndon-
Hochschild-Serre spectral sequence, which relates the homology of the groups. 

Theorem 4.6 (Lyndon-Hochschild-Serre). Given a short exact sequence of groups 

1 � K � G � Q � 1 

and a ZG module M, there exists a first quadrant spectral sequence with 

E2 = Hp(Q, Hq (K, M))p,q 

and converging strongly to H�(G, M). 
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A corollary of the spectral sequence is the existence of an exact sequence 

H2(G) � H2(Q) � K/[G, K] � H1(G) � H1(Q) � 0 

Applying this exact sequence to our short exact sequence allows us to conclude 
that H1(�0) � ZN−1 ≥ Z/2Z. Here one uses an explicit presentation of the pure = 
braid group to compute H1(�̂0). H1(G0) is the Klein 4 group. One can see this 
by abelianizing ±�g. This computation also identifies E3 

2,0 of our original spectral 
sequence as Z. To complete the computation Harer identifies π(F0 (H2(Σ))) and 
π(F1(H2(Σ))) as 0, where π is the map whose image we are trying to identify and 
Fp(H2(Σ)) is the filtration described in the beginning of this section. This proves 
that π : H2(Σ) � H2(M ap) is surjective. 

There remains to remove the restrictions on the number of marked points and the 
number of boundary components. From now on we remove the global assumptions 
we made in the beginning of the section. There is an exact sequence that relates 
M apr to M ap r−1 when r ∼ 1. Attach a disc to the r-th boundary component g,n g,n+1 

and make its center a marked point. Then M apr surjects onto M ap r−1 sinceg,n g,n+1 
any orientation preserving homeomorphism restricted to the added disc is isotopic 
to the identity with an isotopy that fixes the center. The kernel of the map is 
generated by a Dehn twist parallel to the boundary of the r-th component. We 
obtain the exact sequence 

1 � Z � M ap r 
g,n+1 � 1g,n � M ap r−1 

The Lyndon-Hochschild-Serre spectral sequence allows Harer to conclude induc­
tively that H2(M apr = Zn+1 . This settles the theorem except when the surface g,n) �
has no boundary components and no marked points. In this case we have to use 
a different exact sequence instead. There is a surjection from M apg,1 to M apg 

obtained by forgetting the marked point. (We omit the indices that are equal to 
0.) This is a surjection since any orientation preserving homeomorphism is isotopic 
to one that fixes the marked point. The kernel of the map is isomorphic to the 
fundamental group of the surface. We obtain an exact sequence 

1 � β1(Fg) � M apg,1 � M apg � 1 

and the Lyndon-Hochschild-Serre spectral sequence becomes available as a tool. 
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25 


	1. Teichmüller theory
	2. The Harer-Zagier Formula for the orbifold Euler characteristic of the mapping class group
	3. The stable cohomology of Mg, Mumford's conjecture
	4. Some small homology groups of the moduli space of curves
	4.1. Preliminaries about the mapping class group
	4.2. Computation of H1(Map)
	4.3. Construction of the cut system complex
	4.4. The calculation of H2(Map)

	References

