
THE KONTSEVICH MODULI SPACES OF STABLE MAPS 

1. The Kontsevich moduli space of stable maps. 

1.1. Preliminaries. We will begin with a detailed study of the Kontsevich moduli 
spaces of stable maps to Pr . These spaces can be defined much more generally. 
However, we will have very little to say about the general situation. We will mostly 
concentrate on the case of genus zero maps to Pr . The best introduction to Kont­
sevich moduli spaces is [FP] where you can find details about the construction of 
the space. 

Definition 1.1. Let X be a smooth projective variety. Let � ≤ H2(X, Z) denote 
the class of a curve. The Kontsevich moduli space M g,n(X, �) of n-pointed, genus 
g stable maps to X in the class parameterizes isomorphism classes of the following 
data 

(1) (C, p1, . . . , pn, f) an at worst nodal curve C of arithmetic genus g with n 
distinct, smooth points p1, . . . , pn of C and a morphism f : C ∩ X such 
that f⊕[C] = �, 

(2) The map is required to be stable; that is if f is constant on any component 
of C, then that component is required to have at least 3 distinguished 
points. The distinguished points are either marked points, or points lying 
over nodes in the normalization of the curve. 

We have already encountered some examples of Kontsevich moduli spaces. 

Example 1.2. The moduli space of stable maps to a point coincides with the 
moduli space of curves: 

Mg,n(P0 , 0) ⊕= Mg,n. 

Example 1.3. The moduli space of degree zero stable maps, similarly, is easy to 
describe. 

Mg,n(X, 0) = Mg,n × X. 

Since a degree 0 map from a connected curve is determined by specifying a point 
on X , this identification is immediate. 

Example 1.4. The moduli space of degree one maps to Pr is isomorphic to the 
Grassmannian: 

M0,0(P
n , 1) = G(2, n + 1) = G(1, n). 

A generalization of this example is the moduli space of degree one maps to a smooth 
quadric hypersurface Q in Pn for n > 3. In that case the Kontsevich moduli space 
is isomorphic to the orthogonal Grassmannian. 

Example 1.5. The Kontsevich moduli space M 0,0(P
2 , 2) is isomorphic to the space 

of complete conics or alternatively it is isomorphic to the blow up of the Hilbert 
scheme of conics in P2 along the Veronese surface of double lines. 
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Exercise 1.6. Prove the previous assertion by exhibiting a map (using the universal 
property of complete conics) from M0,0(P

2 , 2) to the space of complete conics. 
Check that this is a bijection on points. The claim then follows from Zariski’s Main 
Theorem once we know that M 0,0(P

2 , 2) is smooth. 

The main existence theorems for Kontsevich moduli spaces are the following. 
We refer you to [FP] for their proof. 

If XTheorem 1.7. is a complex, projective variety, then there exists a projective 
coarse moduli scheme Mg,n(X, �). 

Note that even when X is a nice, simple variety (such as P2), Mg,n(X, �) may 
have many components of different dimensions. 

Example 1.8. Consider the Kontsevich moduli space M1,0(P
2 , 3) of genus one 

degree three stable maps to P2 . This space has three components: two of dimension 
9 and one of dimension 10. Naively, we might expect an open subset of M1,0(P

2 , 3) 
to parameterize smooth cubic curves in P2 . Indeed an open subset of one of the 
components does so. However, there is a second component whose general member 
is a map from a reducible curve with a genus zero component and a genus one 
component to P2 that contracts the genus one component and gives a degree three 
map on the genus zero component. Note that this component of M1,0(P

2 , 3) has 
dimension 10. The dimension of rational cubics in P2 is 8, but the moduli of 
the contracted elliptic curve and the point of attachment add two more moduli. 
Similarly, one obtains a third component of dimension 9 by considering maps from 
elliptic curves with two rational tails which contract the elliptic curve and map the 
rational tails as a line and a conic. 

Example 1.9. Even if we restrict ourselves to genus zero stable maps the Kontse­
vich moduli spaces may have many components of different dimensions. Consider 
degree two genus zero stable maps to a smooth degree seven hypersurface X in P7 . 
Assume that X contains a P3 . M0,0(X, 2) contains at least two components. One 
component covers X and has dimension 5. The conics in the P3 give a different 
component of dimension 8. 

In order to obtain an irreducible moduli space with mild singularities one needs 
to impose some conditions on X . One possibility is to require that X is convex. 
Recall that a variety X is convex if for every map 

f : P1 ∩ X, 

f⊕TX is generated by global sections. Since every vector bundle on P1 decomposes 
as a direct sum of line bundles, a variety is convex if for every map 

f : P1 ∩ X, 

the summands appearing in f ⊕TX are non-negative. If we consider genus zero stable 
maps to convex varieties, the Kontsevich moduli space has very nice properties. 

Theorem 1.10. Let X be a smooth, projective, convex variety. 

(1)	 M0,n(X, �) is a normal, projective variety of pure dimension 

dim(X) + c1(X) · � + n − 3. 
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(2)	 M0,n(X, �) is locally the quotient of a non-singular variety by a finite group. 
The locus of automorphism free maps is a fine moduli space with a universal 
family and it is smooth. 

(3)	 The boundary is a normal crossings divisor. 

Observe that the previous theorem in particular applies to homogeneous varieties 
since homogeneous varieties are convex. In fact, if X is a homogeneous variety, then 
M0,n(X, �) is irreducible (see [KP]). 

Remark 1.11. Although when we do not restrict ourselves to the case of genus zero 
maps to homogeneous varieties Kontsevich moduli spaces may be reducible with 
components of different dimensions, Mg,n(X, �) possesses a virtual fundamental 
class of the expected dimension. The existence of the virtual fundamental class is 
the key to Gromov-Witten Theory. 

Requiring a variety to be convex is a strong requirement on uniruled varieties. 
For instance, the blow-up of a convex variety ceasses to be convex. In fact, I do 
not know any examples of rationally connected, projective convex varieties that are 
not homogeneous. 

Problem 1.12. Is every rationally connected, convex projective variety a homo­
geneous space? Either prove that it is or give counterexamples. 

1.2. Kontsevich’s count of rational curves. The Kontsevich moduli space is 
endowed with n evaluation morphisms 

evi : Mg,n(X, �) ∩ X, 

where evi sends the point (C, p1, . . . , pn, f) to f(pi) ≤ X . 

From now on we will assume that X is a homogeneous variety and we will always 
n ofπ1restrict ourselves to the case of genus zero curves. Given the classes , . . . , π

algebraic subvarieties of X , we can construct a class on M 0,n(X, �) by pulling them 
back via the evaluation morphisms and cupping: 

⊕ 
n(π

If the codimension of the classes add up to 

dim(X) + c1(X) · � + n − 3, 

then we can define I� (π1, . . . , πn), the Gromov-Witten invariant of X associated to 
the curve class � and cohomology classes π1, . . . , πn as follows: 

⊕(π ) ⊗ · · · ⊗ ev11ev n). 

⎤ 
I� (π1, . . . , πn) = ev ⊕(π ) ⊗ · · · ⊗ ev11 

⊕ 
n(πn). 

M0,n ( )X,�

Remark 1.13. We can still define Gromov-Witten invariants for arbitrary, smooth 
projective varieties and higher genus curves. In that case we have to evaluate the 

M ( )]virt M0,n( ).product over the virtual fundamental class [ g,n X, � instead of X, �

The relation between Gromov-Witten invariants and enumerative geometry is 
established via the following variant of Kleiman’s Transversality Theorem. 
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Lemma 1.14. Let X be a homogeneous variety G/P . Let �1, . . . , �n be irreducible 
subvarieties of X with classes π1, . . . , πn. Let g1 · · · , gn ≤ G be general elements, 
then the scheme theoretic intersection 

α−1(g1�1) � · · · � α−1(gn�n) (1)1 n 

is a finite number of reduced points supported in M0,n(X, �) and the Gromov-Witten 
invariant equals the cardinality of this set 

I� (π1, · · · , πn) = #α−1(g1�1) � · · · � α−1(gn�n).1 n 

Example 1.15. In this example we derive Kontsevich’s recursive formula for the 
number of rational plane curves of degree d that contain 3d− 1 general points. We 
begin by giving a geometric argument. We will then see how quantum cohomology 
gives the same answer formally. Define Ne to be the number of rational plane curves 
of degree e that contain 3e− 1 general points. Consider 3d pointed stable maps of 
degree d to P2 that map the points marked by p1, . . . , p3d−2 to fixed general points 
of P2 . Fix also two general lines l1, l2 and require p3d−1 to map to l1 and p3d to 
map to l2. Such stable maps give us a curve C in M0,3d(P

2, d). 

We will now analyze how C intersects the boundary divisors of M0,3d(P
2, d). The 

main point is that there is a map 

∂ : M0,n(X, �) ∩ M0,4 

given by forgetting the map and the marked points but any specified four of the 
marked points (assuming of course that n ∗ 4) and then stabilizing. Since the 
boundary divisors on M0,4 are linearly equivalent, their pull-backs are also linearly 
equivalent. 

Let us apply this discussion to our situation. Consider the map 

∂ : M0,3d(P
2, d) ∩ M0,4 

as above that forgets all the points but p1, p2, p3d−1 and p3d. The pull-back of 
the two divisors �{p1 ,p3d−1 },{p2 ,p3d } and �{p1 ,p2 },{p3d−1 ,p3d } are linearly equivalent, 
hence must intersect our curve C in the same number of points. Let us calculate 
these two numbers. First, 

∂⊕�{p1 ,p3d−1 },{p2 ,p3d } = 
� 

�i,A 

{i,A | {p1 ,p3d−1 }∅A,{p2 ,p3d }∅Ac 

where the sum runs over boundary divisors in M0,3d(P
2, d) consisting of maps 

with reducible domain curves such that the marking on one component contains 
p1, p3d−1, but does not contain p2, p3d and the map has degree d − 1 ∗ i ∗ 1 on 
that component. The intersection of this divisor with our curve C is counted by 
the number of maps from reducible rational curves that have these properties. 

Suppose the number of marked point on the component of degree i is larger than 
3i, then since more than 3i− 1 of these points are required to map to general fixed 
points of P2 by the above dimension count there will not be such maps. On the 
other hand, if there were fewer than 3i marked points, then the same argument 
when applied to the other component shows that there are no such maps. We 
conclude that #A = 3i and #Ac = 3(d − i). Since {p1, p3d−1} ∼ A, {p2, p3d} ∼ A
in order to determine the marking on the degree i component we need to choose 
3i− 2 points among the 3d − 4 points p3, . . . , p3d−2. Once we choose those points, 
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the number of rational plane curves passing through the 3i − 1 points is Ni. Each 
curve intersects l1 in i points, hence the choice of point p3d−1 is i. Similarly the 
degree d − i component contributes a factor of Nd−i(d − i). Finally, in order to 
specify the map we have to specify among the i(d− i) points of intersection between 
the two components which is the image of the node. We thus get that the total 
number of points of intersection of our curve C with this divisor is 

� �
3d − 4

� 

i2(d − i)2NiNd−i. 
3i− 2 

1∩i∩d−1 

We now calculate the C · ∂⊕�{p1 ,p2 },{p3d−1 ,p3d }. We first observe that 

∂⊕�{p1 ,p2 },{p3d−1 ,p3d } = 
� 

�i,A 

{i,A | {p1 ,p2 }∅Ac ,{p3d−1 ,p3d }∅A 

where the sum runs over 0 → i → d − 1 and partitions of the marked points so 
that p3d−1, p3d are marked points in the domain on which the map has degree i 
and p1, p2 are not on that component. Note that since the images of p1 and p2 are 
distinct, d− i cannot be zero. However, if the curve passes through the intersection 
point of l1 and l2, then the map may have a contracted component, where p3d−1 

and p3d lie on the component contracted to the point of intersection of l1 and l2. 
Hence, i may be zero. Keeping this in mind we see that the intersection of C with 
this divisor is 

Nd + 
� �

3d − 4
� 

i3(d − i)NiNd−i. 
3i− 1 

1∩i∩d−1 

This is calculated in exactly the same way as above. Since these two divisors are 
linearly equivalent, the two numbers we calculated have to be equal. We conclude 
that the number of rational plane curves of degree d containing 3d−1 general points 
may be recursively determined as follows: 

Nd = 
� ��

3d − 4
� 

i2(d − i)2 − 

�
3d − 4

� 

i3(d − i) 

� 

NiNd−i. 
3i − 2 3i− 1 

1∩i∩d−1 

Of course, we know the first few of these numbers classically 

N1 = 1, N2 = 1, N3 = 12. 

Exercise 1.16. Check that N2 and N3 follow from the recursion and N1. Calculate 
the next few Nd. 

Exercise 1.17. Verify the details of the calculation above. In particular, carry out 
the necessary dimension counts that justify the claims made. 

Exercise 1.18. Find the number of rational curves Nd1 ,d2 in the class 

OP1 ×P1 (d1, d2) 

on P1 × P1 passing through 2d1 + 2d2 − 1 general points using the same method. 
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Problem 1.19. Is it possible to generalize the previous discussion to other simple 
rational surfaces such as Hirzebruch surfaces or Del Pezzo surfaces? What kind of 
new problems arise? Are these surfaces convex? 

1.3. The quantum cohomology ring. There is a way of formalizing the calcu­
lations we performed in the previous section. One forms a ring called the quantum 
cohomology ring whose structure constants encode the Gromov-Witten invariants. 
This ring turns out to be a commutative, associative ring with unit. The type of 
recursions we determined in the previous section then follows from the associativity 
relations in the ring. 

We first choose a basis for the cohomology ring of the homogeneous variety X . 
We let T0 = 1, T1, . . . , Tm denote the divisor classes and Tm+1, . . . , Tr be an additive 
basis for the rest of the cohomology ring. There is a natural intersection matrix 
defined by ⎤ 

gij = Ti ⊗ Tj . 
X 

Let gij be the inverse of the intersection matrix. Then the products in the ordinary 
cohomology ring may be expressed as follows 

klTl.Ti ⊗ Tj = 
� �⎤ 

Ti ⊗ Tj ⊗ Tk 

� 

g klTl = 
�

I0(Ti, Tj , Tk)g 
Xk,l k,l 

The idea is to define a different multiplication structure on the cohomology 
ring by allowing Gromov-Witten invariants associated to non-zero curve classes as 
structure constants. Given a class π in the cohomology ring define the generating 
function Γ by 

1 
Γ(π) = 

� � 
I� (π, . . . , π ). 

n! 
n∗3 � 

� �⎛ � 
n times 

For convenience of notation I� (π, . . . , π ) is abbreviated by I� (π
n), Setting � �⎛ � 

n times 
�

yiTiπ = 

and expanding, the function Γ becomes a formal power series in Q[[y0, . . . , yr]] 

y n0 · · · ynr 
0 rΓ(y0, . . . , yr) = 

� �
I� (T

n0 , . . . , T nr ) .0 r n0! · · · nr! 
n0 +···+nr ∗3 � 

The third partial derivative of Γ with respect to yi, yj and yk is 

�3Γ 1 
Γijk = = 

� � 
I� (π

n, Ti, Tj , Tk). 
�yi�yj �yk n! 

n∗0 � 

Definition 1.20 (Quantum product). Define a multiplication, called quantum mul­
tiplication, on A⊕(X, Z) �Z Q[[y0, . . . , yr]] by setting 

Ti ∪ Tj = 
�

Γijk g klTl 

k,l 

and extending the multiplication to Q[[y0, . . . , yr]]-linearly. 
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Theorem 1.21. Under the quantum multiplication A⊕(X, Z) �Z Q[[y0, . . . , yr ]] is 
a commutative, associative Q[[y0, . . . , yr]]-algebra with unit T0. 

Remark 1.22. The ring we have just defined is sometimes referred to as the 
big quantum cohomology ring. There is also a small quantum cohomology ring. 
The structure constants of the small quantum cohomology ring depend only on 
the three-pointed Gromov-Witten invariants. The definition of the small quan­
tum multiplication differs from that of the big quantum multiplication only in the 
fact that in the definition of the small quantum cohomology we set the variables 
corresponding to classes of codimension two or more to zero. More precisely, set 

Γ̃ijk = Γijk (y0, y1, . . . , ym, 0, . . . , 0). 

Define the small quantum product by 

Ti ∪ Tj = 
� 

Γ̃ijk g klTl 

k,l 

Example 1.23 (Kontsevich’s count revisited). The quantum cohomology ring pro­
vides a formalism for deriving enumerative information about varieties. We demon­
strate how this works in the case of P2 . As a basis of the cohomology of P2 we can 
take T0 = 1, T1 = [line], T2 = [point]. 

Note that if � = 0, the only way a Gromov-Witten invariant can be non-zero is 
if n = 3 and the codimension of the three cycles π1, π2 and π3 sum to the dimension 
of X . In this case, the Gromov-Witten invariant is the classical intersection 

⎤ 
I0(π1, π2, π3) = π1 ⊗ π2 ⊗ π3. 

X 

Similarly, if one of the cohomology classes is the identity, the Gromov-Witten in­
variant vanishes unless � = 0, n = 3. 

On the other hand, for P2 we have that Id(T1 
r, T2 

s) = 0 unless s = 2d − 1. If 
s = 3d − 1, then 

Id(T1 
r, T 3d−1) = (rd)Nd.2 

Therefore, we obtain the following expression for the function Γ: 

2 2y0 y2 y0y y1 y2Γ(y0, y1, y2) = + 1 + 
� � 

Id(T1 
r, T 3d−1) 

r 3d−1 

2 2 2 r! (3d − 1)!
d∗1 r∗0 

2 2 3d−1 y0 y2 y0y1 
� 

Nde
dy1 

y2 = + + . 
2 2 (3d − 1)!

d∗1 

We now express the quantum product of the generators. 

Ti ∪ Tj = Γij0 T2 + Γij1 T1 + Γij2T0. 

Therefore, we have 

(T1 ∪ T1) ∪ T2 = (T2 + Γ111T1 + Γ112T0) ∪ T2 

= Γ221T1 + Γ222T0 + Γ111(Γ121T1 + Γ122T0) + Γ112T2 
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On the other hand, 

T1 ∪ (T1 ∪ T2) = T1 ∪ (Γ121T1 + Γ122T0) 

=	 Γ121(T2 + Γ111T1 + Γ112T0) + Γ122T1 

By the associativity of the quantum cohomology ring the coeffiecents of Ti in the 
two expressions of T1 ∪ T1 ∪ T2 have to be equal. Comparing the coefficients of T0 

(and remembering that taking the partial derivatives of Γ is independent of order), 
we obtain the relation 

Γ222 = (Γ112)
2 − Γ111Γ122. 

Working out these partial derivatives of Γ we obtain the equation 
3d−4 

Nde
dy1 y2 = d∗1 (3d−4)! ⎠ 

3i−1 
�⎠ 

3i−3 
� 

y��
Nii

2eiy1 y 3i−2 �2 
− �

� 
Nii

3 eiy1 
y2 2


i∗1 (3i−2)!

2 

(3i − 1)! 
⎡�

� 
Niie

iy1 

(3i − 3)! 
⎡ 

i∗1	 i∗1 

Equating the coefficients it is easy to obtain Kontsevich’s recursion 

Nd = 
� ��

3d − 4
� 

i2(d − i)2 − 

�
3d − 4

� 

i3(d − i) 

� 

NiNd−i. 
3i − 2 3i− 1 

1∩i∩d−1 

Exercise 1.24. Work out recursion relations for the number of rational curves in 
the class OP1 ×P1 (d1, d2) passing through 2d1 + 2d2 − 1 general points in P1 × P1 

using the quantum cohomology formalism. 

Exercise 1.25. Work out recursion relations for the number of rational curves of 
degree d in P3 that contain i general points and intersect 4d− 2i general lines using 
the quantum cohomology formalism. 

Exercise 1.26. Repeat the following two exercises for other simple varieties such 
as a smooth quadric threefold, the Grassmannian G(2, 4), ... 

2.	 Divisor classes on the Kontsevich moduli space and enumerative 
geometry 

In this section following Rahul Pandharipande [Pa] we determine the Picard 
group of the Kontsevich moduli space. We will then use this knowledge to study 
the enumerative geometry of rational curves in Pn . In particular, we will solve some 
of the enumerative questions we asked earlier in the course about twisted cubics. 

We start by giving the definitions of standard divisor classes. 

(1)	 H is class of the divisor of maps whose images intersect a fixed codimension 
two linear space in Pr . This divisor is defined provided r > 1 and d > 0. 
Whenever we refer to H we assume these conditions hold. 

(2)	 Li = evi 
⊕(OPr (1)), for 1 → i → n, are the n divisor classes obtained by 

pulling back OPr (1) by the n evaluation morphisms. 
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(3) �(A,dA ),(B,dB ) are the classes of boundary divisors consisting of maps with 
reducible domains. Here A � B is any ordered partition of the marked 
points. dA and dB are non-negative integers satisfying d = dA + dB . If 
dA = 0 (or dB = 0), we require that #A ∗ 2 (#B ∗ 2, respectively). 

Theorem 2.1 (Pandharipande). Let r ∗ 2 and d > 0. The divisor class H, the 
divisor classes Li and the classes of boundary divisors �(A,dA ),(B,dB ) generate the 
group of Q-Cartier divisors of M0,n(Pr , d). 

Proof. We will prove a more precise version of the theorem and determine the 
relations between the divisors in the process. For simplicity let 

P = Pic(M0,n(Pr , d)) � Q. 

Claim 2.2. If the number of marked points n ∗ 3, then H and the boundary divisors 
generate P . 

Consider the product of n−3 copies of P1 . Let W be the complement of diagonals 
and the locus where one of the factors is 0, 1 or ⊂. Let U be the open subset 

U ∼ P �r 
0 H

0(P1 ,OP1 (d)) 

parameterizing base-point free degree d maps from P1 to Pr . The complement of 
U has codimension at least 2. The product W × U embeds as an open subset of 
M0,n(Pr, d) whose complement is the boundary. Since the group of codimension 
one cycles of W × U is generated by a multiple of H, the claim follows. 

Claim 2.3. If the number of marked points n = 2, then the boundary, L1 and L2 

generate P . 

Fix a hyperplane Π. Consider the inverse image U of Π under the third evaluation 
morphism from M0,3(P

r , d). Away from the inverse image of the locus where the 
domain of the map is reducible and the images of the marked points lie in Π, the 
forgetful map that forgets the third point is finite and projective. Hence it suffices 
to show that the divisor class group of this latter space is zero. This is clear. 

Claim 2.4. If the number of marked points n = 1, then the boundary, L1 and H 
generate P . 

In order to see this claim fix two general hyperplanes Π1, Π2 and carry out an 
argument similar to the previous two arguments. 

Claim 2.5. If the number of marked points n = 0, then H and the boundary divisors 
generate P . 

Fix three hyperplanes H1, H2, H3. Consider the complement Z in M0,0(P
r , d) 

of the boundary and the three hypersurfaces of maps intersecting Hi � Hj , i �= j. 
It suffices to prove that the divisor classes of Z is trivial. This is easy to see. 

Note that the previous four claims suffice to complete the proof of the theorem. 
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These divisors satisfy certain relations. Already this is clear from the proof of 
the theorem. These relations may be determined as follows. 

Relations among the boundary divisors. The Kontsevich moduli space ad­
mits a morphism to the Deligne-Mumford moduli space of stable curves M0,n by 
forgetting the map and stabilizing. We already know relations among the boundary 
components of M0,n. Pulling back these relations among the boundary components 
yields the relations among the boundary components. 

Exercise 2.6. By exhibiting one parameter families that have different intersection 
numbers show that 

(1)	 H is not in the span of boundary divisors. (Hint: Consider the Veronese 
image of a pencil of lines in P2) 

(2) If the	 number of marked points is one, then H and L1 are independent 
modulo the boundary. 

(3) If the number of marked points is two, then	L1 and L2 are independent 
modulo the boundary. 

Exercise 2.7. Fix a hyperplane Π in Pr . Show that the locus of stable maps 
in M0,0(P

r , d) where f−1(Π) is not d distinct, smooth points is a divisor T in 
M0,0(P

r , d). Calculate the class of this divisor in terms of H and the boundary 
divisors. (Hint: 

�d/2≤
d − 1 i(d − i)

T = H + 
� 

�i.)
d d 

i=1 

2.1. An algorithm for computing the genus zero characteristic numbers 
in projective space. There is an algorithm for computing the number of rational 
curves in Pr that intersect i general codimension two linear spaces and are tangent 
to (r + 1)(d + 1) − 4 − i general hyperplanes. In general this algorithm gets out of 
hand very quickly and it is hard to implement. However, for small degree curves it 
solves the characteristic number problem rather easily. 

Proposition 2.8. The number of rational curves of degree d in Pr that intersect 
i general codimension two linear spaces and are tangent to (r + 1)(d + 1) − 4 − i 
general hyperplanes may be computed as Hi · T (r+1)(d+1)−4−i on M0,0(P

r , d). 

Assuming the proposition for the moment, we can describe the algorithm. We can 
compute the intersections of top monomials consisting of H and Li. (For instance we 
can use the associativity relations in the cohomology ring and Kontsevich-Manin’s 
First Reconstruction Theorem in order to determine these top degree monomials.) 

In order to determine the top monomials involving the boundary, we can pull­
back to the boundary divisors. The boundary itself is a product of Kontsevich 
moduli spaces. We can express the pull-back of the standard divisors as standard 
divisors on the product and proceed inductively. 
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Exercise 2.9. Determine the characteristic numbers of conics in P2 using this 
algorithm. In particular, show that 

H5 = T 5 = 1, H4T = HT 4 = 2, H3T 2 = H2T 3 = 4. 

Exercise 2.10. Show that the class of degree two maps whose image is tangent to 
a conic has class 

2(H + T ) 

in M0,0(P
2 , 2). Using this fact and the previous exercise, show that there are 3264 

conics tangent to 5 general conics in P2 . 

Exercise 2.11. Determine the number of twisted cubics in P3 . intersecting i gen­
eral lines and tangent to 12 − i general planes by applying the algorithm described 
in this section. (Hint: The numbers are determined by HiT 12−i . In order of de­
creasing i they are 80160, 134400, 209760, 297280, 375296, 415360, 401920, 343360, 
264320, 188256, 128160, 85440 and 56960.) 

Exercise 2.12. Show that the closure of the locus of twisted cubics tangent to a 
smooth quadric hypersurface is a divisor with class 2H + 2T . Using the previous 
exercise determine the number of twisted cubics tangent to 12 general quadric 
hypersurfaces. (Hint: The number is equal to (2H + 2T )12 . You should get 
5,819,539,783,680.) 

Exercise 2.13. Finally, establish the proposition that guarantees that the charac­
teristic numbers are indeed given by the claimed intersection numbers. First, show 
that the divisors H, T and Li are base-point-free divisors. Conclude from this that 
if representatives defined with respect to general linear spaces are chosen, then the 
intersections are zero dimensional. Furthermore, check that the points of inter­
section correspond to maps that in addition have irreducible domain, are simply 
tangent to those hyperplanes defining T and intersect the linear spaces defining 
H transversely. Finally apply Kleiman’s Bertini Theorem to the universal map in 
order to deduce that the points occuring in the intersection are reduced. 

3. Counting genus zero curves in Pn: Vakil’s algorithm 

Ravi Vakil in his thesis developed a different approach for calculating genus 
zero Gromov-Witten invariants using degenerations. Following [V] we describe his 
method. For proofs and further discussions we refer you to Ravi’s paper. 

Before we describe his theorem that allows us to do the following computations, 
we will give a few sample calculations to indicate how his method works. 

Example 3.1. Let us find out the number of conics in P3 that contain 2 general 
points p1, p2 and intersect 4 general lines l1, . . . , l4. The idea is to specialize the con­
ditions that the curves satisfy one at a time to general linear spaces of a hyperplane. 
Fix a general hyperplane H , that is a general P2 . We can assume that H contains 
the two points p1, p2. We specialize one of the lines l1 to H . Any connected degree 
two curve containing p1, p2 and intersecting l1 either has to be contained in H or it 
has to have a component in H . In the first case the conic is uniquely determined. 
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* * 

* * 

2 2 

Figure 1. Calculating the number of conics that contain 2 general 
points and intersect 4 general lines. 

It has to contain the two points in H and the three points of intersection of l2, l3, l4 

with H . We count this conic twice for the choice of intersection of the conic with 
l1. In the latter case the component in H has to be a line. In fact, it has to be 
the line passing through p1 and p2. The remaining component has to intersect this 
line and l2, l3, l4. There are two lines in P3 that intersect 4 lines. We conclude that 
there are a total of 4 conics that contain 2 general points and intersect 4 general 
lines. See Figure 1 for a schematic representation of this calculation. 

Example 3.2. Let us calculate that there are 5 twisted cubics in P3 containing 5 
general points and intersecting 2 general lines. We will carry out this calculation 
in two different ways in order to show the degenerations that can occur. Figure 2 
shows a schematic diagram of both of these degenerations. 

* 

* 
* * 

3 2 

* 
* 

*** 

1 

* 
* 

*** 

2 

* 

* 
* 

* 

2 

* 
**** 

* * 

* * 

Figure 2. Calculating the number of twisted cubics that contain 
5 general points and intersect 2 general lines. 

12 



The left hand panel shows the degeneration when we first specialize the line l1 

to a plane P that is spanned by the three points p1, p2, p3. Once we make this 
degeneration, the limit twisted cubics necessarily become reducible. P contains 
either a conic or a line. If P contains a conic, then the residual line has to be 
the span of the remaining two points p4, p5 not contained in P . The conic then is 
uniquely determined by the facts that it has to intersect this line, l2 and contain 
p1, p2, p3. This solution contributes 2 for the choice of intersection of the conic with 
l1. If P contains a line, the line has to be the span of two of the points p1, p2, p3, 
hence there are 3 choices for the line. The conic is then uniquely determined by 
the requirements that it intersect the line in P , l2 and contain the remaining three 
points. We see that there are 5 twisted cubics that contain 5 general points and 
intersect 2 general lines. 

The right hand panel shows a different order of degeneration for the same prob­
lem. We first specialize a point and the two lines to a general plane P . The limiting 
twisted cubics may meet l1 and l2 along their points of intersection. This problem 
reduces to counting twisted cubics passing through 6 general points. The answer is 
1. Otherwise, we specialize another point to P . At this stage the limiting twisted 
cubics have to become reducible. There could be a line in P (necessarily the span 
of the two points contained in P ) and a conic in the plane spanned by the three 
points not contained in P . A priori there seems to be a one parameter family of 
possible conics. 

This forces us to answer the question of which among these conics are limits of 
our original solutions. The key to the answer lies in tracing the limit of the Cartier 
divisor cut out on the family of twisted cubics by the plane P . The limit is a degree 
three divisor on the limiting curve. However, the restriction of the limiting divisor 
to the reducible curve may have degree 2 or 3 on the line component. If it has 
degree 2, then the conic has to intersect one of l1 or l2 giving two solutions. If it 
has degree 3, the conic has to be tangent to the plane P . There is one such conic. 
However, in this case there is a new twist. Two distinct solutions approach this 
solution. Hence, this solution counts with multiplicity 2. 

For more examples see [V]. We now describe how the algorithm in the previous 
examples works in general. The aim is to calculate the characteristic numbers 
of rational curves in projective space. Recall that the characteristic numbers of 
rational curves of degree e are the numbers of rational curves of degree e that 
intersect general linear subspaces Πi of Pn of codimension ci such that 

�
(ci − 1) = (e + 1)(n + 1) − 4. 

i 

In fact, the algorithm will calculate slightly more general numbers by allowing the 
curves to have higher order contact with a fixed hyperplane. 

The idea is to specialize the linear spaces that impose conditions on the curves 
one at a time to general linear spaces of a fixed hyperplane H . We then trace the 
limits of the stable maps. 

More precisely, fix positive integers d and r. Let {�i}i⊂I be a general collection 
of linear subspaces of Pr and let {�m

j }j⊂J be a general collection of linear subspaces 
of a hyperplane H in Pr . Let Xr (d, �, �) be the locus of stable maps of degree d to 

mPr with #I+#J marked points such that the point pi maps to �i and the point qj 
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maps to �m
j . Furthermore, assume that the pull-back of the hyperplane H under 

mthe stable map is 
�

j mqj . You should think of Xr (d, �, �) as parameterizing 
rational curves of degree d with specified contact orders with a hyperplane H along 
general linear subspaces �m

j of H and intersting other linear subspaces �i of Pr . 
There is a Cartier divisor DH of Xr (d, �, �) obtained by requiring one of the points 
not mapping to H to map to H . 

The task at hand is to enumerate the Weil divisors (together with their mul­
tiplicities) that form the components of DH . The following loci turn out to be 
crucial. Let 

Yr (d(0), �(0), �(0); . . . ; d(l), �(l), �(l)) 

be the locus of stable maps to Pr such that 

(1) The domain has l + 1 components. The central component is C(0) and all 
other components meet this component. 

(2) The map has degree d(i) on the ith component. 

(3) There is a partition of the conditions � and � to the various components 
and the images of the marked points on the component C(i) lie in the 
corresponding linear constraints �(i) and �(i). 

(4) The only component that is mapped to H is C(0). All the other components 
intersect H along the marked points and the point of attachment of C(i) 
with C(0). 

(5) The pull-back of H to the ith component by the stable map has the form 

m
� 

mpj (i) + mi(C(0) � C(i))


where the positive integer mi is defined by


mi = d(i) − 
� 

m#�m .i 
m 

The following theorem of Vakil identifies the components of DH . 

Theorem 3.3 (Vakil). Every component of DH has the form 

Yr (d(0), �(0), �(0); . . . ; d(l), �(l), �(l)) 

for some partition of d into non-negative integers and partitions of � and �. The 
component 

Yr (d(0), �(0), �(0); . . . ; d(l), �(l), �(l)) 

occurs with multiplicity 
� 

mi. 

We can depict Vakil’s theorem rather informally by the diagram in Figure 3: 
Every limiting curve that occurs has the form that there is one central component 

contained in the hyperplane and some number (r in the picture) of irreducible 
components that are not contained in the hyperplane and intersect the central 
component. In addition each of these latter components have contact of order mi 

with the hyperplane. Vakil’s theorem says that such a limit occurs with multiplicity � 
mi. 

The proof is non-trivial. The task is to express the Cartier divisor DH as a 
There is an easy component of the proof. One identifies the potential limits by a 
dimension count. The limit has to be a stable map from a tree of P1s. Once we fix 
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m1 
mr 

H 

Figure 3. The limits that occur. 

the combinatorics of the tree the dimension of such maps is easy to calculate. The 
problem is that contracted components may add moduli. However, these loci of 
maps are not enumeratively relevant because their image in the Hilbert scheme or 
the Chow variety have smaller dimension. Keeping this in mind it is easy to see that 
the loci described in the theorem are the only enumeratively relevant codimension 
one loci that can occur in the expression of DH . 

The technically harder part of the proof is to calculate the multiplicity of each 
of the enumeratively relevant Weil divisors. One first reduces the problem when 
the target is P1 instead of Pr . This is done by projecting via a general codimension 
two linear space contained in the hyperplane H . This is only a rational map, but 
the locus where it is defined intersects all the enumeratively relevant divisors and 
is smooth at a general point of the intersection. The problem thus reduces to 
analyzing coverings of P1 . In this setting the calculation of the deformation spaces 
is easier and yields the desired multiplicity. 

Exercise 3.4. Determine the number of conics in P3 intersecting i general points 
and 8 − 2i general lines for 0 ∗ i ∗ 3 using Vakil’s method. Try this with different 
orders of degeneration. Which ones tend to be easier to carry out? Compare your 
results with those obtained by calculating in the cohomology ring of the Hilbert 
scheme of conics in P3 . 

Exercise 3.5. Using Vakil’s method show that there is a unique twisted cubic 
containing 6 general points in P3 . By induction show that there is a unique rational 
normal curve of degree d in Pd containing d + 3 points. Give a direct argument that 
does not use degenerations. 

Exercise 3.6. Show that there are 5 twisted cubics that contain 5 points and meet 
two lines; and 30 twisted cubics that contain 4 points and meet 4 lines. Try doing 
these calculations with different orders of degeneration. Using induction deduce 
that the number of rational normal curves of degree d in Pd that contain d + 2 
general points, meet a line and a Pd−2 is (d2 + d − 2)/2. 

Exercise 3.7. Degeneration techniques may be used to calculate tangency to 
higher degree hypersurfaces as well. Show that there are 3264 conics in P2 tan­
gent to five general conics. Do this by degenerating the conics into a pair of lines. 
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(Hint: In the limit the conics maybe tangent to either of the two lines or pass 
through the singular point. The latter count with multiplicity 2.) Do this calcu­
lation directly in the cohomology ring of M0,0(P

2 , 2), recalling that the Kontsevich 
space in this case is isomorphic to the blow up of P5 (the Hilbert scheme) along the 
Veronese surface of double lines. 

Remark 3.8. R. Vakil using the same technique can also calculate the character­
istic numbers of elliptic curves. The details are very similar. A few new phenomena 
(such as the need to record some information about the Picard group of the ellip­
tic curve) complicate matters slightly. We leave it to you to develop or read the 
necessary modifications. 

Exercise 3.9. Try finding the number of elliptic cubic curves in P3 that contain 
2 general points and intersect 8 general lines. (Hint: Specialize the lines one at a 
time to a plane P containing the two points. If after specializing l1 to P the elliptic 
cubics do not have a component in P where do they have to intersect l1?) 

Problem 3.10. Extend Vakil’s method to higher genus curves. It would be espe­
cially interesting to be able to determine the characteristic numbers of canonical 

rcurves or curves embedded by special gd’s using degenerations. At present this 
problem seems difficult. 

Remark 3.11. Caporaso and Harris in [CH1] (see also [CH2]) using essentially 
the same technique (but working in a partial compactification of the Severi variety 
rather than the Kontsevich moduli space) calculated the degrees of Severi varieties 
in P2 for all genera. I believe this work inspired Vakil to develop his algorithm. 

Exercise 3.12. Using degenerations show that there are 26 canonical curves of 
genus 4 in P3 containing 9 general points and meeting 6 lines. Determine the number 
of canonical curves of genus 4 in P3 contining 8 general points and intersecting 8 
general lines. (Hint: Use the fact that a genus 4 curve is the complete intersection 
of a quadric and a cubic surface and trace the limit of the quadric surface.) 

Remark 3.13. Degeneration techniques may be used much more generally to de­
termine the characteristic numbers of varieties. We already used this technique to 
obtain Littlewood - Richardson rules for Grassmannians. It is possible to calculate 
certain characteristic numbers of scrolls and other simple surfaces such as Del Pezzo 
surfaces. 

4.	 The cones of ample and effective divisors on the Kontsevich 
moduli space 

In this section we will discuss the ample cone and the effective cone of divisors 
on the Kontsevich moduli space of genus zero stable maps to Pr . For more details 
you can consult [CHS1] and [CHS2]. 
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4.1. The ample cone of the Kontsevich moduli space. We begin by describ­
ing the ample cone of M0,n(Pr , d). 

Theorem 4.1. Let r and d be positive integers, n a nonnegative integer such that 
n + d ∗ 3. There is an injective linear map, 

v : Pic(M0,n+d)
Sd ∩ Pic(M0,n(Pr , d))Q.Q 

The NEF cone of M0,n(Pr, d) is the product of the cone generated by 

H, T ,L1, . . . ,Ln 

and the image under v of the NEF cone of M0,n+d//Sd. 

We recall that H is the class of the divisor of maps whose images intersect a fixed 
codimension two linear space in Pr (provided r > 1 and d > 0). The class Li is the 
pullback of OPr (1) by the ith evaluation morphism. Fixing a hyperplane � ∼ Pr , 
T is the class of the divisor parametrizing stable maps (C, p1, . . . , pi, f) for which 
f−1(�) is not simply d reduced, smooth points of C. In terms of Pandharipande’s 
generators, the class of T equals, 

�d/2≤
d − 1 k(d − k)

T = H + 
� 

(
� 

�(A,k),(B,d−k)). 
d d 

k=0 A,B 

We now describe the map v that occurs in Theorem 4.1. 

Pr 

f


C


L L L 

* 

L 

p 

Figure 4. The morphism �. 

The morphism �. There is a 1-morphism � : M0,n+d × Pr−1 ∩ M0,n(Pr , d) 
defined as follows. Fix a point p ≤ Pr and a line L ∼ Pr containing p. To every 
curve C in M0,n+d attach a copy of L at each of the last d marked points and denote 
the resulting curve by C ≥ . Consider the morphism f : C ≥ ∩ Pr that contracts C 
to p and maps the d rational tails isomorphically to L (see Figure 4). Since the 
space of lines in Pr passing through the point p is parameterized by Pr−1, there is 
an induced 1-morphism � : M0,n+d × Pr−1 ∩ M0,n(Pr , d). 

Since � is invariant for the action of Sd permuting the last d marked points, the 
pull-back map determines a homomorphism 

1, �
⊕�⊕ = (�⊕ 
2 ) : Pic(M0,n(Pr , d)) ∩ Pic(M0,n+d)

Sd × Pic(Pr−1). 

We will denote the two projections of �⊕ by �⊕ and �⊕ 
1 2. 

The morphisms �i. For each 1 → i → n, there is a 1-morphism �i : P1 ∩ 
M0,n(Pr , d) defined as follows. Fix a degree-(d − 1), (n − 1)-pointed curve C 
containing all except the ith marked point. At a general point of C, attach a line 
L. Attach a line L to C at a general point of C. The resulting degree-d, reducible 
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C


L* 
pi 

slide pi along L 

Figure 5. The morphism �i. 

curve will be the domain of our map. The final, ith marked point is in L. Varying pi 

in L gives a 1-morphism �i : P1 ∩ M0,n(Pr , d) (see Figure 5). This definition has 
to be slightly modified in the cases (n, d) = (1, 1) or (2, 1). When (n, d) = (1, 1), 
we assume that the line L with the varying marked point pi constitutes the entire 
stable map. When (n, d) = (2, 1), we assume that the map has L as the only 
component. One marked point is allowed to vary on L and the remaining marked 
point is held fixed at a point p ≤ L. 

C L 

Pr 

C 

L L 

f 

slide attachment point 

Figure 6. The morphism π. 

The morphism π. If d ∗ 2, there is a 1-morphism π : P1 ∩ M0,n(Pr , d) defined 
as follows. Take two copies of a fixed line L attached to each other at a variable 
point. Fix a point p in the second copy of L. Let C be a smooth, degree-(d − 2), 
genus 0, (n+ 1)-pointed stable map to Pr whose (n+ 1)-st point maps to p. Attach 
this to the second copy of L at p. Altogether, this gives a degree-d, n-pointed, 
genus 0 stable maps with three irreducible components. The n marked points are 
the first n marked points of C. The only varying aspect of this family of stable 
maps is the attachment point of the two copies of L. Varying the attachment point 
in L ⊕ P1 gives a stable maps is parameterized by P1, hence there is an induced = 
1-morphism π : P1 ∩ M0,n(Pr, d) (see Figure 6). When (n, d) = (1, 2), we modify 
the definition by assuming that the map consists only of the two copies of the line 
L and the marked point is held fixed at the point p on the second copy of L. 

If d ∗ 2, denote by Pr,n,d the Abelian group 

Pr,n,d := Pic(M0,n+d)
Sd × Pic(Pr−1) × Pic(P1)n × Pic(P1). 

Denote by u = ur,n,d : Pic(M0,n(Pr , d)) ∩ Pr,n,d the pull-back map 

1 , . . . , �
⊕ ur,n,d = (�⊕ , (�⊕ 
n), π⊕). 

If d = 1, denote by Pr,n,1 the Abelian group 

Pr,n,1 := Pic(M0,n+d)
Sd × Pic(Pr−1) × Pic(P1)n 
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M0,n(Pr ) �⊕ 
1 �⊕ 

2 �⊕ 
i π⊕ 

T 0 0 0 OP1 (2) 

H 0 OPr−1 (d) 0 0 

Li 0 0 OP1 (1) 0 

Lj ∈=i 0 0 0 0 

�(�,1),(n,d−1) c OPr−1 (−d) OP1 (−1) OP1 (4) 

�(�,2),(n,d−2) �̃(�,2),(n,d−2) 0 0 OP1 (−1) 

�({i},1),({i}c ,d−1) �̃({i},1),({i}c ,d−1) 0 OP1 (−1) 0 

�(A,dA),( B ) �̃(A,dA ),( B ) 0 0 0 

Divisors in , d

B,d B,d

all others 

Figure 7. The pull-backs of the standard generators 

and denote by u = u 1 M0,n(Pr 
r,n, : Pic( , 1)) ∩ Pr,n,1 the pull-back map 

ur,n,1 = (�⊕ , (�1, ⊕ , . . . , �⊕ 
n))


Theorem 4.1 is equivalent to the following.


Theorem 4.2. The map ur,n,d � Q : Pic(M0,n(Pr , d))Q ∩ Pr,n,d � Q is an isomor­

phism. The image under ur,n,d � Q of the ample cone, resp. NEF, eventually free 
cone of M0,n(Pr , d) equals the product of the ample cones, resp. NEF, eventually 
free cones of Pic(M0,n+d)

Sd , Pic(Pr−1), and the factors Pic(P1). 

To apply Theorem 4.2, we need to express the images of the standard gener­
ators of Pic(M0,n(Pr , d)) in terms of the standard generators for Pic(M0,n+d)

Sd , 
Pic(Pr−1) and Pic(P1) factors. This is summarized in Table 7. 

Let � ∼ Pr be a hyperplane not containing the point p used to define the mor­
phisms � and π. Assume that the degree d− 1 curve used to define the morphisms 
�i is not tangent to �, and none of the marked points on this curve are contained 
in �. Finally, assume that the degree d− 2 curve used to define the morphism π is 
not tangent to � and none of the marked points are contained in �. 

M0,n+d(P
r M0,n+d(P

rDenote by , d) the open substack of , d) parameterizing 
stable maps with irreducible domain. Let 

)d evn+1,...,n+d : M0,n+d(P
r , d) ∩ (Pr 

the dbe evaluation morphism associated to the last marked point. Denote by 
M0,n+d(P

r , d)� the inverse image of �d and by M0,n+d(P
r , d)� the closure of 

M0,n+d(P
r , d)� in M0,n+d(P

r , d). 
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� 

M0,n+d(P
r , d)� is Sd-invariant under the action of Sd on M0,n+d(P

r, d) per­
muting the last d marked points. Denote by 

∂ : M0,n+d(P
r , d) ∩ M0,n(Pr , d) 

the forgetful 1-morphism that forgets the last d marked points and stabilizes the 
resulting family of prestable maps. This is Sd-invariant. Denote by 

α : M0,n+d(P
r , d) ∩ M0,n+d 

the 1-morphism that stabilizes the universal family of marked prestable curves over 
M0,n+d(P

r , d). This is Sd-equivariant. 
Denote by q : M0,n+d ∩ M0,n+d/Sd the geometric quotient. The composition 

q ≥ α : M0,n+d(P
r , d)� ∩ M0,n+d/Sd is Sd-equivariant. Because M0,n+d(P

r , d)� is 
an Sd-torsor over O�, there is a unique 1-morphism β≥ 

� : O� ∩ M0,n+d/Sd such 
that β≥ ≥ ∂ = q ≥ α. 

Definition 4.3. Define U� to be the maximal open substack of M0,n(Pr, d) over 
which β≥ 

� extends to a 1-morphism, denoted 

β� : U� ∩ M0,n+d/Sd. 

Define I� to be the normalization of the closure in M0,n(Pr, d) × M0,n+d/Sd of the 
image of the graph of β≥ 

�, i.e., I� is the normalization of the image of (∂, q ≥ α). 
Define I⎦� to be the normalization of the image of (∂, α) in M0,n(Pr , d) × M0,n+d. 
Finally, define ⎦U� to be the inverse image of U� in I⎦�. 

There is a pull-back map of Sd-invariant invertible sheaves, 

α⊕ : Pic(M0,n+d)
Sd ∩ Pic(I⎦�)Sd , 

which further restricts to Pic( ⎦U�)Sd . After étale base-change from U� to a scheme, 
U� ∩ U� is the geometric quotient of ⎦the morphism ⎦ U� by the action of Sd. 

Therefore the pull-back map Pic(U�) ∩ Pic( ⎦U�)Sd is an isomorphism after ten­
soring with Q; in fact, both the kernel and cokernel are annihilated by d!. Because 
M0,n+d/Sd is a proper scheme and because M0,n(Pr , d) is separated and normal, 
by the valuative criterion of properness the complement of U� has codimension ∗ 2. 
The smoothness of M0,n(Pr , d) and [Ha, Prop. 6.5(c)] imply that the restriction 
map Pic(M0,n(Pr, d)) ∩ Pic(U�) is an isomorphism. 

Definition 4.4. Define v : Pic(M0,n+d)
Sd ∩ Pic(M0,n(Pr , d))�Q to be the unique 

homomorphism commuting with α⊕ via the isomorphisms above. 

The map v is independent of the choice of �, hence it sends NEF divisors to 
NEF divisors. 

Lemma 4.5. For every base-point-free invertible sheaf L in Pic(M0,n+d)
Sd , v(L) 

is base-point-free. In particular, for every ample invertible sheaf L, v(L) is NEF. 
Thus, by Kleiman’s criterion, for every NEF invertible sheaf L, v(L) is NEF. 

Proof. For every [(C, (p1, . . . , pn), f)] in M0,n(Pr , d), there exists a hyperplane � 
satisfying the conditions above and such that f−1(�) is a reduced Cartier divisor 
containing none of p1, . . . , pn. (C, (p1, . . . , pn), f) is contained in U�. Since L is 
base-point-free, there exists a divisor D in the linear system |L| not containing 
β�[(C, (p1, . . . , pn), f)]. By the proof of [Ha, Prop. 6.5(c)], the closure of β−1(D) 
is in the linear system |v(L)|; and it does not contain [(C, (p1, . . . , pn), f)]. � 
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Lemma 4.6. (i) The images of �, �i and π are contained in U�. 
(ii)	 The morphisms β� ≥�i and β� ≥π are constant morphisms. Therefore �i 

⊕ ≥v 
and π⊕ ≥ v are the zero homomorphism. 

(iii)	 The composition of � with β� . Therefore 

�⊕ ≥ v : Pic(M0,n+d)
Sd ∩ 

q ≥ prM0,n+d
equals 

Pic(M0,n+d)
Sd × Pic(Pr−1) 

is the homomorphism whose projection on the first factor is the identity, 
and whose projection on the second factor is 0. 

Proof. (i): The image of � is contained in O�. Denote by q the intersection point 
of L and �. 

The image �i(L − {q}) is contained in O�. The stable map �i(q) sends the ith 

marked point into �. Up to labeling the d points of the inverse image of �, there is 
only one (n+ d)-pointed stable map in M0,n+d(P

r , d)� that stabilizes to this stable 
map. It is obtained from �i(q) by removing the ith marked point from L, attaching 
a contracted component C ≥ to L at q, containing the ith marked point and exactly 
one of the last d marked points, and labeling the d − 1 points in C � � with the 
remaining d − 1 marked points. 

Similarly, π(L−{q}) is contained in O�. The stable map π(q) has two copies of 
L attached to each other at q. This appears to be a problem, because the inverse 
image of π(q) in M0,n+d(P

r , d)� is 1-dimensional, isomorphic to M0,4. The stable 
maps have a contracted component C ≥ such that both copies of L are attached to 
C ≥ and 2 of the d new marked points are attached to C ≥ . The remaining d − 2 
marked points are the points of C � �. However, the map α that stabilizes the 
resulting prestable (n + d)-marked curve is constant on this M0,4. Indeed, the first 
copy of L has no marked points and is attached to C ≥ at one point. So the first 
step in stabilization will prune L reducing the number of special points on C ≥ from 
4 to 3. 

(ii): In the family defining �i, only the ith marked point on L varies. After 
adding the d new marked points, L is a 3-pointed prestable curve; marked by the 
node p, the ith marked point, and the point q. For every base the only family of 
genus 0, 3-pointed, stable curves is the constant family. So upon stabilization, this 
family of genus 0, 3-pointed, stable curves becomes the constant family. 

In the family defining π, only the attachment point of the two copies of L varies. 
The first copy of L gives a family of 2-pointed, prestable curves; marked by q and 
the attachment point of the two copies of L. This is unstable. Upon stabilization, 
the first copy of L is pruned and the marked point q on the first copy is replaced by a 
marked point on the second copy at the original attachment point. Now the second 
copy of L gives a family of 3-pointed, prestable curves; marked by the attachment 
point p of the second and third irreducible components, the attachment point of the 
first and second components, and q. For the same reason as in the last paragraph, 
this becomes a constant family. 

(iii): Each stable map in �(M0,n+d ×Pr−1) is obtained from a genus 0, (n + d)-
pointed, stable curve (C0, (p1, . . . , pn, q1, . . . , qd)) and a line L in Pr containing p by 
attaching for each 1 → i → n, a copy Ci of L to C0 where p in Ci is identified with 
qi in C0. The map to Pr contracts C0 to p, and sends each curve C to L via the 
identity morphism. Denoting by r the intersection point of L and �, the inverse 
image of � consists of the d points r1, . . . , rd, where ri is the copy of r in Ci. 
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The component Ci is a 2-pointed, prestable curve: marked by the attachment 
point p of Ci and by ri. This is unstable. So, upon stabilization, Ci is pruned 
and the marked point ri is replaced by a marking on C0 at the point of attach­
ment of C0 and Ci, namely qi. Therefore, up to relabeling of the last d marked 
points, the result is the genus 0, (n + d)-pointed, stable curve we started with, 
(C0, (p1, . . . , pn, q1, . . . , qd)). � 

In the previous section we constructed a map (see Definition 4.4) 

v : Pic(M0,n+d)
Sd ∩ Pic(M0,n(Pr , d)) � Q. 

In this section we prove that the image of v, the divisor classes H, T and the 
tautological divisors Li, generate Pic(M0,n(Pr , d)) � Q. 

The divisor class H�, [Pa, Prop. 1] is the class of stable maps whose image 
intersects a fixed codimension 2 linear space Π of Pr . This is defined to be the 
empty divisor if r = 1. For convenience, assume Π is contained in � and does not 
intersect L or the curves C used to define �i and π. If n ∗ 1, the divisors Li,�, 
i = 1, . . . , n, [Pa, Prop. 1] are the pull-back by evi of the Cartier divisor �. If d ∗ 1, 
the last divisor is T�, [Pa, §2.3]; the divisor of stable maps (C, (p1, . . . , pn), f) such 
that f−1(�) is not a reduced, finite set of degree d. This is defined to be the empty 
divisor if d = 1. In [Pa] Pandharipande proves that H�, Li,� and T� are irreducible 
Cartier divisors (when they are nonempty). 

Lemma 4.7. (i) The Cartier divisors T�, Li,� and H� are NEF. 
(ii)	 The pull-backs �⊕(T�) and �⊕(Li,�) are zero. The pull-back �⊕(H�) equals 

(0,OPr−1 (d)) in Pic(M0,n+d)
Sd × Pic(Pr−1); if r = 1, then OPr−1 (1) is the 

trivial invertible sheaf. 
(iii)	 Assume n ∗ 1 so that �i is defined for 1 → i → n. The pull-backs �i 

⊕(T�) 
and �i 

⊕(H�) are zero. For 1 → j → n different from i, �i 
⊕(Lj,�) is zero. 

Finally, �i 
⊕(Li,�) is OP1 (1). 

(iv)	 Assume d ∗ 2 so that π is defined. The pull-backs π⊕(H�) and π⊕(Li,�) 
are zero, and π⊕(T�) is OP1 (2) in Pic(P1). 

Proof. (i): By an argument similar to the one in Lemma 4.5, these divisors are 
base-point-free (whenever they are non-empty). The divisor H� is big if r ∗ 2, and 
T� is big if d ∗ 2. The divisors Li are not big. 

(ii): By the proof of Lemma 4.6, the image of � is in O�, which is disjoint from 
T�. Also, evi ≥ � is the constant morphism with image p, so the inverse image of Li 

is empty. Finally, the pull-back of H� equals the pull-back under the diagonal � 
−1of the Cartier divisor 

�
j
d 
=1 prj (Π) in (Pr−1), where Π is considered as a divisor


in Pr−1 via projection from p.


(iii): Since the image of �i is disjoint from H�, T� and Lj,� for j �
= i, the corre­
sponding pull-backs are zero. The map evi ≥ �i : P1 ∩ Pr embeds P1 as the line L 
in Pr , hence �i 

⊕(Li,�) = OP1 (1). 
(iv): Since neither the image curve nor the marked points vary under π, clearly 

π⊕H� and π⊕Li,� are zero. To compute π⊕T�, use [Pa, Lem 2.3.1]. � 

The main observation of this section is the following. 

Proposition 4.8. The Q-vector space Pic(M0,n(Pr, d)) � Q is generated by T�, 
H�, Li,� for 1 → i → n, and the image of v. 
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� 

� 

Proof. When r ∗ 2, Pandharipande proves that the classes of the divisors H�, Li,� 

for 1 → i → n, and the boundary divisors �(A,dA ),(B,dB ) for ((A, dA), (B, dB )) ≤ � 
generate the Q-vector space Pic(M0,n(Pr, d)) �Q, cf. [Pa, Prop. 1]. The tangency 
divisor T can be expressed in terms of H and the boundary divisors as follows [Pa, 
Lem 2.3.1]: 

� d ≤ 
d − 1 2 j(d − j)

T = H + 
� � 

�(A,dA ),(B,dB ). d d 
j=0 ((A,dA),(B,dB )),dA =j 

From Lemmas 4.7 and 4.6 and by pairing with one-parameter families, we see that 

v(�̃(A,dA ),(B,dB )) = �(A,dA ),(B,dB ) 

unless (#A, dA) or (#B, dB ) equals one of (0, 2) or (1, 1). 

v( ˜ 1 
�(A,dA ),(B,dB )) = T + �(A,dA),(B,dB )2 

if (#A, dA) or (#B, dB ) equals (0, 2). Finally, 

v(�̃({i},1),({i}c ,d−1)) = �({i},1),({i}c ,d−1) + Li,�. 

Consequently, it follows that the classes of the divisors H, T , Li,� and the image of 
v generate the classes of all the boundary divisors in the Kontsevich moduli space. 
Hence, they generate Pic(M0,n(Pr , d)) � Q. 

We can reduce the case r = 1 to the case r ∗ 2. Because L is disjoint from Π, 
there is a unique linear projection 

pr� : (P
r − Π) ∩ L 

whose restriction to L is the identity. This is a vector bundle over L whose asso­
ciated sheaf of sections is OL(1)�(r−1). Composing a stable map to (Pr − Π) with 
pr� gives a stable map to L. This defines a 1-morphism, 

M0,n(pr�, d) : (M0,n(Pr, d) −H�) ∩ M0,n(L, d). 

This is a vector bundle over M0,n(L, d) whose associated sheaf of sections is the 
sheaf whose fiber at (C, (p1, . . . , pn), f) equals H0(C, f⊕OL(1)�(r−1)). Thus the 
pull-back homomorphism, 

M0,n(pr�, d)⊕ : Pic(M0,n(L, d)) ∩ Pic(M0,n(Pr , d) −H�), 

is an isomorphism, cf. [Ful, Thm. 3.3(a)]. 
The hyperplane � is the closure of pr −1(L � �). Thus U� − H� � U� (see 

Definition 4.3) is the inverse image of the corresponding open substack of M0,n(L, d) 
for L�� inside L. The inverse image of TL��, resp. Li,L��, equals the restriction 
of T�, resp. Li,�. And βL�� ≥ M0,n(pr�, d) equals the restriction of β�. Thus 
Pic(M0,n(Pr , d) −H�) � Q is generated by T�, Li,� for 1 → i → n, and the image 
of v if and only if the same is true for Pic(M0,n(P1, d)) � Q. 

Proof of Theorem 4.1. Now we can complete the proof of Theorem 4.1. Denote by 

v : Pr,n,d � Q ∩ Pic(M0,n(Pr, d)) � Q⎦
the unique homomorphism whose restriction to Pic(M0,n+d)

Sd is v (see Definition 
4.4) , whose restriction to Pic(Pr−1) sends OPr−1 (1) to [H�], whose restriction to 
the ith factor of Pic(P1)n sends OP1 (1) to [Li] if n ∗ 1, and whose restriction to the 
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last factor Pic(P1) (assuming d ∗ 2) sends OP1 (1) to 1/2 [T�]. By Lemma 4.6 (ii), 
(iii) and by Lemma 4.7, u� Q ≥ v⎦ is the identity map. In particular, v⎦ is injective. 
By Proposition 4.8, v⎦ is surjective. Thus ⎦v and u � Q are isomorphisms. 

Because �, �i and π are morphisms, for every NEF, resp. eventually free, divisor 
D in Pic(M0,n(Pr , d)) � Q, �⊕(D), �i 

⊕(D), and π⊕(D) are NEF, resp. eventually 
free. Denote, 

1 (D), a [OPr−1 (1)] = �⊕D1 = �⊕ 
2(D), bi [OP1 (1)] = �i 

⊕(D), c [OP1 (1)] = π⊕(D), 

where by convention a is defined to be 0 if r = 1 and c is defined to be 0 if d = 1. If 
D is NEF, resp. eventually free, D1 is NEF, resp. eventually free, in Pic(M0,n+d)

Sd , 
and a, bi, c ∗ 0. 

Conversely, by Lemma 4.5, for every NEF, resp. eventually free, divisor D1 

in Pic(M0,n+d)
Sd , v(D1) is NEF, resp. eventually free. By Lemma 4.7(i), for 

a, bi, c ∗ 0, a[H�], bi[Li,�] and c/2 [T�] are NEF and eventually free. Since a 
sum of NEF, resp. eventually free, divisors is NEF, resp. eventually free, D = 
v(D1) + a [H�] + bi [Li] + c/2 [T�] is NEF, resp. eventually free. Therefore D is 
NEF if and only if u�Q(D) is in the product of the NEF cones of the factors. This 
argument needs to be modified in the obvious way when (n, d) = (0, 3) and (1, 2) 
to account for the slight variations in the formulae. 

Because the interior of a product of cones equals the product of the interiors 
of the cones, by Kleiman’s criterion, D is ample iff u � Q(D) is contained in the 
product of the ample cones of the factors. � 

Theorem 4.1 has the following important corollary. 

Theorem 4.9. For every integer r ∗ 1 and d ∗ 2, there is a contraction, 

cont : M0,0(P
r, d) ∩ Y, 

restricting to an open immersion on the interior M0,0(P
r , d) and whose restriction 

⊕to the boundary divisor �k,d−k = M0,1(P
r , k) ×Pr M0,1(P

r, d − k) factors through 
the projection to M0,1(P

r, d − k) for each 1 → k → �d/2∞. The following divisor is 
the pullback of an ample divisor on Y , 

�d/2≤

Dr,d = T + 
� 

k(k − 1)�k,d−k . 
k=2 

Theorem 4.9 has implications for the study of rational curves on Fano manifolds. 
For instance J. Starr has proved the following nice consequence. 

4.2. The effective cone of the Kontsevich moduli space. The main problem 
we would like to address is the following: 

Problem 4.10. Describe the cone of effective divisor classes on M0,0(P
r , d) in 

terms of the standard generators of the Picard group. 

Denote by Pd the Q-vector space of dimension �d/2∞+ 1 with basis labeled H and 
�k,d−k for k = 1, . . . , �d/2∞. For each r ∗ 2, there is a Q-linear map 

ud,r : Pd ∩ Pic(M0,0(P
r , d)) � Q 

that is an isomorphism of Q-vector spaces. 

Definition 4.11. For every integer r ∗ 2, denote by Effd,r ∼ Pd the inverse image 
under ud,r of the effective cone of M0,0(P

r , d). 
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Proposition 4.12. For every integer r ∗ 2, Effd,r is contained in Effd,r+1. For 
every integer r ∗ d, Effd,r equals Effd,d. 

Proof of Proposition 4.12. Let p ≤ Pr+1 be a point, denote U = Pr+1 − {p}, and 
let ∂ : U ∩ Pr be a linear projection from p. This induces a smooth 1-morphism 

M0,0(∂, d) : M0,0(U, d) ∩ M0,0(P
r , d). 

Let i : U ∩ Pr+1 be the open immersion. This induces a 1-morphism 

0,0(P
r+1M0,0(i, d) : M0,0(U, d) ∩ M , d) 

relatively representable by open immersions. The complement of the image of 
M0,0(i, d) has codimension r, which is greater than 2. Therefore, the pull-back 
morphism 

0,0(P
r+1M0,0(i, d)⊕ : Pic(M , d)) ∩ Pic(M0,0(U, d)) 

is an isomorphism. So there is a unique homomorphism 

0,0(P
r+1h : Pic(M0,0(P

r , d)) ∩ Pic(M , d)) 

such that 

M0,0(∂, d)⊕ = M0,0(i, d)⊕ ≥ h. 

Recalling from the introduction that u(r, d) is the map that identifies the Picard 
group of M0,0(P

r , d)) with the vector space spanned by H and the boundary divisors 
�k,d−k , we see that h≥ud,r equals ud,r+1. So to prove Effd,r is contained in Effd,r+1, 
it suffices to prove that M0,0(∂, d) pulls back effective divisors to effective divisors 
classes, which follows since M0,0(∂, d) is smooth. 

Next assume r ∗ d. Let D be any effective divisor in M0,0(P
r , d). A general point 

in the complement of D parameterizes a stable map f : C ∩ Pr such that f(C) 
spans a d-plane. Denote by j : Pd ∩ Pr a linear embedding whose image is this 
d-plane. There is an induced 1-morphism 

M0,0(j, d) : M0,0(P
d, d) ∩ M0,0(P

r , d). 

The map M0,0(j, d)⊕ ≥ud,r equals ud,d. By construction, M0,0(j, d)⊕([D]) is the class 
of the effective divisor M0,0(j, d)−1(D), i.e., [D] is in Effd,d. Thus Effd,d contains 
Effd,r, which in turn contains Effd,d by the last paragraph. Therefore Effd,r equals 
Effd,d. � 

In view of Proposition 4.12 it is especially interesting to understand Effd,d. We 
will concentrate on this case. 

When r = d, the locus parameterizing stable maps f : C ∩ Pd of degree d whose 
set theoretic image does not span Pd . We will denote its class by Ddeg. The class 
is easily calculated in terms of the standard divisors. 

Lemma 4.13. The class Ddeg equals 
� 

�d/2≤
⎞ 

1 
Ddeg = ⎝(d + 1)H− 

� 
k(d − k)�k,d−k ⎣ . (2)

2d 
k=1 
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Proof. We will prove the equality (2) by intersecting Ddeg by test curves. Fix a 
general rational normal scroll of degree i and a general rational normal curve of 
degree d − i − 1 intersecting the scroll in one point p. Consider the one-parameter 
family Ci of degree d curves consisting of the fixed degree d − i − 1 rational normal 
curve union curves in a general pencil (that has p as a base-point) of degree i + 1 
rational normal curves on the scroll. When 2 → i → �d/2∞, Ci has the following 
intersection numbers with H and Ddeg. 

Ci · H = i, Ci · Ddeg = 0. 

The curve Ci is contained in the boundary divisor �i+1,d−i−1 and has intersection 
number 

Ci · �i+1,d−i−1 = −1 

with it. The intersection number of Ci with the boundary divisors �i,d−i and 
�1,d−1 is non-zero and given as follows: 

Ci · �i,d−i = 1, Ci · �1,d−1 = i + 1. 

Finally, the intersection number of Ci with all the other boundary divisors is zero. 
When i = 1, we have to modify the intersection number of C1 with �1,d−1 to 
read C1 · �1,d−1 = 3. Next consider the one-parameter family B1 of rational 
curves of degree d that contain d + 2 general points and intersect a general line. 
The intersection number of B1 with all the boundary divisors but �1,d−1 is zero. 
Clearly B1 · Ddeg = 0. By the algorithm for counting rational curves in projective 
space given in [V] it follows that 

d2 + d − 2 (d + 2)(d + 1) 
B1 · H = , B1 · �1,d−1 = . 

2 2 
This determines the class of Ddeg up to a constant multiple. In order to determine 
the multiple, consider the curve C that consists of a fixed degree d − 1 curve and 
a pencil of lines in a general plane intersecting the curve in one point. The curve 
C has intersection number zero with all the boundary divisors but �1,d−1 and has 
the following intersection numbers: 

C · H = 1, C · Ddeg = 1, C · �1,d−1 = −1. 

The lemma follows from these intersection numbers. � 

Ddeg plays a crucial role in describing the effective cone of M0,0(P
d, d). The 

following theorem completely describes the effective cone of M0,0(P
d, d). 

Theorem 4.14. The class of a divisor lies in the effective cone of M0,0(P
d, d) 

if and only if it is a non-negative linear combination of the class of Ddeg and the 
classes of the boundary divisors �k,d−k for 1 → k → �d/2∞. 

Following Keel one may reduce the proof of this theorem to determining the 
effective cone of M 0,d/Sd. However, this proof is not significantly simpler and has 
the disadvantage that it does not generalize to other contexts. We will therefore 
give a better proof. 

Proof. Since Ddeg and the boundary divisors are effective, any non-negative rational 
linear combination of these divisors lies in the effective cone. The main content of 
the theorem is to show that there are no other effective divisor classes. 
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Definition 4.15. A reduced, irreducible curve C on a scheme X is a moving curve 
if the deformations of C cover a Zariski open subset of X . More precisely, a curve 
C is a moving curve if there exists a flat family of curves ∂ : C ∩ T on X such that 
∂−1(t0) = C for t0 ≤ T and for a Zariski open subset U ∼ X every point x ≤ U is 
contained in ∂−1(t) for some t ≤ T . We call the class of a moving curve a moving 
curve class. 

An obvious observation is that the intersection pairing between the class of an 
effective divisor and a moving curve class is always non-negative. Intersecting 
divisors with a moving curve class gives an inequality for the coefficients of an 
effective divisor class. The strategy for the proof of Theorem 4.14 is to produce 
enough moving curves to force the effective divisor classes to be a non-negative 
linear combination of Ddeg and the boundary classes. 

Lemma 4.16. If C ∼ M0,0(P
d, d) is a reduced, irreducible curve that intersects 

the complement in M0,0(P
d, d) of the boundary divisors and the divisor of maps 

whose image is degenerate, then C is a moving curve. 

Proof. The automorphism group of Pd acts transitively on rational normal curves. 
An irreducible curve of degree d that spans Pd is a rational normal curve. Hence, 
a curve C ∼ M0,0(P

d, d) that intersects the complement in M0,0(P
d, d) of the 

boundary divisors and the divisor of maps whose image is degenerate, contains a 
point that represents a map that is an embedding of P1 as a rational normal curve. 
The translations of C by PGL(d + 1) cover a Zariski open set of M0,0(P

d, d). � 

First, observe that if D is an effective divisor on M0,0(P
d, d) and D has the class 

�d/2≤

aH + 
� 

bk,d−k�k,d−k , 
k=1 

then a ∗ 0. Furthermore, if a = 0, then bk,d−k ∗ 0. Consider a general projection 
of the d-th Veronese embedding of P2 to Pd . Consider the image of a pencil of 
lines in P2 . By Lemma 4.16 this is a moving one-parameter family C of degree d 
rational curves that has intersection number zero with the boundary divisors. It 
follows from the inequality C · D ∗ 0 that a ∗ 0. 

Furthermore, suppose that a = 0. Consider a general pencil of (1, 1) curves on 
P1 ×P1 . Take a general projection to Pd of the embedding of P1 ×P1 by the linear 
system OP1 ×P1 (i, d − i). By Lemma 4.16 the image of the pencil gives a moving 
one-parameter family C of degree d curves whose intersection with �k,d−k is zero 
unless k = i. The relation C · D ∗ 0 implies that if a = 0, then bi,d−i ∗ 0. We 
conclude that Theorem 4.14 is true if a = 0. We can, therefore, assume that a > 0. 

Suppose that for every 1 → i → �d/2∞, we could construct a moving curve Ci in 
M0,0(P

d, d) with the property that Ci · �k,d−k = 0 for k �= i and that the ratio of 
Ci · �i,d−i to Ci · H is given by 

Ci · �i,d−i d + 1 
= . (3)

Ci · H i(d − i) 

Observe that given these intersection numbers, Lemma 4.13 implies that Ci ·Ddeg = 
0. Theorem 4.14 follows from the inequalities Ci · D ∗ 0. 
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We now construct approximations to these curves. 

Proposition 4.17. Let k, j and d be positive integers subject to the condition that 
2k → d. There exists an integer n(k, d) depending only on k and d such that the 
linear system 

j(d+1)−n(k,d) � 2 

L≥(j) = d F1 + 

� 
jk(k + 1) 

− 1 

� 

F2 − 
� 

k Ei − 

j(d+1)+n(k,d) (k−1)(k+2) 

Ei
2 

i=1 i=j(d+1)−n(k,d)+1 

on the blow-up of P1 ×P1 at j(d+1)+n(k, d) (k−1)(k+2) 
general points is non-special 2 

for every j >> 0. The integer n(k, d) may be taken to be 

n(k, d) = ◦2(d + 1)/k�. 

Proposition 4.17 implies Theorem 4.14. As in the previous subsection we consider 
the blow-up of P1 × P1 in 

n(k, d)(k − 1)(k + 2) 
j(d + 1) + 

2 
general points. The proper transform of the fibers F2 under the linear system 

j(d+1)−n(k,d) j(d+1)+n(k,d) (k−1)(k+2) 

� 2jk(k + 1) 
d F1 + F2 − 

� 
k Ei − Ei

2 
i=1 i=j(d+1)−n(k,d)+1 

gives a one-parameter family Ck (j) of rational curves of degree d that has inter­
section number zero with Ddeg. Letting j tend to infinity we obtain a sequence of 
moving curves Ck (j) in M0,0(P

d, d) that has intersection zero with all the bound­
ary divisors but �1,d−1 and �k,d−k . Unfortunately, the intersection of Ck (j) with 
�1,d−1 is not zero and the ratio of Ck (j) · H to Ck (j) · �k,d−k is not the one re­
quired by Equation (3). However, as j tends to infinity, the ratio of the intersection 
numbers Ck (j) · �1,d−1 to Ck (j) · H tends to zero and the ratio of Ck (j) · �k,d−k 

d+1to Ck (j) · H tends to the desired ratio k(d−k) . Theorem 4.14 follows. 

Proof of Proposition 4.17. The specialization technique in §2 of [Ya] yields the 
proof of the proposition. We will specialize the points of multiplicity k one by 
one onto a point q. At each stage the k-fold point that we specialize will be in 
general position. We will first slide the point along a fiber f1 in the class F1 onto 
the fiber f2 in the fiber class F2 containing the point q. We then slide the point 
onto q along f2. We will record the flat limit of this degeneration. 

There is a simple checker game that describes the limits of these degenerations. 
This checker game for P2 is described in §2 of [Ya]. The details for P1 × P1 are 
identical. The global sections of the linear system OP1 ×P1 (a, b) are bi-homogeneous 
polynomials of bi-degree a and b in the variables x, y and z, w, respectively. A basis 
for the space of global sections is given by xiya−izj wb−j , where 0 → i → a and 
0 → j → b. We can record these monomials in a rectangular (a+ 1) × (b+ 1) grid. In 
this grid the box in the i-th row and the j-th column corresponds to the monomial 
xiya−izj wb−j . 

If we impose an ordinary k-fold point on the linear system at ([x : y], [z : w]) = 
([0 : 1], [0 : 1]), then the coefficients of the monomials 

a b a−1 b k−1 a−k+1 k−1 b−k+1 y w , xy w , . . . , x y z w 
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Figure 8. Imposing a triple point on OP1 ×P1 (4, 6). 

must vanish. We depict this by filling in a k × k triangle of checkers into the boxes 
at the upper left hand corner as in Figure 8. The coefficients of the monomials 
represented by boxes that have checkers in them must vanish. 

We first slide the k-fold point along the fiber f1 onto the point ([x : y], [z : w]) = 
([1 : 0], [0 : 1]). This correspond to the degeneration 

([x : y], [z : w]) ∈∩ ([x : ty], [z : w]). 

The flat limit of this degeneration is described by the vanishing of the coefficients 
of certain monomials (assuming none of the checkers fall out of the rectangle). The 
monomials whose coefficients must vanish are those that correspond to boxes with 
checkers in them when we let the checkers fall according to the force of gravity. 
The first two panels in Figure 9 depict the result of applying this procedure to a 
4-fold point when there is an aligned ideal condition at the point ([x : y], [z : w]) = 
([1 : 0], [1 : 0]). 

We then follow this degeneration with a degeneration that specializes the k-fold 
point to q by sliding along the fiber f2. This degeneration is explicitly given by 

([x : y], [z : w]) ∈∩ ([x : y], [z : tw]). 

The flat limit is described by the vanishing of the coefficients of the monomials that 
have checkers in them when we slide all the checkers as far right as possible. The 
last two panels of Figure 9 depict this degeneration. 

Drop the checkers Slide the checkers to the right 

Figure 9. Depicting the degenerations by checkers. 

S. Yang proves that, provided none of the checkers fall out of the ambient rectan­
gle during these moves, these checker movements do correspond to the flat limits of 
the linear systems under the given degenerations. If one can play this checker game 
with all the multiple points that one imposes on a linear system so that during the 
game none of the checkers fall out of the rectangle, one can conclude that the mul­
tiple points impose independent conditions on the linear system. The limit linear 
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system has the expected dimension. In particular, it is non-special. By upper semi-
continuity the original linear system must also have the expected dimension and be 
non-special. Unfortunately, when one plays this game, occasionally checkers may 
fall out of the rectangle. In that case we lose information on what the limits are. 
This may happen even if the original linear system has the expected dimension. 

In order to conclude the proposition we need to show that if we impose at most 
j(d+1)−n(k, d) points of multiplicity k on the linear system OP1 ×P1 (d, jk(k+1)/2) 
where 2k → d, we do not lose any checkers when we specialize all the k-fold points by 
the degeneration just described. This suffices to conclude the proposition because 
general simple points always impose independent conditions. 

The main observation is that if there is a safety net of empty boxes at the top 
of the rectangle, then the checkers will not fall out of the box. The proof of the 
proposition is completed by noting the following simple facts. 

(1) At any stage of the degeneration the height of the checkers in the rectangle 
is at most k larger than the highest row full of checkers. 

(2) The left most checker of a row is to the lower left of the left most checker 
of any row above it. 

If there are at least (k + 1)(d + 1) empty boxes in our rectangle, then by the 
above two observations when we specialize a k-fold point we do not lose any of the 
checkers. As long as n(k, d) ∗ ◦2(d + 1)/k�, there is always at least (k + 1)(d + 1) 
boxes empty. Hence until the stage where we specialize the last k-fold point we 
cannot lose any checkers. This concludes the proof. � 

This also concludes the proof of the theorem.	 � 

Remark 4.18. We observe that both Theorem 4.1 and Theorem 4.14 admit gener­
alizations to other homogeneous targets. These may be proved using the methods 
developed here. 

Exercise 4.19. Determine the ample and stable effective cones of the Kontsevich 
moduli space of stable maps into Grassmannians. 
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