
�

DIVISOR CLASSES ON THE MODULI SPACE OF CURVES 

1. The cohomology of the moduli space of pointed genus zero curves 

In this section we discuss the Chow rings of the moduli spaces of n-pointed 
genus zero curve M0,n. Recall that we are working over the complex numbers C. 
The cohomology and Chow groups of M0,n turn out to be isomorphic. The main 
statement is that the Chow/cohomology ring of M0,n is generated by the classes of 
boundary divisors. The main reference for this section is [Kee]. 

The basic strategy for determining the Chow/cohomology ring of M0,n is to 
exhibit M0,n as a sequence of blow-ups of the product P1 × · · · ×P1 of n− 3 copies 
of P1 along smooth centers. One then inductively calculates the Chow ring at each 
stage of the blow-up process using the following basic theorem. 

Theorem 1.1 (The Chow ring of blow-ups). Let X be a codimension d smooth 
subvariety of a smooth variety Y with normal bundle NX/Y . Let i : X � Y denote 
the inclusion of X in Y . Let Ỹ be the blow-up of Y along X. Assume that 

i� : A(Y ) � A(X) 

is surjective. Then 

A�(Ỹ ) �
A�(Y )[λ] 

= 
< λ ker(i�), λd + λd−1c1(NX/Y ) + · · · + λcd−1(NX/Y ) + cd(NX/Y ) > 

where −λ is the class of the exceptional divisor. 

Now we introduce the generators of the Chow ring. Let S be a subset of 
{1, . . . , n} with the property that both S and its complement have at least two 
elements. We will denote the number of elements of S by #S. Given such a set 
we can define the class ζS on M0,n as the class of the divisor �S of stable curves 
C that have a separating node that divides C into C1 ∞ C2 where the labelings of 
the points on C1 are precisely the elements of S and the labelings of the points on 
C2 are precisely the elements of Sc . The divisor �S is a normal crossings divisor 
isomorphic to 

�S = M0,S≤{r} ×M0,Sc ≤{s} 

obtained by the map that glues the marked points r and s. 

The main theorem about the Chow ring of M0,n is the following: 

Theorem 1.2 (Keel). The Chow/cohomology ring of M0,n is generated by the 
classes ζS where #S ∼ 2 and #Sc ∼ 2 subject to the following relations: 

(1) ζS = ζSc . 

(2) For any four distinct elements i, j, k, l ⊕ {1, . . . , n} 
⎪ ⎪ ⎪ 

�S = ζS = ζS . 
≥S i,k≥S,j,l / ≥Si,j≥S,k,l / ≥S i,l≥S,j,k /
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(3)	 For two subsets S and T


ζS ζT = 0


unless S ⊗ T, T ⊗ S, S ⊗ T c or T c ⊗ S.


Example 1.3. Since M0,4 = P1, the classes of the three boundary divisors �{1,2}, 
�{1,3} and �{1,4} are linearly equivalent. If we specialize the statement of the 
theorem to n = 4 we recover the cohomology of P1 . 

Remark 1.4. It is easy to see that the claimed relations are satisfied. The divisor 
classes ζS and ζSc are equal since the divisors they represent are equal. 

To prove the relation 
⎪ ⎪ 

ζS = ζS 

i,j≥S,k,l /≥S i,k≥S,j,l /≥S 

consider the map 
ψi,j,k,l : M0,n � M0,4 

given by forgetting all the points, but the points labeled by i, j, k, l and stabilizing 
the resulting curve. The pull-back of the divisor class ζ{i,j} on M0,4 is given by 

⎪ 
ζS . 

i,j≥S,k,l /≥S 

The pull-back of the divisor class ζ{i,k} on M0,4 is given by 
⎪ 

ζS . 
i,k≥S,j,l /≥S 

Since these divisors have to be linearly equivalent, the relation follows. 

Finally to see that ζS ζT = 0 unless S ⊗ T, T ⊗ S, S ⊗ T c or T c ⊗ S note 
that two divisors �S and �T contain the point represeting a curve C in their 
intersection if and only if there are two nodes on C that divide C into C1, C2 and 
C1

∅ , C ∅ where the labeling on C1 is S and the labeling on C ∅ is T . Observe that 2	 1 
unless the conditions S ⊗ T, T ⊗ S, S ⊗ T c or T c ⊗ S are satisfied �S and �T are 
disjoint, hence the product of their classes is zero in the Chow/cohomology ring. 

Example 1.5. We can view M0,5 as the blow-up of P1 × P1 at the three points 
(0, 0), (1, 1) and (→,→). Hence M0,5 is isomorphic to the Del Pezzo surface D5. 
The 10 boundary divisors on M0,5 correspond to the 10 exceptional curves on D5. 
We can recover the cohomology ring of D5 from Keel’s relations. Note that Keel’s 
second set of relations in this case give us that for any distinct 4-tuple i, j, k, l: 

ζi,j + ζk,l = ζi,k + ζj,l = ζi,l + ζj,k . 

Multiplying these relations by ζi,j and using the third set of relations easily gives 
that ζ2 = ζ2 

i,j k,l = −ζr,sζt,u for any i, j, k, l and distinct r, s, t, u. Finally all triple 
products vanish. Note that one can give a very simple presentation of the coho­
mology ring of D5 realizing it as the blow-up of P2 in four points. Sending the 
divisors ζi,5 to the classes of the four exceptional divisors E1, . . . , E4 and ζi,j to 
H − Ek − El (where {k, l} is disjoint from {i, j, 5}) for the remaining i, j gives 
a ring isomorphism. Here H denotes the hyperplane class on P2 . Hence, Keel’s 
presentation is not necessarily the simplest presentation. 
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Exercise 1.6. Verify the claims made in the discussion of the previous example. 

Exercise 1.7. Using the description of the cohomology ring of M0,n determine its 
Betti numbers. Find the Euler characteristic of M0,n. 

Now we can describe the main technical tool that allows one to compute the 
Chow ring of M0,n. Consider the map 

ψn+1 : M0,n+1 � M0,n 

given by forgetting the last marked point. This morphism factors through 

M0,n+1 � 


 M0,n × M0,4 

�n+1 pr1 

�� ��

M0,n 


 M0,nid 

where pr2 is the projection onto the second factor and χ is induced by (ψn+1, ψ4,...,n) 
where ψ4,...,n is the morphism that forgets all but the points marked 1, 2, 3, n+ 1. 
The calculation is based on the obervation that the morphism χ is in fact a sequence 
of n− 3 blow-ups along explicit smooth centers. 

Set X1 = M0,n × M0,4. If S is a subset of {1, . . . , n}, we can embed the divisors 
�S into X1 by first mapping �S by the universal section corresponding to the i-th 
point to M0,n+1, then following it with the map to X1. Let X2 be the blow-up of 
X1 along �S where #Sc = 2 and S contains at most one of 1, 2, 3. Note that these 
are disjoint in X1. Let X3 be the blow-up of X2 along the proper transform of the 
�S with #Sc = 3 and S contains at most one of 1, 2, 3. Continue in this way where 
Xk is the blow-up of Xk−1 along the proper transform of �S with #Sc = k such 
that S contains at most one of 1, 2, 3. Then M0,n+1 = Xn−2 and the map 

χ : M0,n+1 � M0,n × M0,4 

is the blowing-up just described. 

To finish the proof of Theorem 1.2 we simply have to inductively apply the 
theorem describing the Chow ring of the blow-up repeatedly. This is messy but 
straightforward (see [Kee]). 

Remark 1.8. Note that the construction of M0,n as a blow-up of P1 × · · · × P1 

implies that the Chow ring and the cohomology ring are isomorphic. In particular, 
M0,n does not have any odd cohomology. 

Remark 1.9. Observe that M0,n is an affine variety. Fixing three of the points 
at 0, 1 and → we can view this space as the complement of hyperplanes in Cn−3 . 
Hence, M0,n is affine of dimension n − 3. Recall that the homology of an affine 
manifold vanishes above half its real dimension. 

Theorem 1.10. Let X be a smooth, complex affine variety of complex dimension 
n, then Hk (X,Q) = 0 for k > n. 

Milnor’s proof of this theorem using Morse theory is one of the most beautiful 
proofs in mathematics (see [Mi]). We conclude that the cohomology Hk (M0,n,Q 
vanishes for k > n− 3. 

3 



Note that Theorem 1.2 in particular determines second homology/the Picard 
group of M0,n. 

Corollary 1.11. The Picard group of M0,n is generated by the classes of boundary 
divisors �S subject to the relations ζS = ζSc and for any four distinct elements 
i, j, k, l ⊕ {1, . . . , n} 

⎪ ⎪ ⎪ 
ζS = ζS = ζS . 

≥S i,k≥S,j,l / ≥Si,j≥S,k,l / ≥S i,l≥S,j,k /

Exercise 1.12. Determine the class of the canonical divisor of M0,n. 

In fact, we can do better than the previous corollary. 

Proposition 1.13. Let n ∼ 4. Fix three distinct indeces i, j, k. The second coho­
mology group of M0,n has basis ζ{j,k}, ζS where i ⊕ S and #S � n− 3. 

Proof. We can give an elementary proof of this result that does not depend on the 
complicated combinatorics of Keel’s theorem. We already saw that the boundary 
divisors generate the second cohomology (e.g. the complement of the boundary is 
Cn−3 with some hyperplanes removed) and that the relations in Keel’s theorem are 
satisfied. We need to show that we can express all boundary divisors in terms of 
these and that these are independent. The only boundary divisors not on the list 
are those of the form ζu,v where neither of u, v is i and the pair is not j, k. Writing 
the boundary relation for i, w, u, v we see that 

⎪ ⎪ 
ζ{i,w} + ζS + ζ{u,v} = ζ{i,v} + ζS + ζ{u,w}. 

≥S,3�#S�n−3 i,v≥S,u,w /i,w≥S,u,v / ≥S,3�#S�n−3 

Hence ζ{u,v} = ζ{u,w}. Taking v = j and then applying the relation again to replace 
u by k, we see that the given boundary divisors generate. 

We prove the fact that they are independent by induction. Suppose there was a 
relation among them. Look at the morphism forgetting a point other than i, j, k. 
It immediately follows that all the coefficients of the relation have to be zero. � 

Remark 1.14. Note that the following proposition implies that the rank of the 
second cohomology group is 

n2 − n+ 2 
2n−1 − . 
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2. The second homology group of the moduli space of curves 

Originally Harer determined the second homology group of the moduli space of 
curves by computing the second homology group of the mapping class group. Some 
good references for Harer’s work on this computation is Harer’s original paper [Har1] 
and Harer’s C.I.M.E. notes [Har2]. Here we will outline Arbarello and Cornalba’s 
algebraic approach to the computation of the second homology group [AC2]. 

We begin by introducing some divisor classes on Mg,n. Let 

ψn+1 : Mg,n+1 � Mg,n 
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denote the morphism that forgets the last marked point. Let �� be the relattive 
n+1 

dualizing sheaf. ψn+1 has n sections given by the marked points p1, . . . , pn. Denote 
the images of these sections πi by �i. The class � in this notation is defined by 

n 
⎪ 

� = ψn+1 �(c1(��n+1 ( �i))
2). 

i=1 

The classes of the n cotangent lines ξi for 1 � i � n are defined by 

ξi = πi 
�(��n+1 ). 

⎩nThe sum i=1 ξi is often denoted by ξ. 

Finally there are the classes of the boundary divisors. Let ζirr be the class of 
the divisor of curves �irr that contain a non-separating node. Let 0 � h � g be 
an integer and let S be a subset of {1, . . . , n}. Let ζh,S be the class of the divisor 
�h,S of curves that contain a node which separates the curve into two components 
of genus h with marked points pi for i ⊕ S and genus g − h and marked points pi 

for i ⊕ Sc . If h (respectively, g − h) is zero, we require that #S ∼ 2 (#Sc ∼ 2). 
There is one exception to this definition. When we define the class ζ1,∗ = ζg−1,n, we 
need to be careful because a general member of this divisor has an automorphism 
of order 2. When we define this class, we take it to be half the class of the locus 
of the class of the boundary divisor. In terms of this notation the main theorem of 
this section is the following: 

Theorem 2.1. Let g and n be non-negative integers such that 2g − 2 + n > 0 and 
g > 0. The second cohomology group H2(Mg,n,Q) is generated by the classes �, ξi 

for 1 � i � n and the classes ζirr and ζh,S such that 0 � h � g and 2h− 2 + #S > 0 
and 2(g − h) − 2 + #Sc > 0. 

(1) If g > 2, the relations among these classes are generated by 

ζh,S = ζg−h,Sc . 

(2) If g = 2, there is the additional relation 

5� = 5ξ + ζirr − 5ζ0 + 7ζ1. 

(3) If g = 1, there are the following two additional relations 
⎪ 

� = ξ − ζ0, 12ξp = ζirr + 12 ζ0,S . 
p≥S,#S�2 

Since Theorem 1.2 already determines the genus zero case we will omit it from our 
discussion. 

The strategy of the proof is to do induction on the genus and the number of 
marked points. We now explain the mechanism that allows us to do this induction. 
Recall that since the coarse moduli scheme Mg,n is an orbifold, Poincaré duality 
holds for it provided that we work with rational coefficients. 

We need to know the vanishing of the k-th homology groups of Mg,n for large k. 
Recall Harer’s theorem which states that the moduli space Mg,n has the homotopy 
type of a finite cell complex of dimension 4g− 4 + n for n > 0. Since the homology 
groups of a finite cell complex vanish in dimension bigger than the dimension of 
the cell complex, we can deduce that 
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Hk (Mg,n) = 0, k > 4g − 4 + n, n > 0 

Furthermore, a spectral sequence argument implies that 

Hk (Mg,0,Q) = 0, k > 4g − 5. 

Combining this vanishing with Poincaré duality and the long exact sequence of 
cohomology 

Hc
k (Mg,n,Q) � Hk (Mg,n,Q) � Hk(ζMg,n,Q) � Hc

k+1(Mg,n,Q) 

we conclude the following proposition. 

Proposition 2.2. The map Hk(Mg,n,Q) � Hk (ζMg,n,Q) is an isomorphism when 
k < d(g, n) and injective when k = d(g, n), where d(g, n) is defined by 

⎧ 
� n− 4 if g = 0 

d(g, n) = 2g − 2 if n = 0 
⎧ 
�

2g − 3 + n if g, n > 0. 

This proposition gives us hope to do induction on the genus and the number of 
marked points. Recall that 

�irr = Mg−1,P ≤{r,s} 

where the isomorphism is obtained by attaching the marked points r and s to obtain 
a curve of arithmetic genus g. Similarly 

�h,S = Mh,S≤{r} × Mg−h,Sc ≤{s} 

where the isomorphism is obtained by attaching the two curves along the last 
marked points. The problem is while we can inductively understand each irre­
ducible component of boundary of the moduli space, these boundary components 
intersect. However, the next proposition guarantees that this does not effect the 
small cohomology groups. 

Proposition 2.3. Let Xi, i ⊕ I, denote all the irreducible components of the 
boundary of Mg,n. The map 

Hk (Mg,n,Q) � ≥i≥I H
k(Xi,Q) 

is injective if k � d(g, n). 

Sketch. This proposition follows from the fact that the map 

Hk (Mg,n,Q) � Hk(ζMg,n,Q) 

is a morphism of Hodge structures. Since the map is an injection in the claimed 
range and Hk(Mg,n,Q) is pure of weight k, the cohomology injects to the weight 
k part of the cohomology. The proposition follows from a result of Deligne which 
asserts that if f : X � Y is a proper, surjective morphism from a smooth variety to 
a proper variety, then the weight k quotient of Hk (Y,Q) is the image of Hk (Y,Q) 
in Hk (X,Q). Taking X to be the disjoint union of the irreducible components of 
the boundary and Y to be the boundary, Deligne’s result (at least its modification 
for orbifolds) implies the proposition. � 
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Proposition 2.4. Let � : Mg−1,n+2 � Mg,n be the morphism that glues the last 
two marked points. Then the induced map 

�� : H2(Mg−1,n+2, Q) � H2(Mg,n, Q) 

is injective if g ∼ 2. 

Exercise 2.5. Prove the Proposition 2.4 by induction on the number of marked 
points and the genus. Use Künneth decomposition, Proposition 2.3 and the fact 
that H1(Mg,n, Q) = 0 for every g and n. There are many ways of proving the last 
statement. It follows, for example, from the fact that Mg,n is simply connected. 
We will see an elementary proof in the next section. 

2.1. The relations among tautological classes. In this subsection we indicate 
how tautological divisor classes pull-back under special morphisms. Let 

ψn+1 : Mg,n+1 � Mg,n 

be the morphism that forgets the n + 1st marked point. 

Exercise 2.6. Prove the following formulae: 

(1) ψ� 
n+1(�) = � − ξn+1. 

(2) ψ� 
n+1(ξi) = ξi − ζ0,{i,n+1} for i � n. 

(3) ψ� 
n+1(ζirr ) = ζirr . 

(4) ψ� 
n+1(ζh,S ) = ζh,S + ζh,S≤{n+1}. 

Let 
� : Mg−1,n≤{x,y} � Mg,n 

be the morphism that glues the two points x, y. 

Exercise 2.7. Show that � pulls back the tautological classes as follows: 

(1) ��(�) = �. 

(2) ��(χi) = χi for i � n. 
⎩ 

≥S(3) ��(ζirr ) = ζirr − ξx − ξy + x≥S,y / ζg,S 
⎨ 

(4)	 ��(ζh,S ) = 
ζh,S if g = 2h, n = 0


ζh,S + ζh−1,S≤{x,y} otherwise


Finally, we need to know the pull-backs of tautological classes by the morphism 

ath,S : Mg−h,n−S≤{x} � Mg,n 

obtained by attaching a fixed curve of genus h and marking S ∞ {y} to curves in

Mg−h,n−S≤{x} by identifying x and y.


Exercise 2.8. Show that the following relations hold:


(1) at� 
h,S (�) = �. 

⎨ 

(2)	 at� χi if i ⊕ S

h,S (χi) =


0 otherwise 

(3) at� 
h,S (ζirr ) = ζirr . 
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(4) If S = {1, . . . , n}, then 
⎨ 
ζ2h−g,S≤{x} − ξx if k = h, #T = n, or k = g − h, #T = 0 

ath,S (ζk,T ) =

ζk,T + ζk+h−g,T ≤{x} otherwise


(5) If S ∈= {1, . . . , n}, then 

⎧ −ξx if (k, T ) = (h, S) or (k, T ) = (g − h, Sc) 
⎧ 
⎧ 

� ζk,T if T ⊗ S and (k, T ) ∈= (h, S)
ath,S (ζk,T ) =


⎧ ζk+h−g,(T \Sc )≤{x} if Sc ⊗ T and (k, T ) ∈
⎧ = (g − h, Sc) 
⎧ 

0 otherwise 

Using the previous three exercises we can obtained the claimed relations in The­
orem 2.1. Recall that the Hodge class ω is the first chern class of the Hodge bundle. 

Lemma 2.9 (Mumford’s relation). On any Mg,n there is the following relation 

� = 12ω − ζ + ξ. 

Proof. It suffices to prove the formula when n = 0. The general case follows 
by pulling-back via the relations given by the forgetful morphisms. We use the 
Grothendieck - Riemann - Roch (GRR) formula to see the case n = 0. Set 

� = �1 .
Mg,1 /Mg 

Recall the GRR formula reads 

ch(ψ1!F ) = ψ1�(ch(F ) · T odd(�)). 

Set F = �Mg,1 /Mg 
. Since R1ψ1� of the relative dualizing sheaf is trivial, solving for 

the degree one term of the GRR formula we obtain 

c1(�)2 + c2(�) c1(F )c1(�) c1(F )
ω = c1(ψ1�F ) = ψ1�( − + )

12 2 2

A local calculation shows that


c1(�
1 ) = c1(�1 ), c2(�

1 ) = [Sing]

Mg,1 /Mg Mg,1 /Mg Mg,1 /Mg 

where Sing denotes the singular locus. This follows from the exact sequence 

0 � �1 � �1 � �1 ≤OSing � 0.
Mg,1 /Mg Mg,1 /Mg Mg,1 /Mg 

Mumford’s formula immediately follows. � 

Now all the relations follow when we observe that on M2 we have the relation 

10ω = ζ0 + 2ζ1. 

To prove this relation, for instance, consider the following test families. 

(1) To a fixed genus 1 curve attach a fixed point of a genus 1 curve at a variable 
point. 

(2) On a genus 1 curve identify a variable point with a fixed point. 

(3) Identify a fixed point of a fixed genus 1 curve with a pencil of plane cubics. 

Exercise 2.10. By calculating the intersections of these families with ζ0, ζ1 and ω 
prove the claimed equality. 

8 



Exercise 2.11. Deduce the relations in Theorem 2.1 from the relations in this 
section. 

Remark 2.12. By intersecting with test families it is not hard to show that the 
relations in Theorem 2.1 are the only relations among tautological divisors. 

2.2. Sketch of the proof of Theorem 2.1. In this subsection we will sketch 
the proof of Theorem 2.1. We would like to show that H2(Mg,n, Q) is tautologi­

cal. Assume that the tautological classes generate the second cohomology of Mh,m 

whenever h < g or h = g and m < n. Suppose that the genus is at least 3 for now. 

Let d ⊕ H2(Mg,n, Q) be any class. Consider 

��d ⊕ H2(Mg−1,n≤{x,y}, Q) 

where � : Mg−1,n≤{x,y} � Mg,n is the morphism that identifies the two points 
x, y. Since by induction H2(Mg−1,n≤{x,y}, Q) is tautological ��d may be expressed 
as a linear combination of tautological classes. Moreover, since the morphism is 
symmetric under exchanging x and y, the expressions of divisors involving x and y 
need to be symmetric. Hence, ��d is a linear combination of �, ξi, i � n, ξx + ξy , 
ζirr, ζh,S , ζh,S≤{x,y} and ζh,S≤{x} + ζh,S≤{y}. 

We can find a tautological class dt in H2(Mg,n, Q) such that ��(d − dt) can be 
expressed only in terms of ξx + ξy , ζh,S≤{x,y} and ζh,S≤{x} + ζh,S≤{y}. To conclude 
that all the coefficients vanish we further pull-back ��(d − dt) by the morphism 

ellg−2 : Mg−2,n≤{x,y,z} � Mg−1,n≤{x,y} 

We could also z.obtained by attaching a fixed elliptic tail at the marked point 
pull-back d − dt to Mg−2,n≤{x,y,z} in a different order, first by the map 

ellg−1 : Mg−1,n≤{z} � Mg,n 

that attaches a fixed elliptic curve at the point z, then by the map 

�g−2 : Mg−2,n≤{x,y,z} � Mg−1,n≤{z} 

that identifies the points x and y. The classes of these two pull-backs have to 
coincide. This gives a relation that shows that ��(d − dt) must be identically zero. 
Since by Proposition 2.4, the map �� is injective, we conclude that d is tautological. 

To conclude the proof then one needs to analyze the cases of genus 1 and 2 in 
greater detail. This is straightforward but tedious. We leave you to read the details 
in [AC2]. 
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3. The first, third and fifth cohomology groups of moduli space 

The purpose of this section is to sketch an elementary proof of the vanishing 
of the first, third and fifth cohomology groups of Mg,n following Arbarello and 
Cornalba [AC2]. 

Theorem 3.1. Hk (Mg,n,Q) = 0 for k = 1, 3, 5. 

The proof proceeds by reducing the general case to checking the vanishing for 
finitely many Mg,n with g and n small and carrying out these verifications explicitly. 
As in the previous section set 

� 
⎧ 
� n− 4 if g = 0 

d(g, n) = 2g − 2 if n = 0 
⎧ 
�

2g − 3 + n if g, n > 0. 

Recall that Hk(Mg,n,Q) injects into ≥iH
k(Xi,Q) where the Xi denote all the 

irreducible components of the boundary. Like in the previous section we have the 
following Reduction Lemma. 

Lemma 3.2 (Reduction Lemma). Let k be an odd integer. Suppose that 

Hq (Mg,n,Q) = 0 

for all odd q � k, and for all g and n such that q > d(g, n), then 

Hq (Mg,n,Q) = 0 

for all odd q � k and all g and n. 

In other words, as long as all the odd cohomology for j < k vanishes, to conclude 
vanishing of the k-th cohomology it suffices to verify it for finitely many special 
values, namely those values for which q > d(g, n). 

Proof. The proof is by induction on k. Suppose Hq (Mg,n,Q) vanishes for all odd 
q � k. We can assume d(g, n) ∼ k. By the previous lemma we conclude that 
Hk(Mg,n,Q) injects into Hk (Xi,Q). Each Xi is of the form Mg−1,n+2 or a product 
of Ma,A and M b,B where either a < g or a = g and |A| < n. (Similarly for b and 
B). Using the Künneth formula, we conclude that Hk(Mg,n,Q) injects into a direct 
sum of Hk (Mg−1,n+2,Q) and H l(Ma,A,Q) ≤ Hm(M b,B ,Q) with l+ m = k. Since 
either l or m must be odd, all these spaces vanish by the induction hypothesis 
except possibly for k = m or k = l. In this case either the genus is smaller than 
g or if the genus is equal to g the number of marked points is smaller than n. A 
double induction concludes the proof. � 

Proof of vanishing of the first cohomology. By the Reduction Lemma to prove that 
the first cohomology groups of M g,n vanish we need to check the cases 

M0,3,M0,4,M1,0. 

M0,3 consists of a single point. M0,4 and M1,1 are isomorphic to the projective 
line. The first cohomology of all these spaces vanish. This concludes the proof that 
H1(Mg,n,Q) = 0 for all g and n. � 
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Remark 3.3. H1(M g,n, Q) = 0 also follows from the fact that Mg,n is simply 
connected. However, note that Mg,n is not simply connected. This is one reason 
why computing the cohomology of the compactified moduli space is simpler. For 
example, we can identify M0,4 with P1 with three points removed. Fix the three 
marked points at 0, 1, →. The fourth fixed point is free to vary on the sphere 
except it cannot be one of the other three marked points. The fundamental group 
of P1 − {0, 1, →} is the free group on two letters. In particular, the first cohomology 
group of P1−{0, 1, →} has rank 2. In contrast we saw above that all odd cohomology 
groups of M 0,n vanish. 

To emphasize the point, observe that the Euler characteristic of M0,n is given 
by the formula 

α(M0,n) = (−1)(n−3)(n − 3)!. 

To prove this formula consider the map M0,n � M0,n−1 given by forgetting one 
of the marked points. This is a fibration with each fiber given by a sphere with 
n − 1 points removed. We conclude that the Euler characteristic of M0,n is (3 − 
n)α(M0,n−1). The result follows by induction. The Euler characteristic of M0,n 

is negative for even n. At least for those n, the odd cohomology groups cannot 
vanish. 

Proof of the vanishing of third cohomology. To conclude that H 3 vanishes for all 
M g,n we need to check the cases 

(1) g = 0 and 3 � n � 6, 
(2) g = 1 and 1 � n � 3, and 
(3) g = 2 and n = 0 or 1. 

We already observed that the odd cohomology of M0,n vanishes. In this range, 
this is easy to check directly.) M0,3 is a point so H3 clearly vanishes. Both M0,4 

and M1,1 are isomorphic to P1, hence their third cohomology clearly vanishes. 

The moduli spaces M0,5 and M1,2 both have complex dimension 2 or real dimen­
sion 4. By Poincaré duality we conclude that the dimension of H 3 is equal to the 
dimension of H1 . Since H1 vanishes we conclude that H 3 vanishes. 

To show the vanishing of the third cohomology groups of M 2,0 and M 2,1, we 
observe that they admit surjective morphisms from M 0,6 and M 0,7, respectively. 
This suffices to show the vanishing of the third cohomology. Recall that genus 2 
curves are all hyperelliptic. They are a double cover of P1 ramified at six points. 
Given a Riemann sphere with six marked points take the hyperelliptic curve ramified 
over these six points. Similarly given a Riemann sphere with seven marked points 
take the hyperelliptic curve of genus 2 ramified at the first six with one of the points 
above the seventh point as marked. (Note that since the hyperelliptic involution 
takes one sheet of the covering to the other, the choice is immaterial.) We conclude 
that the third cohomology groups of these two spaces vanish. 

We are left to consider the case g = 1 and n = 3. One way to check the 
vanishing of cohomology groups is to use Euler characteristic considerations. If Y 
is a quasi-projective variety which has a filtration by closed subvarieties Y i 

Y = Y d ⊗ Y d−1 ⊗ · · · ⊗ Y 1 ⊗ Y 0 
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so that Yi = Y i\Y i−1 is empty or of pure dimension i for every i, then by the exact 
Y withsequence of cohomology with compact supports the Euler characteristic of 

cohomology with compact supports is the sum of those of Yd and Y d−1. Repeating 
the process and using Poincaré duality we conclude that the Euler characteristic of 
Mg,n is the sum of the Euler characteristics of open strata where we stratify M g,n 

according to graph type. 

M1,3 has complex dimension 3 or real dimension 6. We already know that its first 
and by Poincaré duality its fifth cohomology groups vanish. The second cohomology 
group is generated by 

�, ξ1, ξ2, ξ3, ζirr, ζ0,{1,2}, ζ0,{1,3}, ζ0,{2,3}, ζ0,{1,2,3}. 

There are 4 independent linear relations among these. Hence the rank of the second 
(and by Poincaré duality fourth) cohomology groups are 5. If we can show that the 
Euler characteristic of M1,3 is twelve, it follows that the third cohomology group 
has to vanish. 

Let us compute that the Euler characteristic of M1,3 is 12. This is done by 
splitting M1,3 to its strata according to topological type. In this computation we 
need the Euler characteristics of M1,2, M1,3, M0

∅ 
,4, M0

∅ 
,5, where M ∅ and M0

∅ 
,50,4 

denote the space obtained by taking the quotients of M0,4 and M0,5 under the 
operation of interchanging the labeling of two marked points. To calculate the 
Euler characteristics of the latter two we note that we have morphisms from M0,4 

and M0,5 to these spaces. Both morphisms have degree 2 since the fiber over a point 
has two points corresponding to the two different ways of ordering the identified 
marked points. The morphism from M0,4 to M0

∅ 
,4 is ramified at one point. If there 

is only one point over (0,→, 1 x), then there must be an automorphism of the 
sphere permuting 1 and x and keeping 0 and → fixed. This can only happen if 
x = −1 and the automorphism is multiplication by −1. By the Riemann-Hurwitz 
formula we conclude that α(M0

∅ 
,4) = 0. The map in the case of M0

∅ 
,5 is unramified 

and therefore α(M0
∅ 
,5) = 1. 

The Euler characteristics of M1,n can be computed inductively. First, M1,1 is the 
affine line, so its Euler characteristic is 1. It is a fundamental theorem in the theory 
of elliptic curves that the group of automorphisms fixing a point is a group of order 
2 except in two cases. In one case the elliptic curve can be realized as ramified 
over the points 0, 1,−1,→ of the sphere and it has the extra automorphism coming 
from rotating the sphere by ψ along the 0 −→ axis (multiplication by −1). In the 
other case the elliptic curve can be realized as ramified over the cube roots of unity 
and →. Its automorphism group has order 6 and it can be generated by the usual 
involution and by multiplication by a cube root of unity (rotation of the underlying 
sphere around the 0 −→ axis by an angle of 2ψ/3). 

Consider the morphism from M1,2 to M1,1 given by forgetting the second marked 
point. The fiber over each point of M1,1 is an affine line. Hence, the Euler char­
acteristic of M1,2 is 1. Next, consider the morphism from M1,3 to M1,2. Here we 
need to break M1,2 up to pieces over which the fibers have nice descriptions. First, 
consider the case where p2, the second marked point, is a 2-torsion point with re­
spect to p1. Observe that this space is M0

∅ 
,4 and the fiber of the map over such 

a point is the sphere with two points removed. Next, there is the case when C is 
the special curve whose automorphism group has order 6 and p2 lies above 0. In 
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this case the fiber is also a sphere with two points removed. Finally, there is the 
case when p2 is not a 2-torsion point and not the special point considered in the 
previous case. In this case the fiber is an elliptic curve with two points removed. 
Adding up the various Euler characteristics we conclude that α(M1,3) = 0. This 
information together with an enumeration of the strata of M 1,3 suffices to calculate 
that the Euler characteristic is 12. Since the Euler characteristic is 12, the third 
cohomology group must vanish. By the reduction lemma this completes the proof 
that all the third cohomology groups of Mg,n vanish. � 

The technique for showing that the fifth cohomology groups of M g,n vanish is 
similar. The cases that need to be checked in this case are 

(1) g = 0 and n � 8 
(2) g = 1 and n � 5 
(3) g = 2 and n � 3 
(4) g = 3 and n � 1. 

We already know the case g = 0. The case g = 1 and n � 4 are easy. The remaining 
cases are more challenging. 

Remark 3.4. Arbarello and Cornalba’s approach outlined here cannot be applied 
directly to the odd cohomology groups for k ∼ 11 since these groups do not always 
vanish. For example, H11(M1,11,Q) does not vanish. Their inductive argument 
breaks down. 

Problem 3.5. Determine H7(Mg,n,Q) and H9(Mg,n,Q). 

4. The Picard group of the moduli functor 

In this section we will determine the Picard group of the moduli functor following 
[AC1]. A very good introduction to Picard groups of moduli functors is contained 
in [Mum]. 

Let Mg,n denote the moduli functor of genus g stable curves with n marked 
points. Let (C � S, π1, . . . , πn) denote a family of stable curves of genus g and 
n marked points parameterized by S. A line bundle on the moduli functor Mg,n 

is an assignment of a line bundle LC to the base of the family S for every family 
C � S and isomorphisms between LD = κ�(LC) for every fiber diagram 


D 
 C 

�� ��

T � 


 S 

satisfying the cocycle condition. 

Similarly let Mg,n denote the moduli functor of genus g smooth curves with n 
marked points. The Picard group of the functor Mg,n is defined the same way. 

The Hodge class ω and the classes of the boundary divisors ζirr, ζ1, . . . , ζ∪g/2∈ 

are elemements of Pic(Mg). Recall that the Hodge class ω is defined as the class 
of the determinant of the Hodge bundle which is the push-forward of the relative 
dualizing sheaf on any family. The class ζirr is the class of the divisor of curves 
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with a non-separating node. The class ζi is the class of the divisor of curves that 
contain a node that separates the curve to a subcurve of genus i and genus g − i. 

Similarly ω, ξ1, . . . , ξn, ζirr, ζh,S are elements of Pic(Mg,n). Recall that ω is the 
Hodge class. The class ξi is the class of the cotangent line at the i-th marked 
point and is formally defined by the pull-back of the relative dualizing sheaf by the 
section giving the i-th marked point. The classes ζh,S are the classes of boundary 
divisors of curves containing a node that separates the curve to a subcurve of genus 
1 � h � ∪g/2⊂ with the marked points pi for i ⊕ S ⊗ {1, . . . , n} and a residual 
curve of genus g−h with the remaining marked points. Of course, for the curve to 
be stable #S ∼ 2 if h = 0. 

Theorem 4.1. Let g ∼ 3. The Picard group Pic(Mg) is freely generated by the 
classes ω, ζirr, ζ1, . . . , ζ∪g/2∈. The Picard group Pic(Mg) is freely generated by ω. 

In the rest of the course we will only use Theorem 4.1. However, similar tech­
niques also prove the following more general theorem. 

Theorem 4.2. Let g ∼ 3. The Picard group Pic(Mg,n) is freely generated by 
the classes ω, ξ1, . . . , ξn and the classes of boundary divisors. The Picard group 
Pic(Mg,n) is freely generated by ω and ξ1, . . . , ξn. 

Sketch of the proof of Theorem 4.1. We first remark that Pic(Mg) is torsion free 
and contains Pic(Mg) as a finite index subgroup. To see that Pic(Mg) is torsion 
free one uses Teichmüller theory. Suppose Pic(Mg) had a torsion element L of 
prime order p. Since the p-th power of L is trivial, we can take the p-th root of 
a nowhere vanishing section to get an unramified Z/pZ covering of any family. In 
particular, we get an unramified covering of Teichmüller space which must split 
completely. It follows that L has a section over the automorphism free locus. This 
extends to a holomorphic, nowehere vanishing section of L since the p-th power 
does. Hence L is trivial. Any class in Pic(Mg) whose restriction to Mg is trivial is 
an integral linear combination of the boundary classes. The boundary classes are 
independent, hence Pic(Mg) is torsion free. 

By the calculation of the second homology group of Pic(Mg), we can express 
any divisor class as a linear combination of 

ω, ζirr, ζ1, . . . , ζ∪g/2∈ . 

The point is to show that it may be expressed as an integral linear combination. 
The strategy is to construct two different sets of one-parameter families of curves 
F1, . . . , F∪g/2∈+2 and G1, . . . , G∪g/2∈+2 such that their intersection matrices with 
respect to 

ω, ζirr, ζ1, . . . , ζ∪g/2∈ 

are non-singular and have relatively prime determinant. Since the determinant of 
these matrices times the coefficients of the expressions of any divisor class in terms 
of 

ω, ζirr, ζ1, . . . , ζ∪g/2∈ 

have to be integral, the theorem follows. 

The required families are obtained as follows: 
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Let Kh be the family consisting of a pencil of hyperplane sections of a K3 surface 
of degree 2h− 2 to which a fixed curve of genus g − h is attached at a base point 
of the pencil. It is easy to see that 

Kh · ζirr = 18 + 6h, Kh · ζh = −1, Kh · ζi = 0 if i ∈= h. 

The degree of ω on Kh is h+ 1. 

Let Fh be the family consisting of three curves C1, C2, E of genus h, g − h − 1 
and 1, respectively. Attach C2 to E at a fixed point, then attach C1 to E at a 
fixed point of E1, but a variable point of E. The degree of ω on this familiy is zero. 
All the intersections with the boundary divisors vanish unless i = 1, h or h + 1. 
The degree of ζ1 on Fh is 1 if h > 1, 0 if g − h − 1 > h = 1 and −1 if g = 3 
and g − h − 1 = h = 1. The degree of ζh on Fh is −1 if g − h − 1 > h = 1 or if 
g − h− 1 = h = 1, 0 if g − h− 1 > h = 1 and −2 if g − h− 1 = h > 1. 

Let C be the family obtained by attaching a fixed genus g − 3 curve at fixed 4 
points to the base points of a pencil of conics. The degree of ω and ζi on this family 
is zero. The degree of ζirr is −1. 

Finally let CE be the family obtained by attaching a genus g− 3 curve at three 
of the base points of a pencil of conics and a genus one curve at the fourth base 
point. All the degrees except for the degree of ζ1 vanish on this family. The latter 
degree is −1. 

The theorem follows from these computations. If the genus is 2m+ 1, the inter­
section matrix for the families 

Kh, C, F1, . . . , Fm 

has determinant (−1)m+1(h+ 1) if m ∼ h ∼ 2. Taking h = 2 and h = 3 gives two 
relatively prime determinants. If the genus is 2m + 2, the intersection matrix for 
the families 

Kh, C, CE, F1, . . . , Fm 

has determinant (−1)m+1(h+ 1) if m ∼ h ∼ 2. Again taking h = 2 and h = 3 gives 
two relatively prime determinants. � 

5. The Tautological ring of Mg 

In this course we will not have time to discuss the tautological ring. In this section 
I will give a few references to where you may learn more about it. Many people have 
worked on it, including Faber, Looijenga, Pandharipande, Graber, Vakil, Getzler, 
Ionel to mame very few (see, for example, [Fab], [Lo], [FaP1], [FaP2], [GP], [GV1], 
[V], [GV2]). . 

Usually when a moduli space is defined with respect to a universal property, it 
contains certain tautologically defined Chow classes. The prime example of such 
Chow classes are the chern classes of the universal tautological and quotient bundles 
on Grassmannians. The Chow ring of the Grassmannian is generated by these 
tautological classes. 

For the moduli space of curves Mg , it is also possible to define tautological 
classes. Consider the universal curve 

ψ1 : Mg,1 � Mg. 
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The first chern class of the relative dualizing sheaf leads to a sequence of classes on 
= ψ1�K

l+1Mg . More precisely, let K = c1(�Mg,1 /Mg ). Define �l . These are classes 
in Al (Mg ). Also on Mg there is a rank g locally free sheaf called the Hodge bundle 
E. The Hodge bundle is defined by E = ψ1��Mg,1 /Mg . The chern classes ωl = cl (E) 
also define classes in Al (Mg ). Ths subring of the Chow ring generated by these 
classes is called the tautological ring. 

One of the first things to observe is that the cohomology of Mg is not in general 
tautological. There are many ways to see this. The simplest is to observe that 
tautological classes are even cohomology classes. Since we have computed the Euler 
characteristic of the moduli spaces, we can see that the moduli space of curves has 
odd cohomology classes. There are also explicit constructions of non-tautological 
classes. 

Faber has very detailed conjectures about the structure of the tautological ring. 
Roughly these conjectures say that the tautological ring of Mg exhibits properties 
that one would expect the algebraic cohomology ring of a smooth projective variety 
of dimension g− 2 to exhibit. For instance that it is Gorenstein with socle in degree 
g − 2, satisfies Hard Lefschetz and Hodge Positivity with respect to the class �1. 
Furthermore, Faber conjectures that 

�1, . . . �∪g/3∈ 

generate the ring and gives some explicit relations among these generators. I refer 
you to the papers cited above for detailed statements and what is known. 
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