CHAPTER |

A. On the Geometry of Lie Groups

A.1. (i) follows from exp Ad(x)t.X — xexp tXx~! = L(x) R(x"Y) exp tX
for Xeg, teR. For (i1) we note J(xexptX) = exp(—tX) x~!, so
dJ(dL(x),X) = —dR(x1),X. For (iii) we observe for X, Yyeg

D(g exp t Xy, hexpsY) = g exp tXyh exp sY,
= ghexp t Ad(h™) X, exp sY,,

(Continued on next page.)
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SO
dB(dL(g) Xy, dL(R)Y,) = dL(gh)(Ad( )X, + o).

Putting X = dL(g)X,, Y = dL(h)Y,, the result follows from (i).

A.2. Suppose y(t,) = y(t,) so y(t, —t;) =e. Let L > 0 be the
smallest number such that (L) = e. Then y(t + L) = y(f) y(L) = y(2).
If 7, denotes the translation t — ¢ + L, we have y 0o 7, =y, so

#0) = dy (55) = v (g7) = D)

A.3. The curve o satisfies o(t + L) = o(t), so as in A.2, 6(0) = &(L).

A 4. Let (p,) be a Cauchy sequence in G/H. Then if d denotes the
distance, d(p,, p,,) — 0 if m, n — co. Let B (o) be a relatively compact
ball of radius € > 0 around the origin o = {H} in G/H. Select N such
that d(py, pn) << 1€ for m > N and select g € G such that g - py = o.
Then (g - p,) is a Cauchy sequence inside the compact ball B (o),
hence it, together with the original sequence, 1s convergent.

A5. For X eg let X denote the corresponding left invariant vector
field on G. From Prop. 1.4 we know that (i) is equivalent to /4(Z) = 0
for all Z €g. But by (2), §9 in Chapter I this condition reduces to

8Z,[X,2) =0 (X, Zey)

which is clearly equivalent to (ii). Next (iii) follows from (i1) by replacing
X by X + Z. But (iit) is equivalent to Ad(G)-invariance of B so Q is
right invariant. Finally, the map J:x — x7! satisfies | = R(g™) o
JoL(g™), so dJ, = dR(g™),0d], odL(g™),. Since dJ, is auto-
matically an isometry, (v) follows.

A.6. Assuming first the existence of V7, consider the affine trans-
formation o : g — exp $Yg~! exp 3Y of G which fixes the point exp 3 Y
and maps y;, the first half of y, onto the second half, y,. Since

o = L(exp 4Y) o J o L(exp —1Y),

we have do.., 3y = —1. Let X*() € Goyp 1y (0 < 2 < 1) be the family
of vectors parallel with respect to y such that X*(0) = X. Then o maps
X*(s) along y, into a parallel field along y, which must be the field
— X*(t) because do(X*(})) = —X*(3). Thus the map oo J =
L(exp 1Y) R(exp 4Y) sends X into X*(1), as stated in part (i). Part (ii)
now follows from Theorem 7.1, Chapter I, and part (i) from Prop. 1.4.
Now (iv) follows from (ii) and the definition of T and R.
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Finally, we prove the existence of \/. As remarked before Prop. 1.4,
the equation Vg(¥) = i[X, ¥] (X, Yeg) defines uniquely a left
invariant affine connection Y/ on G. Since X*® = (Ad(g~1)X)~, we get

Vr(YRD) = HAd(gV[X, Y}~ = (V(¥)R9;

this we generalize to any vector fields Z, Z’ by writing them in terms of
X; (1 <1 < n). Next

Vae(J¥) = J(V 2(¥)). (1)
Since both sides are right invariant vector fields, it suffices to verify

the equation at e. Now JX = —X where X is right invariant, so the
problem is to prove

(Vz(¥)). = —3[X, Y]
For a basis X, ..., X, of g we write Ad(g™")Y = Z, f(g)X,. Since
Y, = dR(g)Y = dL(g) Ad(g)Y, it follows that ¥ = 3, f,.X, so
using V/, and Lemma 4.2 from Chapter I, §4,

(V(F)e = (V2(D), = D, (Xf) X; + } D, fule)[X, X,
Since (Xf;)(e) = {(d/dt) f,(exp tX)},_, and since

Ti(gt— Ad(exp(—tX))(Y)

= _[X’ Y]’

t=0

the expression on the right reduces to —[X, Y] + 3[X, Y], so (1) follows.
As before, (1) generalizes to any vector fields Z, Z'.
The connection ¥/ is the O-connection of Cartan-Schouten [1].

B. The Exponential Mapping

B.1. At the end of §1 it was shown that GL(2, R) has Lie algebra
al(2, R), the Lie algebra of all 2 X 2 real matrices. Since det(e’¥) =
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e! T Prop. 2.7 shows that si(2, R) consists of all 2 x 2 real matrices
of trace 0. Writing

10 01 00 (a b
X=afy _g)+e(o o +e(i o) = _d
a direct computation gives for the Killing form
B(X, X) = 8(a® + bc) = 4 Tr(XX),

whence B(X, Y) = 4 Tr(XY), and semisimplicity follows quickly.
Part (i) is obtained by direct computation. For (ii) we consider the
equation

= %)

0 (AeR, X 1)

Case 1: A > 0. Then det X < 0. In fact det X = 0 implies

/\0)’

I+X=(g

s0b = ¢ = 0, so a = 0, contradicting A = 1. If det X > 0, we deduce
quickly from (i) that b = ¢ = 0, so det X = —a?, which is a contra-
diction. Thus det X << 0 and using (i) again we find the only solution

logAd 0O )

X= (0 —log A

Case 2: A = —1. For det X > 0 put u = (det X)'/2% Then using (i)
the equation amounts to

cos p + (pisinpla = —1, (ulsinp)b = 0,
cos p — (w1 sin p)a = —1, (41 sin p)c = 0.
These equations are satisfied for
p=Qn+ Or (neZ), det X = —a® — be — (2n + 1)2 m2.
This gives infinitely many choices for X as claimed.

Case 3: A < 0, A 52 —1. If det X = 0, then (i) shows b = ¢ = 0, so
a = 0; impossible. If det X > 0 and we put u = (det X)'/%, (i) implies

cos -+ (u1sinp)a = A, (#1sinp)b = 0,
cos p — (ptsin p)a = A1, (v 1sinp)e = 0.
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Since A # 271, we have sin p 5% 0. Thus b = ¢ = 0, so det X = —q?,
which is impossible. If det X < 0 and we put p = (—det X)!/2, we get
from (i) the equations above with sin and cos replaced by sinh and cosh.
Again b = ¢ = 0, so det X = —a? = —u? thus a = 4y, so

cosh p -+ sinh p = A, cosh p F sinh p = A~}
contradicting A << 0. Thus there is no solution in this case, as stated.

B.2. The Killing form on sl(2, R) provides a bi-invariant pseudo-
Riemannian structure with the properties of Exercise A.5. Thus (i)
follows from Exercise B.1. Each ge SL(2, R) can be written g = kp
where k€ S0O(2) and p is positive definite. Clearly & = exp T where
T € s1(2, R); and using diagonalization, p = exp X where X € si(2, R).
The formula g = exp T exp X proves (ii).

B.3. Follow the hint.

B.4. Considering one-parameter subgroups 1t is clear that g consists
of the matrices

o O R

X(a, b, ¢) = (a, b, ce R).

SO O N
SO OO

0
—c
0
0 0

Then [X(a, b, ¢), X(ay, by, ¢;)] = X(cby — ¢,b, c;a — ca,;, 0), so g is
readily seen to be solvable. A direct computation gives

cosc sinc 0 c¢Yasinc— bcosc+ b)

exp X(a, b,¢) = | —sinc cosc O c¢Y(bsinc+ acosc— a)
0 0 1 ¢
0 0 0 1

Thus exp X(a, b, 27) is the same point in G for all a, b€ R, so exp
i1s not injective. Similarly, the points in G with y = n2nr (n € Z)
a? 4 B2 > 0 are not in the range of exp. This example occurs in
Auslander and MacKenzie [1]; the exponential mapping for a solvable
group is systematically investigated in Dixmier [2].

B.5. Let N, be a bounded star-shaped open neighborhood of O eg
which exp maps diffeomorphically onto an open neighborhood N, of e
in G. Let N* = exp(3N,). Suppose S 1s a subgroup of G contained in
N*, and let s % e in S. Then s = exp X (X €iN,). Let ke Z+ be
such that X, 2X, ..., kX e lN, but (¢ + 1)X ¢ IN,. Since N, is star-
shaped, (k& + 1)X € Ny; but since s¥*!'e N*, we have s**1 = exp Y,
Y € {N,. Since exp is one-to-one on N, (k + 1)X = Y € 1N,, which
is a contradiction.
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C. Subgroups and Transformation Groups
C.1. The proofs given in Chapter X for SU*(2n) and Sp(n, C)
generalize easily to the other subgroups.

C.2. Let G be a commutative connected Lie group, (G, ) its universal
covering group. By facts stated during the proof of Theorem 1.11, G is
topologically isomorphic to a Euclidean group R?. Thus G is topologi-
cally isomorphic to a factor group of R? and by a well-known theoremfon
topological groups (e.g. Bourbaki [1], Chap. VII) this factor group is
topologically isomorphic to R* x T™ Thus by Theorem 2.6, G is
analytically isomorphic to R™ x T™.

For the last statement let ¥ be the closure of y in H. By the first
statement and Theorem 2.3, § = R*® x T™ for some n, me Z*. But y
is dense in ¥, so either n = [ and m = O (y closed) or n = 0 (¥ compact).

C.3. By Theorem 2.6, [ is analytic and by Lemma 1.12, dI is injective.
Q.E.D.

C.4. The mapping ¢, turns g - N, into a manifold which we denote
by (g + Ny),. Similarly, ¢, turns g’ - N, into a manifold (g’ - N,),. Thus
we have two manifolds (g NyNg" - Ny), and (g - NyNg' - N,), and
must show that the identity map from one to the other is analytic.
Consider the analytic section maps

o5 : (g - No)o — G, oy 1 (g No)y —> G
defined by
ay(g exp(x, Xy + ... + %,X,) - po) = g exp(x, X, + ... + x,.X,),

oy (g exp(nXy + . + 3:X0) - po) = &' exp(y, Xy + .o + 3,.X0),

and the analytic map
Jo:m g - No) = (g - No)o X H
given by
Jo(2) = (7(2), [o,(m(2))]'2).

Furthermore, let P: (g - N,), X H— (g N,), denote the projection
on the first component. Then the identity mapping

I:(g-Noyng -No)y— (g NoNg' - No,
can be factored:

, . P
(¢ Nong - No)y 2> mig - No) 22 (g - Noyo x H Lo (g - Ny)..

t See “Some Details,” p. 586.
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In fact, if peg- Nyng'- N, we have

P =gexp(x, X, + ... + x,.X,) - pp = £ exp(1X; + ... + 3.X,) " Do

so for some h € H,

P(J(or(p))) = P(Jo(g" exp(01 Xy + - + 3:X3)))
= P(n(g’ exp(3:X; + ... + 3.X,)), )
= P(n(g exp(s, X, + - + %,X,)), h)
= g exp(%,.X; + ... + x%,.X,)) - po-

Thus I is composed of analytic maps so is analytic, as desired.

C.5. The subgroup H = G, of G leaving p fixed is closed, so G/H
is a manifold. The map I: G/H — M given by I(gH) = g - p gives
a bijection of G/H onto the orbit G - p. Carrying the differentiable
structure over on G -p by means of I, it remains to prove that
I: G/H — M is everywhere regular. Consider the maps on the diagram

G
N
G/H 7 - M

where 7(g) = gH, B(g) = g - p so B = I o =. If we restrict = to a local
cross section, we can write I = 8 o #~1 on a neighborhood of the origin
in G/H. Thus I 1s C* near the origin, hence everywhere. Moreover,
the map dB, : ¢ — M, has kernel b, the Lie algebra of H (cf. proof of
Prop. 4.3). Since dn, maps g onto (G/H)y with kernel § and since dB, =
dly o dn,, wee that dI, is one-to-one. Finally, if T(g) denotes the
diffeomorphism m —g-m of M, we have I = T(g) ol or(g™),
whence

dl,y = dT(g), o dly o dv(g™*)sn,

so I 1s everywhere regular.

C.6. By local connectedness each component of G is open. It acquires
an analytic structure from that of G, by left translation. In order to show
the map ¢ : (», y) — xy~1 analytic at a point (x,, ¥) € G X G let G, and
G, denote the components of G containing x, and y,, respectively. If
po =9 | Gy X Gyand y = ¢ | G; X G,, then

= L(x0¥5") © 1(3) © o 0 L(xg", ¥57),
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where I yo)(x) = yoxys! (x € G,). Now I(y,) is a continuous auto-
morphism of the Lie group G,, hence by Theorem 2.6, analytic; so the
expression for ¢ shows that it is analytic.

C.8. If N with the indicated properties exists we may, by translation,
assume it passes through the origin 0 = {H}in M. Let L be the subgroup
{g€G:g-N= N}. If ge G maps o into N, then gNN N # 0; so
by assumption, gN = N. Thus L = n~YN) where = : G — G/H is
the natural map. Using Theorem 15.5, Chapter I we sec that L can be
given the structure of a submanifold of G with a countable basis and
by the transitivity of G on M, L -0 = N. By C.7, L has the desired
property. For the converse, define N = L -0 and use Prop. 4.4 or
Exercise C.5. Clearly, if gNN N = @, then geL, so gN = N.

For more information on the primitivity notion which goes back to
Lie see e.g. Golubitsky [1].

D. Closed Subgroups
D.1. R?*Iis a torus (Exercise C.2), so it suffices to take a line through
0 in R? whose image in the torus is dense.

D.2. g has an Int(g)-invariant positive defimite quadratic form Q.
The proof of Prop. 6.6 now showsg = 3 + g’ (3 = center of g, ¢" = [g, ]
compact and semisimple). The groups Int(g) and Int(g") are analytic
subgroups of GL(g) with the same Lie algebra so coincide.

D.3. We have
ao,i(cl’ €3, §) = (1, 23y, 5)
(ay, a5, 7)(c1, €2, $)(ay, G5, 7)1
— (al(l —_— e21ris) + clezmlr, a2(1 — eznihs) + Cze2m'hr’ S)
SO a4 is not an inner automorphism, and 4, ; ¢ Int(g). Now let 5, — 0
and let ¢, = hs, + hn. Select a sequence (n,) C Z such that hn, — }

(mod 1) (Kronecker’s theorem), and let 7, be the unique point in [0, 1)
such that t, — 7, € Z. Putting 5, = s, t; = £, we have
_—> (Xo.i.

Esete — Fogury

Note: G is a subgroup of H x H where H = (} 2),ceC, |a]| = 1.

E. Invariant Differential Forms

E.1. The affine connection on G given by V(¥) = }[X, Y] is torsion
free; and by (5), §7, Chapter I, if w is a left invariant 1-form,

V2(@)(¥) = —a(V£(Y)) = —3(0(X)Y)) = HO(X))T),
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$0 Vg(w) = 16(X)(w) for all left invariant forms w. Now use Exercise
C.4 in Chapter I.

E.2. The first relation is proved as (4), §7. For the other we have

gg =1 so (dg)g + g'(dg) = 0. Hence (g~ dg) + (dg)(%g)™ = O and
Q40 =
For U(n) we find similarly for 2 = g~ dg,

iR+ 2A2=0, Q2+12=0.
For Sp(n) C U(2n) we recall that g € Sp(n) if and only if

ge = Iy, gl =a
(cf. Chapter X). Then the form £ = g dg satisfies
A2+ QAR =0, 040 =0, QJ, + J.i0 = 0.

E.3. A direct computation gives

0 dx dz —=xd
o dg = (o 0 4 ’)
0 0 0
and the result follows.





