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so

d(dL(g)X,, dL(h)Yo)= dL(gh)(Ad(h-')Xo+ YO).

Putting X = dL(g)Xo, Y = dL(h)Yo, the result follows from (i).

A.2. Suppose y(tl) = y(t2) so y(t2 - t) = e. Let L > 0 be the
smallest number such that y(L) = e. Then y(t + L) = y(t) y(L) = y(t).
If TL denotes the translation t - t + L, we have y o TL = y, so

(O = dy( d ) ( d ) = (L).

A.3. The curve a satisfies a(t + L) = a(t), so as in A.2, &(O)= a(L).
A.4. Let (p,) be a Cauchy sequence in G/H. Then if d denotes the

distance, d(p, Pm)-- 0 if m, n - oo. Let BE(o) be a relatively compact
ball of radius E > 0 around the origin o = {H} in G/H. Select N such
that d(pN, Pm)< E for m > N and select g E G such that g PN = o.
Then (g p) is a Cauchy sequence inside the compact ball BE(o)-,
hence it, together with the original sequence, is convergent.

A.5. For X e g let X denote the corresponding left invariant vector
field on G. From Prop. 1.4 we know that (i) is equivalent to V2 (Z) = 0
for all Z g. But by (2), §9 in Chapter I this condition reduces to

g(2, [X, 2]) = 0 (X, Z g)

which is clearly equivalent to (ii). Next (iii) follows from (ii) by replacing
X by X +- Z. But (iii) is equivalent to Ad(G)-invariance of B so Q is
right invariant. Finally, the map J: x -- x- satisfies J = R(g-l) o
J o L(g-'), so dJ, = dR(g-1)e o dJe o dL(g-l)o. Since dJe is auto-
matically an isometry, (v) follows.

A.6. Assuming first the existence of V, consider the affine trans-
formation a g -* exp 2 Yg-1 exp 1Y of G which fixes the point exp Y
and maps Yl, the first half of y, onto the second half, Y2-Since

a = L(exp 2Y) o J o L(exp -Y),

we have dx,,p ty = -I. Let X*(t) Gep jt (O < t < 1) be the family
of vectors parallel with respect to y such that X*(O) = X. Then a maps
X*(s) along y, into a parallel field along 2 which must be the field
-X*(t) because d(X*(½)) =--X*(). Thus the map o J=
L(exp Y) R(exp Y) sends X into X*(1), as stated in part (i). Part (ii)
now follows from Theorem 7.1, Chapter I, and part (iii) from Prop. 1.4.
Now (iv) follows from (ii) and the definition of T and R.
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Finally, we prove the existence of V. As remarked before Prop. 1.4,
the equation V(Y) = [., 7] (X, Y e g) defines uniquely a left
invariant affine connection V on G. Since XR() = (Ad(g-1)X)-, we get

VXR(,)(1R( 9)) = Ad(g-1)[X, Y]}~ = (V(1?))m');

this we generalize to any vector fields Z, Z' by writing them in terms of
Xi (I i n). Next

VJx(J?) - J(Vg(?)). (1)

Since both sides are right invariant vector fields, it suffices to verify
the equation at e. Now JX =-X where X is right invariant, so the
problem is to prove

(V,1())e = -1[X, Y].

For a basis X1, ..., X, of g we write Ad(g-1)Y = ifi(g)X i. Since
F = dR(g)Y = dL(g) Ad(g-')Y, it follows that = ifiX, so
using V 2 and Lemma 4.2 from Chapter I, §4,

(V1R())e = (V (Y))e = X (Xfi)e Xi + X Zfi(e)[, ,,]e
i i

Since (Xf%)(e) = {(d/dt) fi(exp tX)} 0=o and since

d Ad(exp(-tX))(Y)}o =-[X, Y],

the expressionon the right reduces to -[X, Y] +- [X, Y], so (1) follows.
As before, (1) generalizes to any vector fields Z, Z'.

The connection V is the O-connection of Cartan-Schouten [1].

B. The Exponential Mapping

B.1. At the end of §1 it was shown that GL(2, R) has Lie algebra
gT(2,R), the Lie algebra of all 2 x 2 real matrices. Since det(etx) =
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et Tr(X), Prop. 2.7 shows that sI(2, R) consists of all 2 x 2 real matrices
of trace 0. Writing

Xa( _q- b(0aq + c 0) (a _)
a direct computation gives for the Killing form

B(X, X) = 8(a2 +- bc) = 4 Tr(XX),

whence B(X, Y) = 4 Tr(XY), and semisimplicity follows quickly.
Part (i) is obtained by direct computation. For (ii) we consider the
equation

ex =(A-l) (AER,A ).

Case 1: A > O0.Then det X < 0. In fact det X = 0 implies

I + X = ( A-1),

so b = c = 0, so a = 0, contradicting A 1. If det X > 0, we deduce
quickly from (i) that b = c = 0, so det X = -a 2 , which is a contra-
diction. Thus det X < 0 and using (i) again we find the only solution

X = (log A 0 )

Case 2: A = -1. For det X > 0 put t = (det X)1/2. Then using (i)
the equation amounts to

cos -+ (- sin)a = --I, (p- sint)b= 0,
cos t - (-l 1 sin /z)a = - 1, (Cl- 1 sin L)c = 0.

These equations are satisfied for

/A= (2n- 1)Ir (n E Z), det X = -a 2 - bc = (2n+ 1)2 72.

This gives infinitely many choices for X as claimed.

Case 3: A < 0, A -1. If det X = 0, then (i) shows b = c = 0, so
a = 0; impossible. If det X > 0 and we put jL = (det X)1/2, (i) implies

cos IL+ (-1 sin I)a = A, (s-1 sin )b = 0,

cos j - (L-1 sin )a = A-1,
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Since A A-1,we have sin O0.Thus b = c = 0, so det X = -a 2,
which is impossible. If det X < 0 and we put -= (-det X)1/2, we get
from (i) the equations above with sin and cos replaced by sinh and cosh.
Again b = c = 0, so det X = -a 2 = --_2; thus a = 4-L, so

cosh i± sinh = A, cosh z F sinh = A-1,

contradicting A < 0. Thus there is no solution in this case, as stated.
B.2. The Killing form on sl(2, R) provides a bi-invariant pseudo-

Riemannian structure with the properties of Exercise A.5. Thus (i)
follows from Exercise B.1. Each g e SL(2, R) can be written g = kp
where k SO(2) and p is positive definite. Clearly k = exp T where
T E sl(2, R); and using diagonalization, p = exp X where X e s(2, R).
The formula g = exp T exp X proves (ii).

B.3. Follow the hint.
B.4. Considering one-parameter subgroups it is clear that g consists

of the matrices

X(ab,0 0 b(a,b, cR).

000 (a,b, c

Then [X(a, b, c), X(a,, b,, cl)] = X(cb, - cb, ca - ca1, 0), so g is
readily seen to be solvable. A direct computation gives

cos c sin c 0 c-l(a sin c - b cos c + b)
exp X(a, b,c) = -sin c cosc 0 c-'(b sin c + a cosc - a)

0 0 1 c )
0 0 0 1

Thus exp X(a, b, 27r) is the same point in G for all a, b E R, so exp
is not injective. Similarly, the points in G with y = n2r (n E Z)
a2 + 2 > 0 are not in the ange of exp. This example occurs in
Auslander and MacKenzie [1]; the exponential mapping for a solvable
group is systematically investigated in Dixmier [2].

B.5. Let N o be a bounded star-shaped open neighborhood of 0 e g
which exp maps diffeomorphically onto an open neighborhood N,e of e
in G. Let N* = exp(½NO).Suppose S is a subgroup of G contained in
N*, and let s e in S. Then s = exp X (X N0O). Let k Z+ be
such that X, 2X, ..., kX e INo but (k + 1)X ½'No. Since NO is star-
shaped, (k + 1)X No; but since Sk+lc N*, we have sk+l = exp Y,
YEcN o. Since exp is one-to-one on No, (k + )X = Y No, which
is a contradiction.
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C. Subgroups and Transformation Groups

C.1. The proofs given in Chapter X for SU*(2n) and Sp(n, C)
generalize easily to the other subgroups.

C.2. Let G be a commutative connected Lie group, (G, 7r)its universal
covering group. By facts stated during the proof of Theorem 1.11, is
topologically isomorphic to a Euclidean group RP. Thus G is topologi-
cally isomorphic to a factor group of Rp and by a well-known theoremton
topological groups (e.g. Bourbaki [1], Chap. VII) this factor group is
topologically isomorphic to Rn x T. Thus by Theorem 2.6, G is
analytically isomorphic to Rn x Tm.

For the last statement let 7 be the closure of y in H. By the first
statement and Theorem 2.3, 7 = Rn x Tm for some n, m e Z+. But y
is dense in 7, so either n = 1 and m = 0 (y closed) or n = 0 (7 compact).

C.3. By Theorem 2.6, I is analytic and by Lemma 1.12, dI is injective.
Q.E.D.

C.4. The mapping ¢g turns g No into a manifold which we denote
by (g- No0). Similarly, ¢g. turns g' No into a manifold (g' N0),. Thus
we have two manifolds (g. No n g' No) and (g No ng' No) and
must show that the identity map from one to the other is analytic.
Consider the analytic section maps

%9:(g .No). - G, a : (g' NO), - G

defined by

as(gexp(xX, + ... + xX,) po)= g exp(xX, + ... + xrX,),

a'(g' exp(ylX + ... + yrXr) 'Po) g' exp(yXl + ... - yrXr),

and the analytic map

Jg:1r-l(g · N) - (g No)xx H

given by

Jg(z)-= (7(), [ag(T(z))-'Z)

Furthermore, let P: (g · N0)x x H (g- N0)x denote the projection
on the first component. Then the identity mapping

I:(g Norg'- N), - (g- Nn g' No) NoNo)

can be factored:

(g No n g' -No),,-, rr-(g · N) --- (g -SNo)x H Pe (g ·No)x.

t See "Some Details," p. 586.
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In fact, if peg No r g' No, we have

p = g exp(xX, ... ++ Xr) ·p = g' exp(yX + ... + y7Xr) po,

so for some h e H,

P(Jg(a,(p))) = P(Jg(g'exp(yX + ... + Y,-X)))

= P(,r(g'exp(ylX1 +... + yX,)), h)

= P(rr(g exp(xlXl + ... + x,.Xr)), h)

= g exp(X 1 ± ... + x-X+ )) p0.

Thus I is composed of analytic maps so is analytic, as desired.
C.5. The subgroup H = G of G leaving p fixed is closed, so G/H

is a manifold. The map I: G/H -- M given by I(gH) = g p gives
a bijection of G/H onto the orbit G -p. Carrying the differentiable
structure over on G p by means of I, it remains to prove that
I: G/H -- M is everywhere regular. Consider the maps on the diagram

G

where(g)gH(g)g p I oM
where ,r(g) = gH, (g) = g p so:P = I o . If we restrict r to a local
cross section, we can write I = f o 7r-1 on a neighborhood of the origin
in G/H. Thus I is C ® near the origin, hence everywhere. Moreover,
the map d,e: g M has kernel , the Lie algebra of H (cf. proof of
Prop. 4.3). Since d7Te maps g onto (G/H)H with kernel b and since dle =
dIH o dre, wee that dlH is one-to-one. Finally, if T(g) denotes the
diffeomorphism m -*g m of M, we have I = T(g) o I o(g-),
whence

dIgH= dT(g), o dIH o d(g-),,,

so I is everywhere regular.
C.6. By local connectedness each component of G is open. It acquires

an analytic structure from that of Goby left translation. In order to show
the map : (x, y) --. xy-l analytic at a point (xo, yo) E G x G let G and
G2 denote the components of G containing x and Yo, respectively. If
go = I Go x Go and ¢ = I G x G2, then

= L(xoyo) o I(yo) o o o L(xo1, yo-),
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where I(yo)(x) = yoxyl ' (x e Go). Now I(yo) is a continuous auto-
morphism of the Lie group Go, hence by Theorem 2.6, analytic; so the
expression for b shows that it is analytic.

C.8. If N with the indicated properties exists we may, by translation,
assume it passes through the origin o = {H} in M. Let L be the subgroup
{geG:g-N= N). If gG maps o into N, then gNr N 0; so
by assumption,gN = N. Thus L = r-1(N) where r: G - G/H is
the natural map. Using Theorem 15.5, Chapter I we see that L can be
given the structure of a submanifold of G with a countable basis and
by the transitivity of G on M, L · o = N. By C.7, L has the desired
property. For the converse, define N = L o and use Prop. 4.4 or
Exercise C.5. Clearly, if gN n N / 0, then g eL, so gN = N.

For more information on the primitivity notion which goes back to
Lie see e.g. Golubitsky [1].

D. Closed Subgroups

D.1. R2 /r is a torus (Exercise C.2), so it suffices to take a line through
0 in R2 whose image in the torus is dense.

D.2. g has an Int(g)-invariant positive definite quadratic form Q.
The proof of Prop. 6.6 now shows g = 3 + ' (3 = center of g, ' = [g, 9]
compact and semisimple). The groups Int(g) and Int(g') are analytic
subgroups of GL(g) with the same Lie algebra so coincide.

D.3. We have

CX*(cl, C2, ) = (, e2'7i/3C2, s)

(al, a, r)(cl, c2, s)(a1, a2, r) - 1

= (a1(l - e2 is) + ce2fir, a2(1 - e27ihs)+ c2e2" ihr,s)

so %.t is not an inner automorphism, and Ao, 4 Int(g). Now let s - 0
and let t = hs, + hn. Select a sequence (nk) C Z such that hnk -i 
(mod 1) (Kronecker's theorem), and let k be the unique point in [0, 1)
such that t - Tk E Z. Putting sk = Sn, tk = tnk, we have

Os ,t k = OaskTk °.OL3.

Note: G is a subgroup of H x H where H= (1 ), CE C, I I = 1.

E. Invariant Differential Forms

E.1. The affine connection on G given by V() = [X, ] is torsion
free; and by (5), §7, Chapter I, if w is a left invariant 1-form,

V(w)(Y) = -w(V((?)) =-((( = (0(X)()
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