CHJ, EXERCISES AND FURTHER RESULTS

A. Manifolds

2. Let M be a connected manifold and p, ¢ two points in M. Then
there exists a diffeomorphism @ of M onto itself such that @(p) = q.

3. Let M be a Hausdorff space and let 6 and 8’ be two differentiable
structures on M. Let § and § denote the corresponding sets of C*
functions. Then 8 = 8’ if and only if § = §'.

Deduce that the real line R with its ordinary topology has infinitely
many different differentiable structures.

4. Let @ be a differentiable mapping of a manifold M onto a manifold
N. A vector field X on M is called pro;ectable (Koszul [1]) if there exists
a vector field Y on N such that d® - X =

(i) Show that X is projectable if and only if X%,C &, where §, =
{fo®:feC>(N).

(ii) A necessary condition for X to be projectable is that
dP,(X,) = dD(X,) (1)

whenever &(p) = P(g). If, in addition, dP,(M,) = Ny, for each
p € M, this condition is also sufficient. '

(iit) Let M = R with the usual differentiable structure and let N
be the topological space R with the differentiable structure obtained
by requiring the homeomorphism ¢ : x — x!/2 of M onto N to be a
diffeomorphism. In this case the identity mapping ®:x—x is a
differentiable mapping of M onto N. The vector field X = 8;0x on M
is not projectable although (1) is satisfied.

5. Deduce from §3.1 that diffeomorphic manifolds have the same
dimension.

7. Let M be a manifold, p € M, and X a vector field on M such that
Xy 7# 0. Then there exists a local chart {x,, ..., x,,} on a neighborhood
U of p such that X = 9/dx, on U. Deduce that the differential equation
Xu = f(fe C*(M)) has a solution % in a neighborhood of p.
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8. Let M be a manifold and X, Y two vector fields both 0 at a
point o € M. For p close to o and s, t € R sufficiently small let ¢ p)
and ¢, p) denote the integral curves through p of X and Y, respectively.

Let
(1) = ¢_ile_vildvile (o).

Prove that
[, Y1, = lim (1)

X
¥, (®,(0))

r1r?) x ®,(0)
0

(Hint: The curves t — @ (@4(p)) and t — ¢, ((p) must coincide; deduce
(X" )Np) = [d*dt"f(p. - P)i=o)-

B. The Lie Derivative and the Interior Product

1. Let M be a manifold, X a vector field on M. The Lie derivative
6(X): Y —[X, Y] which maps DYM) into itself can be extended
uniquely to a mapping of D(M) into itself such that:

(1) 8X)f = Xf for fe C=(M).
(ii) 6(X) is a derivation of D(M) preserving type of tensors.
(iif) 6(X) commutes with contractions.

2. Let @ be a diffeomorphism of a manifold M onto itself. Then @
induces a unique type-preserving automorphism 7 — @ - T of the

tensor algebra (M) such that:

(1) The automorphism commutes with contractions.

(iiy @ X=X (XeD(M)), D f=f(fcC?(M)).
Prove that @ * w = (D~1)* w for w e D (M).

3. Let g, be a one-parameter Lie transformation group of M and
denote by X the vector field on M induced by g, (Chapter 11, §3). Then

.
0X)T = 1{11{)1 ; (T—g-T)

for each tensor field T on M (g, - T is defined in Exercise 2).

4. The Lie derivative 6(X) on a manifold M has the following

properties:
(1) 8({X, Y]) = 6(X) 6(Y) — 8(Y) 6(X), X, Y e DY(M).

(i) 8(X) commutes with the altermation 4 : D, (M) — UM) and

therefore induces a derivation of the Grassmann algebra of M.

(i) 6(X)d = df(X), that is, §(X) commutes with exterior differen-

tiation,
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5. For X € D{(M) there is a unique linear mapping i(X) : %(M) —
%(M), the interior product, satisfying:
(i) #X)f = 0 for fe C=(M).
(i) (X))o = ofX) for w € % (M)
(i) #(X): w(M) — ¥U,_,(M) and

{(X) (w; A wg) = i(X) () A wg + (=1)" @y A H(X) (wp)
if w, €U (M), wy e YM). _
6. (cf. H. Cartan [1]). Prove that if X, Y € DY(M), wy, ..., w, € %(M),
@i (X =0.

(i) (X (g A Aw)= Y, (=1 ar(X) oy A e A de Ao A wr;
T <7< S
Wy € ‘III(M).

(i) (X, Y]) = 6(X)i(Y) — i(Y) 8(X).
(iv) 8(X) = i(X)d + di(X).

C. Affine Connections

2. Let ¥ be the affine connection on R™ determined by V(Y) = 0
for X = 8/ox;,, Y = 9/0x;, 1 <1, j < n Find the corresponding
affine transformations.

4. Let M be a manifold with a torsion-free affine connection V.
Suppose X, ..., X, is a basis for the vector fields on an open subset
U of M. Let the forms ', ..., ™ on U be determined by w¥(X;) = 8.
Prove the formula

d6 = wi A Vxf6)

i=}

for each differential form 6 on U.
5. Let S be a surface in R%, X and Y two vector fieldson S. Lets € S,
X, # 0 and ¢ — y(t) a curve on S through s such that y(t) = X,

¥(0) = 5. Viewing Y,y as a vector in R® and letting 7, : R® — S, denote
the orthogonal projection put

VHY), = mlim < (Y0 — V).

Prove that this defines an affine connection on S.
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D. Submanifolds

1. Let M and N be differentiable manifolds and @ a differentiable
mapping of M into N. Consider the mapping ¢ : m — (m, ®(m)) (me M)
and the graph

' Go = {(m, O(m)) : me M}

of @ with the topology induced by the product space M X N. Then ¢
is a homeomorphism of M onto G, and if the differentiable structure
of M is transferred to G, by @, the graph G, becomes a closed sub-
manifold of M x N.

2. Let N be a manifold and M a topological space, M C N (as sets).

Show that there exists at most one differentiable structure on the
topological space M such that M is a submanifold of N.

3. Using the figure 8 as a subset of R? show that

(i) A closed connected submanifold of a connected manifold does
not necessarily carry the relative topology.

(ii) A subset M of a connected manifold N may have two different
topologies and differentiable structures such that in both cases M is a
submanifold of N.

- 4. Let M be a submanifold of a manifold N and suppose M = N
(as sets). Assuming M to have a countable basis for the open sets, prove
that M = N (as manifolds). (Use Prop. 3.2 and Lemma 3.1, Chapter II.)
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E. The Hyperbolic Plane

1. Let D be t.he open disk | 2| < 1 in R? with the usual differentiable
structure but given the Riemannian structure

&, v} = ('Tg"‘;z)-lép (y,ve D)

() ) denoting the usual inner product on R2.

(i) Show that the angle between u and v in the Riemannian structure g
coincides with the Euclidean angle.

(ii) Show that the Riemannian structure can be written

dx? 4+ dy? .
S=-(T:x‘;j_—_ly—g)—, (z=x+1y).

(iii) Show that the arc length L satisfies

L(yo) < L(y)
if y is any curve joining the origin 0 and x (0 < x < 1) and y(t) = =
0<tr<1)
(iv) Show that the transformation
az + b
PIEETG (lalP—]62=1)
is an isometry of D.

(v) Deduce from (iii) and (iv) that the geodesics in D are the circular
arcs perpendicular to the boundary | 2| = 1.

(vi) Prove from (iii) that

' 1. 1
40, ) = ylog 1 : : (x€ D)

and using (iv) that

3 —by | z,—bz)

1
d(an, 3) = 5 log ( P Ty

(21, 22€ D)

with b, and b, as in the figure.

by

(vii) Show that the maps ¢ in (iv) together with the complex con-
jugation z — % generate the group of all isometries of D.
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