
CH,.) EXERCISES AND FURTHER RESULTS

A. On the Geometry of Lie Groups

1. Let G be a Lie group, L(x) and R(x), respectively the left translation
g - xg, and the right translation g - gx. Prove:

(i) Ad(x) = dR(x-) o dL(x)e = dL(x)-, o dR(x- 1)e.

(ii) If J is the map g -- g-1 then

dJ, = -dL(x-'), o dR(x-l), = -dR(x-), o dL(x-1),.

(iii) If q is the mapping(g, h) - gh of G x G into G, then if X E G.,
Y E Gh,

dQc(,,)(X,Y) = dL(g)h(Y) + dR(h), (X).

2. Let y(t) (t ER) be a one-parameter subgroup of a Lie group.
Assume that y intersects itself. Then y is a "closed" one-parameter sub-
group, that is, there exists a number L > 0 such that y(t + L) = y(t)
for all t E R.

3. Let y(t), 8(t) (t E R) be two one-parameter subgroups of a Lie
group. If y(L) = (L) for someL > 0, then the curve a(t) = y(t) 8(-t)
(0 t < L) is smooth at e, that is, (e) = (L) (Goto and Jakobsen . j).

4. Let G be a locally compact group, H a closed subgroup. Prove that
the space G/H is complete in any G-invariant metric.

S. Let G be a connected Lie group with Lie algebra 9. Let B be a
nondegenerate symmetric bilinear form on g x g. Then there exists a
unique left invariant pseudo-Riemannian structure Q on G such that
Q = B. Show, using Prop. 1.4 and (2), §9, Chapter I, that the following
conditions are equivalent:

(i) The geodesics through e are the one-parameter subgroups.

(ii) B(X, [X, Y]) = 0, for all X, Y E g.

(iii) B(X, [Y, Z]) = B([X, Y], Z) for all X, Y, Z E g.

(iv) Q is invariant under all right translations on G.

(v) Q is invariant under the mapping g -t g-' of G onto itself.

6. Let G be a connected Lie group with Lie algebra g. Then there
exists a unique affine connection V on G invariant under all left and
right translations and under the map J: g -- g-. Let X, Y E(g. Prove
that:

(i) The parallel translate of X along the curve y(t) = exp tY
(0 < t < 1) is given by

dL(exp Y) dR(exp Y)X.

(ii) V('F) = [X, ] where X and are the left invariant vector
fields with Xe = X, = Y.

(iii) The geodesics are the translates of one-parameter subgroups.



B. The Exponential Mapping

1. Let SL(2, R) denote the group of all real 2
determinant 1. Its Lie algebra s1(2, R) consists of all
of trace 0.

(i) Let X s(2, R), I = unit matrix. Show that

eX= cosh(- det X) 2 I + sinh(- det X)/2 X(-det X)l /2

si(det X)1/ 2
ex = cos(detIX I X) X

eX = I+ X

x 2 matrices with
real 2 x 2 matrices

if det X < 0

if det X >O

if det X = 0.

(ii) Let us consider one-parameter subgroups the same if they have
proportional tangent vectors at e. Then the matrix

(A ) SL(2, R) (As 1)

lies on exactly one one-parameter subgroup if A > O, on infinitely many
one-parameter subgroups ifA = - 1 and one no one-parameter subgroup
if A <0, A -1.

3. The Lie group GL(n, C) has Lie algebra gl(n, C) and the mapping

exp: gl(n,C) - GL(n, C)

is surjective. (Use the Jordan canonical form),,

4. Let G denote the subgroup of GL(n, R) given by

cos y
-sin y

0

0

sin y
cos y

0
0O
O

0 a
o P
I Y

0 1

(a, fl, yE R)

Describe its Lie algebra g C gl(n, R), show that g is solvable, but that the
mapping exp: g - G is neither injective nor surjective.

5. Using the exponential mapping show that each Lie group G
contains a neighborhood of e containing no subgroup (e}. ("A Lie
group has no small subgroups.")
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C. Subgroups and Transformation Groups

1. Verify the description of the Lie algebras of the various subgroups
of GL(n, C) listed in Chapter X, §2.

2. Show that a commutative connected Lie group is isomorphic to
a product group of the form Rn x T" where Tm is an m-dimensional
torus. Deduce that a one-parameter subgroup y of a Lie group H is
either closed or has compact closure.

3. Let H C G be connected Lie groups. Suppose the identity mapping
I: H -- G is continuous. Then H is a Lie subgroup of G.

4. (The analyticstructure of G/H) With the notation prior to Theorem
4.2 let g, g' E G and consider the two homeomorphisms

: g exp(xXl + ...+ xrX,) Po- (xl,..., x,) of g No intoR;

e: g' exp(ylXl + ... + yX,) Po- (l., .. , ) of g' ' NointoR'.

Prove that the mapping i, o E l is an analytic mapping of

,(g No g' . No)

onto

0,,(g ·No rg' . N).

5. Let G be a Lie transformation group of a manifold M. Then
each orbit G ' p is a submanifold of M, diffeomorphic to G/Gp. (Proceed
as in the proof of Prop. 4.3.)

6. Let G be a locally connected topological group. Suppose the identity

component Go has an analytic structure compatible with the topology

in which it is a Lie group. Show that G has the same property. (Hint:
Use Theorem 2.6.)

This shows that the definition of a Lie group adopted here is equi-
valent to that of Chevalley Theoy oflieGroupsl .

7*. Suppose an abstract subgroup H of a connected Lie group G has
a manifold structure in which it is a submanifold of G with at most
countably many components. Then H is a Lie subgroup of G. (cf.
Freudenthal [4]; see also Kobayashi and Nomizu [1], I, p. 275 or
F. Warner [1], p. 95, and Chevalley [2], p. 96).

8. Let G be a connected Lie group, H C G a closed, subgroup. The
action of G on the manifold M = G/H is called imprimitive if there
exists a connected submanifold N of M (0 < dim N < dim M) such
that for each g E G either g · N = N or g · N n N = 0. Show that this
is equivalent to the existence of a Lie subgroup L, H C L C G, such that
dim H < dimL < dim G.

9*. Let G be a Lie transformation group of a manifold M, MI/G the
orbit space topologized by the finest topology for which the natural
mapping 7r : M - MIG is continuous. Let

D = {(p, q) e M x M: p = g q for some g G}.

Prove that:

(i) MIG is a Hausdorff space if and only if the subset D cM x M
is closed.

(ii) There exists a differentiable structure on the topological space
MjG such that r: M - MI/G is a submersion if and only if the topo-
logical subspace D C M x M is a closed submanifold.

In this case the differentiable structure is unique and all the G-orbits
in M have the same dimension (see, e.g., Dieudonni [2], Chapitre XVI).
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D. Closed Subgroups

1. Let r be a discrete subgroup of R2 such that R 2/1 is compact.
Show that an analytic subgroup of R2 is always closed but that its
image in R2 lr under the natural mapping is not necessarily closed.

2. Let g be a Lie algebra such that Int(g) has compact closure in GL(g).
Then Int(g) is compact. (Hint: Repeat the proof of Prop. 6.6 and use
Prop. 6.6(i).)

3. Let G denote the five-dimensional manifold C x C x R with
multiplication defined as follows (van Est [1], Hochschild [1]):

(c1, c¢, r)(cl, C2,r') = (cl + eS'I"'c, - esihrc, r + r'),

where h is a fixed irrational number and C1, c2, c, C2 E C, r, r' E R.
Then G is aLie group.

(i) Let s, t E R and definethe mapping a,, : G - G by ac,.t(c, c2, r) =
(eO2isc1, e2si t c2 , r). Show that a,,l is an analytic isomorphism.

(ii) If t = hs + hn where n is an integer, then a,, coincides with the

inner automorphism

(c1 , c2 , r) - (0, 0, s + n)(cq, C2, r)(0, 0, s + n)- 1.

(iii) Let denote the Lie algebra of G and let Asg denote the auto-
morphism dasc,ofg. If s, - so,t,, - to then As,. -* A,.. in Aut (g).

(iv) Show that AO.113 ¢ Int (g). Deduce from (iii) that Int (g) is not
closed in Aut ().

4*. Let G be a connected Lie group and H an analytic subgroup.
Let g and b denote the corresponding Lie algebras.

(i) Assume G simply connected. If b is an ideal in g then H is closed
in G (Chevalley [2], p. 127).

(ii) Assume G simply connected. If E) is semisimple then H is closed
in G (Mostow [2], p. 615).

(iii) Assume G compact. If b is semisimple then H is closed in G
(Mostow [2], p. 615).

(iv) Assume G = GL(n, C). If b is semisimple then H is closed
in G (Goto [], Yosida [1]).

(v) Suppose H is not closed in G. Then there exists a one-parameter
subgroup v of H whose closure (in G) is not contained in H (Goto [1]).

(vi) H is closed if exp b is closed. This follows from (v).

(vii) Assume G solvable and simply connected. Then H is closed and

simply connected (Chevalley [8]).

(viii) Suppose G = SO(n) and that H acts irreducibly on R". Then H

is closed in G (Borel and Lichnerowicz [2], Kobayashi and Nomizu [1],

I, p. 277).
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E. Invariant Differential Forms

1. Let G be a connected Lie group with Lie algebra g. Let (Xi)l<i,n
be a basis of g, Xi (I i < n) the corresponding left invariant vector
fields, and wj (I < j < n) the dual forms given by wj(X) = 8ij. From
(1), §7 or Exercise C4, Chapter I deduce the formula (cf. Koszul [4])

2 dw = k A (Xk)w (w left invariant)
k=l

where O(Xk) is the Lie derivative (Exercise B.1, Chapter I). Show that
if w = wi, this formula reduces to the Maurer-Cartan equations (3), 7.

2. Prove that for the orthogonal group O(n) the matrix of 1-forms
Q2= g-' dg (g E O(n)) satisfies

d + S A = 0, 2+ tQ = 0,

'A denoting the transpose of a matrix A. Generalize these relations to
U(n) and Sp(n).

3. Using the method of Exercise E2 show that the group of matrices

g I y1 (x,y,zR)

has a basis of left invariant -forms given by

1 = dx, w2 = dy, =dz -xdy

and that the Maurer-Cartan equations are

dw, = O, dw2 = , dwa = -- c A w2.



f; Invariant Measures

1. Let G be a Lie group and H a closed subgroup. Then

(i) If H is compact, G/H has an invariant measure.
(ii) If G is unimodular and H normal, then H is unimodular.

(iii) If G/H has a finite invariant measure and if H is unimodular,
then G is unimodular.

2. For the group 0(2) the element g (o ~) satisfies Ad(g) = -I.

3. Let G be a connected Lie group with Lie algebra q, and H c G a
closed analytic subgroup with Lie algebra b) c g. Let X,..., X, be a

basis of g such that X,+ .... X. span ) and put

m= RXI+"- +RX,.
Let c be determined by [Xi, X,] = kcX,.

(i) G is unimodular if and only if

Tr,(ad X) = 0 for X e,

or, equivalently,

Acik=O for eachi, I < i < n.
kI=l

(ii) The space G/H has an invariant measure if and only if

Tr(adg(T)) = Tr(adb(T)) for T ),

or, equivalently,

E c' = 0 for r + I< nin
a=l

(Chern [1942]).
4. Show that the group M(n) of isometries of R" is isomorphic to the

group of matrices

gk, x =

0

where kK = O(n) and x = (xl, ... , x,) R". A Haar measure dg on
M(n) is then given by

J'(g)dg = f(g )dkdx, fE C-(M(n)),
CG KXR^

where dk is a Haar measure on K.



5. A biinvariant measure on the group G = GL(n, R) of nonsingular
matrices X = (xij) is given by

f -- J'(X)ldet X- Hidxij.

6. A biinvariant measure on the unimodular group G = SL(n, R) is
given by

f - f (X) detX, I' H1-dXij.

Here X = (xij), Xj is the (i, j)-cofactor in X, and the xij (except for x,,)

are taken as independent variables on the set G' given by det X,, 7: 0.

7. Let T(n, R) denote the group of all g EGL(n, R) which are upper

triangular. A left-invariant measure on T(n, R) is given by

-f- f(t)tllt2 ''" t- 1 H-dtij
fTn, R) i_ < i

and a right-invariant measure by

f X j (t)t -22.' t n [-dt
T(n, R) i <j

G. Compact Real Forms and Complete Reducibility

l.Show that the function f (after Theorem 63) has minimum value when the
structural constants are real if and only if the real span of the basis vectors is a
compact real form. Show that the minimum value then equals n.

3. A representation p of a Lie algebra g (resp. a group G) on a finite-

dimensional vector space V is called semisimple (or completelyreducible);
if each subspace of V invariant under p(g) (resp. p(G)) has a comple-
mentary invariant subspace.

(i) Any finite-dimensional representation of a compact topological
group on a real or complex vector space V is semisimple.

(ii) (Weyl's unitary trick) Using a compact real form prove that any
finite-dimensional representation ir of a real semisimple Lie algebra g on
a real or complex vector space V is semisimple.
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