CH,JI; EXERCISES AND FURTHER RESULTS

A. On the Geometry of Lie Groups

1. Let G be a Lie group, L(x) and R(x), respectively the left translation
g — xg, and the right translation g — gx. Prove:

(i) Ad(x) = dR(x™"), o dL(x), = dL(x)z-1 0 dR(x™?),.
(ii) If J is the map g — g! then

dJ, = —dL(zY), 0 dR(x"), = —dR(xY), 0 dL(x""),.
(i) If @ is the mapping (g, k) — gh of G X G into G, thenif X € G,
YeG, '
4P (X, Y) = dL(g) (Y) + dR(h), (X).

2. Let (1) (iER) be a one-parameter subgroup of a Lie group.
Assume that y intersects itself. Then y is a “‘closed” one-parameter sub-
group, that is, there exists a number L > 0 such that p(¢ + L) = (¢)
for all € R. _

3. Let ¢(t), 8(¢) (te R) be two one-parameter subgroups of a Lie
group. If y(L) = 3(L) for some L > 0, then the curve o(t) = (t) 8(—t)
(0 < t < L)is smooth at ¢, that is, 6(e) = &(L) (Goto and Jakobsen : ).

4. Let G be a locally compact group, H a closed subgroup. Prove that
the space G/H is complete in any G-invariant metric.

5. Let G be a connected Lie group with Lie algebra g. Let B be a
nondegenerate symmetric bilinear form on g X g. Then there exists a
unique left invariant pseudo-Riemannian structure Q on G such that
Q. = B. Show, using Prop. 1.4 and (2), §9, Chapter I, that the following
conditions are equivalent:

(i) The geodesics through e are the one-parameter subgroups.
(i) B(X, [X, Y]) = 0, for all X, Yeg.

(iii) B(X, [Y,Z]) = B([X, Y], Z2) forall X, Y, Zeg.

(iv) Q is invariant under all right translations on G.

(v) Q is invariant under the mapping g — g of G onto itself.

6. Let G be a connected Lie group with Lie algebra g. Then there
exists a unique affine connection V on G invariant under all left and
right translations and under the map J: g — g7 Let X, Y eg. Prove
that:

(i) The parallel translate of X along the curve y(f) = exp tY
(0 <t < 1)is given by

dL(exp }Y) dR(exp }Y)X.

(i) Vz(¥) = $[X, ¥] where X and ¥ are the left invariant vector
fields with X, = X, ¥, = Y.

(iii) The geodesics are the translates of one-parameter subgroups.
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B. The Exponential Mapping

1. Let SL(2, R) denote the group of all real 2 x 2 matrices with
determinant 1. Its Lie algebra s1(2, R) consists of all real 2 x 2 matrices
of trace O.

(i) Let X €sl(2, R), I = unit matrix. Show that

sinh(—det X)!/?

eX = cosh(—det X)/2] + X if detX <0

(—det X)172
1 1/2
eX = cos(det X)1/2 + -S‘—(“(f—ff_‘)g_l%- X if detX >0
X =T+ X if det X = 0.

(i) Let us consider one-parameter subgroups the same if they have
proportional tangent vectors at e. Then the matrix
A0
(o 1) € SL2, R) A1)

lies on exactly one one-parameter subgroup if A > 0, on infinitely many
one-parameter subgroups if A = —1 and one no one-parameter subgroup

ifA <0,A 5 —1.
3. The Lie group GL(n, C) has Lie algebra gi(n, C) and the mapping
exp : gl(n, C) — GL(n, C)

is surjective. (Use the Jordan canonical form), -

4. Let G denote the subgroup of GL(n, R) given by

cosy siny 0
—siny cosy O
0 0 1 (o B, Y€ R)

0

0 0

— = W R

Descr.ibe its Lie algebra g C gi(n, R), show that g is solvable, but that the
mapping exp : g — G is neither injective nor surjective.

5. Using the exponential mapping show that each Lie group G
contains a neighborhood of e containing no subgroup #{e}. (“A Lie
group has no small subgroups.”)
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C. Subgroups and Transformation Groups

1. Verify the description of the Lie algebras of the various subgroups
of GL(n, C) listed in Chapter X, §2.

2. Show that a commutative connected Lie group is isomorphic to
a product group of the form R* x I™ where T™ is an m-dimensional
torus. Deduce that a one-parameter subgroup y of a Lie group H is
either closed or has compact closure.

3. Let HC G be connected Lie groups. Suppose the identity mapping
I: H — G is continuous. Then H is a Lie subgroup of G.

4. (The analytic structure of G/H) With the notation prior to Theorem
4.2 let g, g’ € G and consider the two homeomorphisms

¥, ¢ g exp(x, Xy + o + 2.X,) * po— (¥, .oy Xy) of g- N,into R";
by 1 & exp(nXy + oo + 3 X)) po—> (Y100 3r)  of g Nyinto R".

Prove that the mapping 4, o y;* is an analytic mapping of

do(g - Nong' + Ny)
onto
$o(g - Nong' * No)

5. Let G be a Lie transformation group of a manifold M. Then
each orbit G * p is a submanifold of M, diffeomorpbic to G/G,,. (Proceed
as in the proof of Prop. 4.3.)

6. Let G be a locally connected topological group. Suppose the identity
component Gy has an analytic structure compatible with the topology

in which it is a Lie group. Show that G has the same property. (Hint:
Use Theorem 2.6.) -

This shows that the definition of a Lie group adopted here is equi-
valent to that of Chevalley | Theory of Lie GroupsI ,

7*. Suppose an abstract subgroup H of a connected Lie group G has
a manifold structure in which it is a submanifold of G with at most
countably many components. Then H is a Lie subgroup of G. (cf.
Freudenthal [4]; see also Kobayashi and Nomizu [1], I, p. 275 or
F. Warner (1], p. 95, and Chevalley [2], p. 96).

8. Let G be a connected Lie group, HC G a closed subgroup. The
action of G on the manifold M = G/H is called imprimitive if there
exists a connected submanifold N of M (0 < dim N < dim M) such
that for each g€ G either g- N = Norg- N n N = §. Show that this
is equivalent to the existence of a Lie subgroup L, H CL C G, such that
dim H < dimL < dim G.

9*. Let G be a Lie transformation group of a manifold M, M/G the
orbit space topologized by the finest topology for which the natural
mapping 7 : M — M/G is continuous. Let

D ={(p,9)eM X M:p =g - qforsome geG}.

Prove that:
(i) M/G is a Hausdorff space if and only if the subset DC.M x M

is closed.

(if) There exists a differentiable structure on the topological space-
MG such that = : M — M/G is a submersion if and only if the topo-
logical subspace DC M X M is a closed submanifold.

In this case the differentiable structure is unique and all the G-orbits
in M have the same dimension (see, e.g., Dieudonné [2], Chapitre XVI).
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D. Closed Subgroups

1. Let I' be a discrete subgroup of R? such that R¥/I" is compact.
Show that an analytic subgroup of R? is always closed but that its
image in R?/I" under the natural mapping is not necessarily closed.

2. Let g be a Lie algebra such that Int(g) has compact closure in GL(g).
Then Int(g) is compact. (Hint: Repeat the proof of Prop. 6.6 and use
Prop. 6.6(i).)

3. Let G denote the five-dimensional manifold C X C x R with
multiplication defined as follows (van Est [1], Hochschild [1]):

(0 o NG a0 7) = (&3 + 7%, ¢ + e 7 + 1)

. where h is a fixed irrational number and ¢,, ¢, ¢;, 3€C, 7, ¥ €R.
Then G is a-Lie group.
(i) Lets, t € R and define the mapping o, , : G — G by a, (¢}, €5, 7) =
(e*"# ¢,, €t ¢y, 7). Show that «, , is an analytic isomorphism.
(ii) If £ = hs + hn where n is an integer, then o, , coincides with the
inner automorphism

(€1 €2 7) = (0, 0, s + n)(cy, 3, 7X0, 0, s + n)~1.

(iii) Let g denote the Lie algebra of G and let 4, , denote the auto-
morphism dao, , of g. If 5, — 5o, £, — #, then 4, , — 4, , in Aut (g).

(iv) Show that 4,/ ¢ Int (g). Deduce from (iii) that Int (g) is not
closed in Aut (g). '

4* Let G be a connected Lie group and H an analytic subgroup.
Let g and ) denote the corresponding Lie algebras.

(i) Assume G simply connected. If h is an ideal in g then H is closed
in G (Chevalley [2], p. 127).

(i) Assume G simply connected. If h is semisimple then H is closed
in G (Mostow [2], p. 615).

(i) Assume G compact. If h is semisimple then H is closed in G
{Mostow [2], p. 615).

(iv) Assume G = GL(n, C). If b is semisimple then H is closed
in G (Goto [1], Yosida [1]).

(v) Suppose H is not closed in G. Then there exists a one-parameter
subgroup y of H whose closure (in G) is not contained in H (Goto [1]).

(vi) H is closed if exp b is closed. This follows from (v).

(vii) Assume G solvable and simply connected. Then H is closed and
simply connected (Chevalley [8]).

(viii) Suppose G = SO(n) and that H acts irreducibly on R*. Then H
is closed in G (Borel and Lichnérewicz [2], Kobayashi and Nomizu [1],
I, p. 277).
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E. Invariant Differential Forms

1. Let G be a connected Lie group with Lie algebra g. Let (X;);;<n
be a basis of g, X; (I < < n) the corresponding left invariant vector
fields, and w; (1 <j < n) the dual forms given by w,(X,) = §,;. From
(1), §7 or Exercise C4, Chapter I deduce the formula (cf. Koszul [4])

2dw = 3w, A I(Xp)w (w left invariant)
k=1

where 6(X,) is the Lie derivative (Exercise B.1, Chapter I). Show that
if w = w;, this formula reduces to the Maurer-Cartan equations (3), §7.

2. Prove that for the orthogonal group O(n) the matrix of 1-forms
£ = g1dg (g € O(n)) satisfies

a2+ 02 NQ =0, Q410 =0,

t4 denoting the transpose of a matrix 4. Generalize these relations to
U(n) and Sp(n).

3. Using the method of Exercise E2 show that the group of matrices

1 x =
g=10 1y (x, y, 2€ R)
0 01

has a basis of left invariant 1-forms given by
wy = dx, wy, = dy, wy =dz — xdy

and that the Maurer-Cartan equations are
dw, = 0, dw, = 0, dw,

= —w; A w,.



%, Invariant Measures

1. Let G be a Lie group and H a closed subgroup. Then
(i) If H is compact, G/H has an invariant measure.
@ii) If G is unimodular and H normal, then H is unimodular.
(iii) If G/H has a finite invariant measure and if H is unimodular,
then G is unimodular. '

2. For the group O(2) the element g = (? }) satisfies Ad(g) = —1.

3. Let G be a connected Lie group with Lie algebra g, and H = G a
closed analytic subgroup with Lie algebra h = g. Let X,,..., X, be a
basis of g such that X,,,..... X, span } and put

Let c}; be determined by [X;, X;] = Y, ¢ X,.
(i) G is unimodular if and only if

Trad X) =0 for Xeg,

or, equivalently,
n
Y = for eachi, I<i<n
k=1

(ii)) The space G/H has an invariant measure if and only if

Tr(ad(T)) = Tr(ad(T)) for Teb,

or, equivalently,

Ye,=0 for r+l1<i<n
a=1
(Chern [1942)).

4. Show that the group M(n) of isometries of R" is isomorphic to the
group of matrices

X,

gk. x = ’ 0
Xp

0 .- 0 1
where ke K = O(n) and x = (x,,...,x,)€R". A Haar measure dg on
M(n) is then given by

jG J@dg= |  fldkdx, feC(M(n)),

K xR
where dk is a Haar measure on K.
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5. A biinvariant measure on the group G = GL(n, R) of nonsingular
matrices X = (x;;) is given by

f - ff(X)Idct X177 dx;;-
G ij
6. A biinvariant measure on the unimodular group G = SL(n, R) is
given by
= [ seouex 1t I dxg.
e L # (1, 1)
Here X = (x;;), X;; is the (i, j)-cofactor in X, and the x;; (except for x,,)
are taken as independent variables on the set G’ given by det X, 0.
7. Let T(n, R) denote the group of all ge GL(n, R) which are upper
triangular. A left-invariant measure on T(n, R) is given by

[ - f(t)tl—lntéz—""'tn—nlﬁdlij

T(n, R) isj

and a right-invariant measure by

S - A (1Y PY R H_dt.'j~

T(n, R) i<y

G. Compact Real Forms and Complete Reducibility

1.Show that the function f (after Theorem b.3) has mininmnm value when the
structural constants are reat if and only if the real span of the basis vectors is a
compact real form. Show that the minimum value then equals n.

3. A representation p of a Lie algebra g (resp. a group G) on a finite-
dimensional vector space V is called semisimple (or completely reducible)
if each subspace of ¥ invariant under p(g) (resp. p(G)) has a comple-
mentary invariant subspace. o

(i) Any finite-dimensional representation of a compact topological
group on a real or complex vector space ¥ is semisimple.

(ii) (Weyl’s unitary trick) Using a compact real form prove that any
finite-dimensional representation 7 of a real semisimple Lie algebra g on
a real or complex vector space V is semisimple.
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