CHAPTER Il

LIE GROUPS AND LIE ALGEBRAS

A Lie group is, roughly speaking, an analytic manifold with a group structure
such that the group operations are analytic. Lie groups arise in a natural way as
transformation groups of geometric objects. For example, the group of all affine
transformations of a connected manifold with an affine connection and the group
of all isometries of a pseudo-Riemannian manifold are known to be Lie groups
in the compact open topology. However, the group of all diffeomotrphisms of
a manifold is too big to form a Lie group in any reasonable topology.

The tangent space g at the identity element of a Lie group G has a rule of
composition (X,Y) — [X,Y] derived from the bracket operation on the left
invariant vector fields on G. The vector space g with this rule of composition is
called the Lie algebra of G. The structures of g and G are related by the exponen-
tial mapping exp: g — G which sends straight lines through the origin in g onto
one-paramater subgroups of G. Several properties of this mapping are developed
already in §1 because they can be derived as special cases of properties of the
Exponential mapping for a suitable affine connection on G. Although the structure
of g is determined by an arbitrary neighborhood of the identity element of G,
the exponential mapping sets up a far-reaching relationship between g and the
group G in the large. We shall for example see in Chapter VII that the center of
a compact simply connected Lie group G is explicitly determined by the Lie
algebra g. In §2 the correspondence (induced. by exp) between subalgebras and
subgroups is developed. This correspondence is of basic importance in the theory
in spite of its weakness that the subalgebra does not in general decide whether the
corresponding subgroup will be closed or not, an important distinction when
coset spaces are considered.

In §4 we investigate the relationship between homogeneous spaces and coset
spaces. It is shown that if a manifold M has a separable transitive Lie transforma- -
tion group G acting on it, then M can be identified with a coset space G/H
(H closed) and therefore falls inside the realm of Lie group theory. Thus, one can,
for example, conclude that if H is compact, then M has a G-invariant Riemannian
structure,

Let G be a connected Lie group with Lie algebra g. If ¢ € G, the inner auto-
morphism g — ogo~! induces an automorphism Ad (¢) of g and the mapping
o — Ad (o) is an analytic homomorphism of G onto an analytic subgroup Ad (G)
of GL(g), the adjoint group. The group Ad (G) can be defined by g alone and since
its Lie algebra is isomorphic to g/3 (3 = center of g), one can, for example, con-
clude that a semisimple Lie algebra over R is isomorphic to the Lie algebra of
a Lie group. This fact holds for arbitrary Lie algebras over R but will not be
needed in this book in that generality.

Section 6 deals with some preliminary results about semisimple Lie groups.
The main result is Weyl's theorem stating that the universal covering group of
a compact semisimple Lie group is compact. In §7 we discuss invariant forms on
G and their determination from the structure of g.
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§ 1. The Exponential Mapping

1. The Lie Algebra of a Lie Group

Definition. A Lie group is a group G which is also an analytic
manifold such that the mapping (o, ) — o7-1 of the product manifold
G X G into G is analytic.

Examples. 1. Let G be the group of all isometries of the Euclidean
plane R? which preserve the orientation. If o € G, let (x(0), y(o)) denote
the coordinates of the point & - 0 (0 = origin of R%) and let 8(c) denote
the angle between the x-axis / and the image of / under o. Then the
mapping ¢ : ¢ — (x(0), (o), 6(c)) maps G in a one-to-one fashion onto
the product manifold R?* X S (§* = R mod 2#). We can turn G into
an analytic manifold by requiring ¢ to be an analytic diffeomorphism.
An elementary computation shows that for 0,7 € G

x(orY) = x(c) — x(7) cos (B(c) — (7)) + y(r) sin (6(c) — B(7));
¥(or71) = y(o) — *(r) sin (8(0) — 6(r)) — y() cos (6(c) — 6());
6(or™Y) = 68(s) — 0(7) (mod 2m).

Since the functions sin and cos are analytic, it follows that G is a Lie .
group.

2. Let G be the group of all isometries of R%. If s is the symmetry
of R? with respect to a line, then G = G U sG (disjoint union). We
can turn sG into an analytic manifold by requiring the mapping o — so
(0 € G) to be an analytic diffeomorphism of G onto sG. This makes
G a Lie group.

On the other hand, if G, and G, are two components of a Lie group
G and x; € Gy, x, € G, then the mapping g — x,%"g is an analytic
diffeomorphism of G, onto G,.

Let G be a connected topological group. A covering group of G is a
pair (G, =) where G is a topological group and = is a homomorphism
of G into G such that (G, =) is a covering space of G. In the case when
G is a Lie group, then G has clearly an analytic structure such that G
is a Lie group, = analytic and (G, =) a covering manifold of G.
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The Exponential Mapping

Definition. . A homomorphism of a Lie group into another which is
also an analytic mapping is called an analytic homomorphism. An iso-
morphism of one Lie group onto another which is also an analytic
diffeomorphism is called an analytic isomorphism.

Let G be a Lie group. If p € G, the left translation L, : g — pg of G
onto itself is an analytic diffeomorphism. A vector field Z on G is called
left invariant if dL,Z = Z for all p € G. Given a tangent vector X € G,
there exists exactly one left invariant vector field X on G such that
X, = X and this X is analytic. In fact, X can be defined by

£1)) = X7t = {2 o] _

if f e C*(G), p € G, and y(t) is any curve in G with tangent vector X
for t = 0. If X, Y € G,, then the vector field [X, V] is left invariant
due to Prop. 3.3, Chapter I. The tangent vector [X, Y], is denoted by
[X, Y]. The vector space G,, with the rule of composition (X, V) — [X,Y]
we denote by g (or £(G)) and call the Lie algebra of G.

More generally, let a be a vector space over a field K (of characteristic
0). The set a is called a Lie algebra over K if there is given a rule of
composition (X, Y) — [X,Y] in o which is bilinear and satisfies
(a) [X, X] = Oforall X ea; (b) [X, [V, Z]] + [V, [Z, X]] + [Z, [X, Y]}
= 0 for all X, Y, Z € a. The identity (b) is called the Jacobi identity.

The Lie algebra of G above is clearly a Lie algebra over R.

If a is a Lie algebra over K and X € q, the linear transformation
Y — [X, Y] of a is denoted by adX (or ad,X when a confusion
would otherwise be possible). Let b and ¢ be two vector subspaces of a.
Then [b, ¢] denotes the vector subspace of a generated by the set of
elements [X, Y] where X €5, Y € ¢. A vector subspace b of a is called
a subalgebra of a if [b, b] C b and an ideal in a if [b, a] C b. If b is an ideal
in a then the factor space a/b is a Lie algebra with the bracket operation
inherited from a. Let a and b be two Lie algebras over the same field K
and o a linear mapping of a into b. The mapping o is called a homomorphism
if o([X, Y]) = [0X, oY] for all X, Y € a. If 0 is a homomorphism then
o(a) is a subalgebra of b and the kernel 0~1{0} is an ideal in a. If 0~1{0} =
{0}, then o is called an isomorphism of a into b. An isomorphism of a Lie
algebra onto itself is called an automorphism. If a is a Lie algebra and
b, ¢ subsets of q, the centralizer of b in ¢ is {X ec: [X, b] = 0}. If'biCa
is a subalgebra, its normalizer in ¢ is n = {X€a:[X, 5]CH}; b is an
ideal in n.

Let V be a vector space over a field K and let gl( V) denote the vector
space of all endomorphisms of ¥ with the bracket operation [4, B] =
AB — BA. Then gi(V) is a Lie algebra over K. Let a be a Lie algebra
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over K. A homomorphism of a into gi(¥) is called a representation of a
on V. In particular, since ad ([X, Y]) = ad Xad Y — ad Y ad X, the
linear mapping X — ad X (X € q) is a representation of a on a. It is
called the adjoint representation of a and is denoted ad (or ad, when a
confusion would otherwise be possible). The kernel of ad, is called the
center of a. If the center of a equals a, a is said to be abelian. Thus a is
abelian if and only if [a, o] = {0}.

Let a and b be two Lie algebras over the same field K. The vector
space a X b becomes a Lie algebra over K if we define

(X Y), (X', ¥} = (IX, X'} [Y, Y')).

This Lie algebra is called the Lie algebra product of a and b, The sets
{(X,0): X €a}, {(0,Y): Y eb} are ideals in a X b and a X b is the
direct sum of these ideals.

In the following a Lie algebra shall always mean a' finite-dimensional
Lie algebra unless the contrary is stated.

2. The Universal Enveloping Algebra

Let a be a Lie algebra over a field XK. The rule of composition (X, ¥) —
[X, Y] is rarely associative; we shall now assign to a an associative
algebra with unit, the universal enveloping algebra of o, denoted U(a).
This algebra is defined as the factor algebra T(a)/] where T(a) is the
tensor algebra over a (considered as a vector space) and [ is the two-
sided ideal in T'(a) generated by the set of all elements of the form
X®Y—Y®X—[X,Y] whete X, Y €a. If X €q, let X* denote
the image of X under the canonical mapping # of T(a) onto U(a). The
identity element in U(a) will be denoted by 1. Then 1 # 0 if o 7 {0}.
Proposition 1.9 (b) motivates the consideration of U(a).

Proposition 1.4. Let V be a vector space over K. There is a natural
one-to-one correspondence between the set of all representations of a on V
and the set of all representations of U(a) on V. If p is a representation of a
on V and p* is the corresponding representation of U(n) on V, then

HX) = p*(X*)  forXea. (1

Proof. Let p be a representation of a on V. Then there exists a unique
representation 5 of T(a) on V satisfying p(X) = p(X) for all X €a,
The mapping 5 vanishes on the ideal ] because

FX®Y — Y ®X —[X, Y])) = o(X) o(¥) — p(¥) o(X) — p([X, ¥]) = 0.

Thus we can define a representation p* of U(a) on V by the condition
p* o m = p. Then (1) is satisfied and determines p* uniquely. On the
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other hand, suppose ¢ is a representation of U(a) on V. If X €a we
put p(X) = o(X*). Then the mapping X — p(X) is linear and in fact
a representation of « on V, because

A, Y]) = o[X, Y]9) = o X ® Y — Y ® X))
= o(X*¥* — Y*X*) = p(X) p(¥) — p(¥)p(X)

for X, Y € a. This proves the proposition.

Let Xy, .o X bs a basis of a and put X*(t) = I, t, XY (1, € K).
Let M = (m,, ..., m,) be an ordered-set of integers m; > 0. We shall
call M a positive integral n-tuple. We put M| =m+ .. + m,}u
tM = ™ .., t". Considering %, ..., {, a8 indeterminates the various ¢
are linearly independent over K and for | M | > 0 we can define X *(]l;lh)'fe
U(a) as the coefficient of #¥ in the expansion of (| M IN-YX*(2)) M.
Put X*(M) =1if |[M| = 0.

Proposition 1.2. The smallest vector subspace of Ula) contaitn'ng all
the elements X*(M) (where M is a positive integral n-tuple) is Ula)
itself. ' '

Proof. It suffices to prove that each element XFX/ ... X¥ (I <14,
.y Iy < 1) can be expressed as a finite sum 2y <p A X *(M) where
ay € K. Consider the element .

1 *
Uy = P—!‘g X;:;(l) eee th(’)l

where o runs over the permutations of {1,...,p}. We claim that
up =my!l- - myp! X¥(M),

where my, is the number of entries in the sequence (iy,...,%,) which equal k&
and M = (my,...,my). To see this write X for X7 and note that

(£ Xiy + -+ i, X3, )P = Z tM S,
{M|=p
where

Sy = Z Xi”m .. 'Xia'(p) = pluy, .
[e2

In each term my, factors equal Xj. One term is X7* .-+ X! and the others
are obtained by shuffling. In the sum ) each term will appear m,!...my!
times. Now (£1.X1 + -+ taXn)” = p! 30 011 tMX(M).

Here p!X (M) is the sum of the terms obtained from X7*'--- X™» by
shuffling, each term appearing ezactly once. Hence

plup = my!. . my! p! X(M).

Using the relation X7 X; — X X5 = [X;, Xix]* we see that
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* *
X X — X7 I X P
is a linear combination (with coefficients in K) of elements of the form
X7 .. (S P gn)whereeachX (l<q<p— 1) belongs
to the subalgebra of a generated by X;, ..., X; . The formula

XFXE .. XF = ayX*M)

[l 7
IM|<p

now follows by induction on p.

Corollary 1.3. Let b be a subalgebra of a. Suppose b has dimension
n — r and let the basis X, ..., X, of o be chosen in such a way that the

n — r last elements lie in b. Let B denote the vector subspace of U(a)
spanned by all elements X*(M) where M wvaries over all positive integral
n-tuples of the form (0, ..., 0, m,y, ..., m,). Then B is a subalgebra of Ul(a).

In fact, the proof above shows that the product X¥ ... X} (r < i,

l
. 1, < n) can be written as a linear combination of elements X*(M)
for which m; = ... = m, = Q.

3. Left Invariant Affine Connections

Let G be a Lie group, and ¥ an affine connection on G; ¥/ is said
to be left invariant if each L, (o € G) is an affine transformation of G.
Let X,, ..., X, be a basis of the Lie algebra g of G and let X,, ..., X,
denote the corresponding left invariant vector fields on G. Then if V
is left invariant, the vector fields Vg (X;) (1 <4,j < n) are obvxously
left invariant. On the other hand we can deﬁne an affine connection
¥V on G by requiring the Vg, X)) to be any left invariant vector fields.
Let Z, Z' be arbitrary vector fieldsin D! Then Z = %, JiXo Z = 2,8, X,
where f;, gJ € C*(G). Using the axioms ¥/, and ¥/, and Prop. 3.3 in
Chapter [ we find easily that Var 2(dL, Z'y = dL,VZ") for each
o € G so V is left invariant.

Proposition 1.4. There is a one-to-one correspondence between the set
of left invariant affine connections \/ on G and the set of bilinear functions
o on g X ¢ with values in g given by

X, Y) = (V&(¥))..
Let X € g. The following statements are then equivalent:
(i) X, X) = 0;
(ii) The geodesic t — y (1) is an analytic homomorphism of R into G.

Proof. Given a bilinear mapping «:g X g—g, we define the
affine connection ¥ by the requirement

VX,-(XJ') = o X, XJ)>~ 1<ij<n).

By the remark above, ¥/ is left invariant, and the correspondence
follows. Also, ¥/ is analytic.

Next let X € g and let X be the corresponding left invariant vector
field on G. Locally there exist integral curves to the vector field X
(Chapter I, §7). In other words, there exists a number ¢ > 0 and a
curve segment I': ¢t — I'(t) (0 <t < ¢€) in G such that

]ﬂ(o) =, F(S) = F(s) (2)
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for 0 < s < e. Using induction we define I'(¢) for all t > 0 by the

requirement
I'(t) = I(ne) I'(t — ne), if ne <t < (n+1)e,

n being a nonnegative integer. On the interval ne < ¢t < (n 4+ 1)e
we have I'o L_,, = Lpy,-10 I We use both sides of this equation
on the tangent vector (d/dt), (ne < t < (n + 1) €). From (2) we obtain

10 = dI' (~5), = dLrwno AT 0 ALy, (-5)

= d[‘l‘(m) XI‘(!—m)
= XI'(!)

Thus (2) holds for all s > 0 (including the points ne).

Assume now o X, X) = 0. Then, due to the left invariance of the
corresponding affine connection ¥/, we have Vg¢(X) = 0. Hence the
curve segment I'(2) (£ = 0) is a geodesic segment, and by the uniqueness
of such, we have I'(t) = yx(t) for all £ > 0. For any affine connection,
y-x(t) = yx(— t). Since o — X, — X) = 0, it follows that y,(t) is
defined for all 2 € R. Now let s > 0. Then the curves t — yx{(s + 1)
and t — yx(s) yx(f) are both geodesics in G (since ¥V is left invariant)
passing through yx(s). These geodesncs have tangent vectors yx(s) and
dLy 0 X, respectively, at the point yx(s). These are equal since (2)
holds for all s > 0. We conclude that

vx(s +t) = yx(s) vx(t) @3)

for s > 0 and all 2. Using again y_x(t) = yx(— ), we see that (3) ho'ds
for all s and ¢. This proves that (i) = (ii).

Suppose now § is any analytic homomorphism of R into G such that
6(0) = X. Then from 8(s + t) = 8(s) 6(¢), (¢, s € R), follows that

0(0) = e, b(s) = Xy foralls e R. )]
In particular, if yy is an analytic homomorphism, we have Vx(X) =0
on the curve yy; hence o(X, X) = (Vg(X)), = 0.

Corollary 1.5. Let X €. There exists a unique analytic homo-
morphism 8 of R into G such that #(0) =

Proof. Let ¥/ be any affine connection on G for which o X, X) = 0.
Then 8 = yx is a homomorphism with the required properties. For the
uniqueness we observe that (4), in connection with o(X, X) =0,
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shows, that any homomorphism 6 with the required properties must be
a geodesic; by the uniqueness of geodesics (Prop. 5.3, Chapter I),

0 = Yx
Definition. For each X € g, we put exp X = (1) if 6 is the homo-
morphism of Cor. 1.5. The mapping X — exp X of g into G is called

the exponential mapping.
We have the formula

exp (t + ) X = exp tX exp sX

for all 5,2 € R and all X eg. This follows immediately from the fact
that if o(X, X) = 0, then () = yx(t) = y,;x(1) = exp tX.

Definition. A one-parameter subgroup of a Lie group G is an analytic
homomorphism of R into G.

We have seen above that the one-parameter subgroups are the
mappings ¢t — exp tX where X is an element of the Lie algebra.

We see from Prop. 1.4 and the corollary that the exponential mapping
agrees with the mapping Exp, (from Chapter I) for all left invariant
affine connections on G satisfying o(X, X) = 0 for all X €g. The
classical examples (Cartan.and Schouten [1]) are « =0 (the (—)-
connection), o(X, Y) = }[X, Y] (the (0)-connection) and o X, ¥) =
[X, Y] (the (+)-connection).

From Theorem 6.1, Chapter I, we deduce the following statement.

Proposition 1.6. There exists an open neighborhood Ny of 0 in g and
an open neighborhood N, of e in G such that exp is an analytic diffeo-
morphism of Ny onto N, _

Let Xj, ..., X, be a basis of g. The mapping

exp (%, X; + ... + %,X,) — (%1, oy %)

of N, onto Ny is a coordinate system on N,, called a system of canonical
coordinates with respect to X, ..., X,,. The set N, is called a canonical
coordinate neighborhood. Note that N, is not required to be star-shaped.

4. Taylor's Formula and the Differential of the Exponential Mapping

Let G be a Lie group with Lie algebra g. Let X €g, g € G, and
f € C*(G). Since the homomorphism 8(#) = exp tX satisfies 6(0) = X
we obtain

Xf=X(foL)={Zfgewin) O
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It follows that the value of Xf at g exp uX is
[Xf] (¢ exp uX) = ( - 4 flg exp uX exp zX)* - diu (g exp uX)
and by induction
7] (g exp uX) = - £ (g exp uX).

Suppose now that f is analytic at g. Then there exists a star-shaped
neighborhood N of 0 in g such that

f(gexp X) = P(xy, .y %) (X € Ny),
where P denotes an absolutely convergent power series and (xy, ..., x,,)

are the coordinates of X with respect to a fixed basis of g. Then we
have for a fixed X € N,

flgexp tX) = P(tx,, ..., tx,) = i—%'- a,t™ (a,, € R),.
ot m!

for 0 < t < 1. It follows that each coefficient 4,, equals the mth deriva-
tive of f(g exp 1X) for t = 0; consequently

a, = [Z"f] (g)-

This proves the “Taylor formula”;

0

flgew X) = 3, - 1X](6) (©)

for X € N,.

Theorem 1.7. Let G be a Lie group with Lie algebrag. The exponential
mapping of the mantfold g into G has the differential

1 — e"ld X
dexpx = d(Lexp x). O e d X X E 8)-

As usual, g is here identified with the tangent space gy.
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Proof:

In the statement,

=2 stands for S nff For the proof we use the
Taylor formula above. We have for f analym( near exp X,

(dexpx(Y)f)(exp X) = Y(f oexp)(X)

:{%f’(exp(X—i—tY))}t:“ { > - }— Y+ 7y ()}w

0

oC

-3

0

(:,), + 1)|( X 4 )}?}?n"l 4+ 4 jz*ni—)f(‘a) '

Now (ad X(Y))™ = XY — Y X so we define

ad X(Y)=XY - YX =LY - RzY .

Thus
R‘Q =L )? - ad X

and they commute. Thus

YX" = (Rz)"(V) = (Lg —ad X)"™(Y)

=Y (=1 (';j) X™P(ad X)P(Y)

50

P4 X7 =3 0P

p=0
n—n

= ZX”Z ( )\’” P=H(ad X)H(Y)

p=0 k=0

n o n—p

=Y (-1 ( >x" Flad X*)Y)

p=0 k=0

n n—k

! ( )X“ klad X)R(Y).

k=0 p=0
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Now what is 3 5 k (" F)? Look at > e EQ 4+ 1) and collect coefficient
to .

A4+t) + + 0+ =1+ 1+ + 1+
pAETTM 1 (1 +f)”+1 —(1+t)k
=(1+1)F (T .

and the coefficient to #* equals (;"ﬁ) Thus

n—k

Z n—p\ (n+l
ki S \k+1/)°
p=0

(=1 (:i i)):’"‘k(ad X)H(Y).

SO Our sum is

Thus

(dexpy (V) f)(exp X) Z <7L+1) (X" (ad X)¥(Y) f)(e)

n—l—l' k+1

= iZ ("”k L (%R ad XM ()
n=0%L=0 (k+1) (n—-]‘)

- ey A ek P
L (e ) (= W) < :

o (_1)k 1~'r kv £
= Y3 g X ad R ()

o0 Ny‘l' _1\k
= YA A a X)) e

1— e—ad X
- <T(Y)f> (exp X)

B ((%ﬁmy f) (exp X)

1_efad X

= dl{expX)o ————
dL{exp X) o %

(Y)(f)(exp X) .
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This proves the formula for f analytic. Thus
l1—e" ad tX
dLexp(~1X) © d€XPix Y)= W

for all ¢ in some interval |t| < 0. Both sides are analytic functions on R with
values in g. Since they agree for |t| < § they agree on R.

Lemma 1.8. Let G be a Lie group with Lie algebra g, and let exp be
the exponential mapping of g into G. Then, if X, Y € g,
(i) exp tX exptY = exp {t(X + ¥) + -!2’— [X, Y] + O(#)},
(i) exp (— tX) exp (— tY)exp tX exp tY = exp {t’[X, Y1+ O(8)},
(iii) exp tX exp tY exp (— tX) = exp {tY + £[X, Y] + O(#)}.

In each case O(t?) denotes a vector in g with the property: there exists
an € > 0 such that (1/t%) O(t%) is bounded and analytic for | t]| < e.

We first prove (i). Let f be analytic at e. Then using the formula

[R%] (g exp X) = —- (g exp 1X)

twice we obtain

(Rr¥™fl(e) = {-%;— %— f(exp tX exp sY)] .

§=0, {=0

Therefore, the Taylor series for f(exp tX exp sY) is

flexp tX exps¥) = 3, T2 (2 Pns] (o) )

mnz0

for sufficiently small ¢ and 5. On the other hand,
exp tX exp tY = exp Z(t)

for sufficiently small ¢ where Z(¢) is a function with values in g, analytic
at t = 0. We have Z(t) = tZ, + 1*Z, + O(t*) where Z; and Z, are



The Exponential Mapping

fixed vectors in g. Then if f is any of the canonical coordinate functions
exp (%, X; + ... + %, X,) — x, we have

f(exp Z(1)) = f(exp (12, + t°Z,)) + 0(1")

=3 w0z + 220 + 0. ®

]

If we compare (7) fort =sand 8) wefind Z, = X + Y, $2} 4+ 2, =
34X2 4+ XV + 1¥2 Consequently

Z,=X+7Y, Z, = (X, V],

which proves (i). The relation (ii) is obtained by applying (i) twice.
To prove (iii), let again f be analytic at e; then for small ¢ .

tm

flexp tX exp tY exp (— tX)) = E T n'

mn,p>0

P' L (ZmP— RP11) )

and
exp tX exp tY exp (— tX) = exp S(t)

where S(2) = S, + 2S; + O(#®) and Sy, S; €g. If f is a.ny canonical
coordinate function, then

flexp S(t)) = f(exp (S, + 178,)) + O(%)
2# [¢S, + 1S 2"f1(e) + O(23), (10)

and we find by comparing coefficients in (9) and (10), S; =Y, S; =
[X, Y], which proves (iii).

Remark. The relation (ii) gives a geometric interpretation of the
bracket [X, Y]; in fact, it shows that [X, V] is the tangent vector at e
to the C? curve segment

s—exp(— Vs X)exp (— VsY)exp Vs Xexp Vs Y (s = 0).
Note also that this is a special case of Exercise A.8, Chapter I.

Let D(G) denote the algebra of operators on C®(G) generated by all
the left invariant vector fields on G and I (the identity operator on
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C*(G)). If X € g we shall also denote the corresponding left invariant
vector field on G by X. Similarly the operator X, - X, ... X, (X, € 9)
will be denoted by X; - X, ... X, for simplicity. Let X, ... X be any
basis of g and put X(t) = E Lt X Let M = (my, ..., m,) be a positive
integral n-tuple, let t = 1 - 7 and let X(M) denote the coeffi-
cient of t* in the expansion of (| M )X X()M. 1f | M| =0 put
X(M) = I. It is clear that X(M) € D(G).

Proposition 1.9.

(a) As M varies through all positive integral n-tuples the elements X(M)
form a basis of D(G) (considered as a vector space over R).
(b) The universal enveloping algebra U(g) is isomorphic to D(G).

Proof. Let f be an analytic function at g € G; we have by (6)
flg exp X(1) =3, MXMA @), (1)

if the #; are sufficiently small. If we compare this formula with the
ordinary Taylor formula for the function F defined by F(¢,, ..., £,) =
f(g exp X(t)), we obtain

1 j o™ )

X1 6) = o —r | i i 8 X0 X(0)

. (12)

seln...-t,.uo

It follows immediately that the various X(M) are linearly independent.
The Lie algebra g has a representation p on C*(G) if we associate to
each X € g the corresponding left invariant vector field. The representa-
tion p* from Prop. 1.1 gives a homomorphism of U(g) into D(G) such
that p*(X*) = p(X) for X €g. The mapping p* sends the element
Xr .. X e Ug) into X; ... X; € D(G); thus p*(U(g)) = D(G). More-
over, p * sends the element X*(M) € U(g) into X(M) € D(G). Since the
elements X(M) are linearly mdependent the proposition follows from
Prop. 1.2

Corollary 1.10. With the notation above, the elements X% ... X’
(e; = 0) form a basis of D(G).

Since X;X; — X;X; = [X,, X,] it is clear that each X(M) can be
written as a real linear combination of elements X% .. X% where
e, + ..+ e, <|M]. On the other hand, as noted in the proof of
Prop. 1.2, each X{r... X7» can be written as a real linear combination
of elements X(M) for which | M| < ¢, + ... + ¢,. Since the number
of elements X(M), | M| < ¢, ++ ... + ¢, equals the number of elements
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Xt Xin (i + oo + frn < &+ ... +¢,), the corollary follows from
Prop. 1.9.
This corollary shows quickly that D(G) has no divisors of 0.

Definition. Let G and G’ be two Lie groups with identity elements e
and ¢’. These groups are said to be ésomorphic if there exists an analytic
isomorphism of G onto G'. The groups G and G’ are said to be locally
isomorphic if there exist open neighborhoods U and U’ of e and ¢,
respectively, and an analytic diffeomorphism f of U onto U’ satisfying:

(a) If %, y, xy € U, then flxy) = f(x) ().

(b) If &', ', %'y’ € U', then f-Y(x'y") = fY(«) f(¥). -

Theorem 1.41. Two Lie groups are locally isomorphic if and only if
their Lie algebras are isomorphic.

Proof. Let G be a Lie group with Lie algebra g. Let X, ..., X, be
a basis of g. Owing to Prop. 1.9 we can legitimately write X(M) instead
of X*(M); there exist uniquely determined constants C%,y € R such
that
X(M) X(N) =, CPyn X(P),
P

M, N, and P denoting positive integral n-tuples. Owing to Prop. 1.9,
the constants C¥,y depend only on the Lie algebrag. If N, is a canonical
coordinate neighborhood of ¢ € G and g € N, let gy, ..., g, denote the
canonical coordinates of g. Then if x, y, xy € N,, we have .

x = exp (%, X; + ... + x,X,), y =exp (0 Xy 4 ... + X)),

xy = exp ()X + o + (9)nXy).
We also put

M = xP' .., X, yM =y g
Using (7) on the function f: x — x,, we find for sufficiently small x;, y;
() = 3 MyNX(M) X(N) 5] (o). (13)
From (12) it follows that

[X(P) xk] (e) = zl ifP= (skll Bpas oee, Sh),

0 otherwise.
Putting [k] = (84, ...y Opz), relation (13) becomes

(xy) = 3, Cllyy xMy¥, (14)
MN .



if x5, y; (1 <14,j < n) are sufficiently small. This last formula shows
that the group law is determined in a neighborhood of e by the Lie
algebra. In particular, Lie groups with isomorphic Lie algebras are
locally isomorphic. Before proving the converse of Theorem 1.11 we
prove a general lemma about homomorphisms.

Lemma 1.12. Let H and K be Lie groups with Lie algebras b and 1,
respectively. Let o be an analytic homomorphism of H into K. Then dp,
is a homomorphism of b into t and

p(exp X) = exp dp(X) (X eb). (15)

Proof. Let X eb. The mapping ¢ — @ (exptX) is an analytic
homomorphism of R into K. If we put X' = dp(X), Cor. 1.5 implies
that ¢ (exp tX) = exp tX’ for all ¢ € R. Since ¢ is a homomorphism,

we have po L, = L, 0 ¢ for o € H. It follows that

(dp) 0 dL, - X = dL i - X".
This means that the left invariant vector fields X and X’ are ¢-related.

Hence, by Prop. 3.3, Chapter I, dp, is a homomorphism and the lemma
is proved.

To finish the proof of Theorem 1.11 we suppose now that the Lie groups
G and G’ are locally isomorphic. Let g and g’ denote their respective Lie
algebras. Suppose ¢ is a local isomorphism of G into G/ , and let X' =
dpe(X). If g € G is sufficiently near e then

woLg= L,y o on a neighborhood of e.

Thus dp o dLy(X) = dL,g)(X'), so in a neighborhood of e , X and X’
are ¢ related. If Y € g then ¥ and Y (Y = dp(Y)) are ¢ related in
a neighborhood of e, and so are [X,Y] and [X’,Y’]. Thus dee([X,Y]) =
[X',Y"] as claimed.

Example. Let GL(n, R) denote the group of all real nonsingular
n X n matrices and let gi(n, R) denote the Lie algebra of all real n X n
matrices, the bracket being [4, B] = AB — BA, A,B € gl(n, R). If
we consider the matrix ¢ = ((c)) € GL(n, R) as the set of coordi-
nates of a point in R*' then GL(n, R) can be regarded as an open sub-
manifold of R*. With this analytic structure GL(n, R) is a Lie group;

W
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this is obvious by considering the expression of x;(ov-2) (, o € G L(n, R))
in terms of x,(), x,,(7), given by matrix multiplication.

Let X be an element of 2(GL(n, R)) and let X denote the left invariant
vector field on GL(n, R) such that X, = X. Let (a;(X)) denote the
matrix (X,x;). We shall prove that the mapping ¢ : X — (a;(X)) is an
isomorphism of §(GL(n, R)) onto gi(n, R). The mapping ¢ is linear
and one-to-one; in fact, the relation (a,(X)) = 0 implies X,f = 0 for
all differentiable functions f, hence X = 0. Considering the dimensions
of the Lie algebras we see that the range of g is gl(n, R). Next we consider
[Xxy] (0) = (dL,X) x;j = X(xy 0 L,). If € GL(n, R), then

(2150 Lg) (7) = xifom) = 3 x0x(o) el (16)

k=1
Hence

[Rx] (0) =Y, xul0) il X). (7

ka=1
It follows that

[(RF — PR) 2] () = 3 aulX) 1Y) — 8(¥) arf X)

k=1

= [p(X), (¥

Consequently, the Lie algebra of GL(n, R) can be identified with
gl(n, R) so we now write X,; instead of a,(X) above. Using the general
formula

. d
[Xf] (exp tX) = - f(exp tX)
for a differentiable function f, we obtain from (16) and (17)

d
7 x;(exp 1X) = xik(exp tX) X,

k=3
Thus the matrix function Y(t) = exp tX satisfies the differential
equation

Y0 _ yoy x, Y(0) = 1.
dt .
Since this equation is also satisfied by the matrix exponential function
2Y2
Y(t) =e‘X=I+tX+'—2XT+...,

we conclude that exp X = e for all X € gi(n, R).
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Let V be an n-dimensional vector space over R. Let gi(V) be the Lie
algebra of all endomorphisms of V and let GL(V) be the group of
invertible endomorphisms of V. Fix a basis ¢, ..., e, of V. To each
o € gl(V) we associate the matrix (x;(0)) given by

oe; = 2" x:(o) ;.

f=1

The mapping J,: ¢ — (;(c)) is an isomorphism of gi(¥’) onto gi(n, R)
whose restriction to GL(V) is an isomorphism of GL(V) onto GL(n, R).
This isomorphism turns GL(V) into a Lie group with Lie algebra
isomorphic to gi(V). If f,, ..., f,, is another basis of ¥, we get another
isomorphism J; : gi(V) — gi(n, R). If A € GL(V) is determined by
Ae; = f, (1 <1< n), then J, and ], are connected by the equation
Jdo) = J(A)J{o)](4?). Since the ‘mapping g—»J,(4)gJ(4) is an
analytic isomorphism of GL(n,R) onto itself, we conclude: (1) The
analytic structure of GL(V) is independent of the choice of basis.
(2) There is an isomorphism of 2(GL(V)) onto g(V) (namely, J, o d],)
which is independent of the choice of basis of V.

§ 2. Lie Subgroups and Subalgebras

Definition. Let G be a Lie group. A submanifold H of G is called
a Lie subgroup if

(i) H is a subgroup of the (abstract) group G;

(i) H is a topological group.

A Lie subgroup is itself a Lie group; in order to see this, consider
the analytic mapping o : (x, ) — xy~1 of G X G into G. Let oy denote
the restriction of « to 4 X H. Then the mapping ay: H X H — G is
analytic, and by (ii) the mapping oy : H X H— H is continuous. In
view of Lemma 3.4 Chapter I, the mapping ay is an analytic mapping
of H X H into H so H is a Lie group.

A connected Lie subgroup is often called an analytic subgroup.

Theorem 21. Let G be a Lie group. If H is a Lie subgroup of G,
then the Lie algebra b of H is a subalgebra of g, the Lie algebra of G.
Each subalgebra of g is the Lie algebra of exactly one connected Lie subgroup
of G.

Proof. If I denotes the identity mapping of H into G, then by
Lemma 1.12 dI, is a homomorphism of § into g. Since H is a submanifold
of G, dI, is one-to-one, Thus §) can be regarded as a subalgebra of g.
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Let exp, and exp,, respectively, denote the exponential mappings
of b into H and of g into G. From Cor. 1.5 we get immediately

expy (X) = exp, (X), Xeh (1)

We can therefore drop the subscripts and write exp instead of exp,
and exp,. If X €9, then the mapping ¢t — exp tX (t € R) is a curve
in A. On the other hand, suppose X € g such that the mapping t — exp tX
is a path in H, that is, a continuous curve in H. By Lemma 4.1, Chapter1,
the mapping ¢ — exp tX is an analytic mapping of R into H. Thus X € b,
so we have

b ={X eg:themapt—exptXisapathin H}. (2)

To prove the second statement of Theorem 2.1, suppose b is any
subalgebra of g. Let H be the smallest subgroup of G containing exp b.
Let (X,, ..., X)) be a basis of g such that (X,) (r << ¢ < ») is a basis of b.
Then we know from Cor. 1.3 (and Prop. 1.9) that aii real linear combina-
tions of elements X(M), where the n-tuple M has the form (0, ..., 0,
M,4q, oy My,), actually form a subalgebra of U(g). Let | X | = («f 4 ...
+ 222 if X = %, X, + ... + %, X, (x; € R). Choose 8§ > 0 such that
exp is a diffeomorphism of the open ball B;={X:| X | < 8} onto an
open neighborhood N, of ¢ in G and such that (14), §l, holds for
x, ¥, xy € N,. Denote the subset exp (§ n B;) of N, by V. The mapping

[28Y) (xr+1 X‘H 1 + e ann) - (xr+1v ey xn)

is a2 coordinate system on V with respect to which V is a connected
manifold. Since N B; is a submanifold of B;, V is a submanifold of N, ;
hence V is a submanifold of G. Now suppose x,y € V, xy € N,, and
consider the canonical coordinates of xy as given by (14), §1. Since
x, =y, =0, if 1 <k<r, we find (using the remark above about
X(M)) that (xy), = 0 if 1 < k < r. Thus we have

VV A N,CV. 3)
Let?” denote the family of subsets of H containing a neighborhood of e
in V. Let us verify that ¥~ satisfies the following six axioms for a topo-
logical group (Chevalley Theory of Lie Groups 1, Ch. 11, § II )
I. The intersection of any two sets of ¥ lies in ¥,

II. The intersection of all sets of ¥" is {e}.

IIl. Any subset of H containing a set in ¥" lies in ¥".

IV. If U e, there exists a set U; € ¥ such that U, U, C U.

V. If Ue?’, then U™ ¥

VI.If Ue¥ and h € H, then hUh-' €¥".
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Of these axioms I, II, IIT and V are obvious. For IV let U € N. Choose
€ < 6 such that
Unexp(BeNh) =V, say.

By the proof of (3), V.V, Nexp B, C V.. Select ;< € such that exp Bj, exp Bg,
C exp B, and put U; = exp(h N Bs,). Then

UU,cVVenexpB.Cc V. CcU

proving IV.

For VI, let U € ¥ and h € H. Let log denote the inverse of the mapping
exp: B, - N,. Then log maps V onto h n B,. If X € g, there exists

"a unique vector X' € g such that Aexp tX A~ = exp tX’ for all e R.
The mapping X — X' is an automorphism of g (Lemma 1.12); it maps
b into itself as is easily seen from (3) by using a decomposition
h = exp Z; ... exp Z, where each Z; belongs to B; n b. Consequently,
we can select §, (0 < §; < 8) such that the open ball B, satisfies

hexp (Bs N b)A1C VY,
h(exp By) i-*C N,

The mapping X — log (h exp Xh~') of B; N b into B; N b is regular
so the image of B; N b is a neighborhood of 0 in b. Applying the mapping
exp we see that & exp (B; N b) b is a neighborhood of e in V. This
shows that hUk-' €¥". Axioms I-VI are therefore satisfied. Hence
there exists a topology on H such that H is a topological group and such
that ¥~ is the family of neighborhoods of e in H. In particular V is a
neighborhood of e in H.
For each z € G, consider the mapping

D, : zexp (%, X; + ... + 2, X,) > (21, 00y X)),

which maps zN, onto B;. Let ¢, denote the restriction of @, to zV.
If 2 € H then ¢, maps the neighborhood 2V (of z in H) onto the open
subset B; N § in Euclidean space R*-'. Moreover, if 3, 2, € H the
mapping ¢, © (p:’l is the restriction of ®, o #;! to an open subset
of b, hence analytic. The space H with the collection of maps ¢,, 2 € H,
is therefore an analytic manifold.

Now V is a submanifold of G. Since left translations are diffeomor-
phisms of H it follows that H is a submanifold of G. Hence H is a Lie
subgroup of G. :

We know that dim H = dim §. For ¢ >> r the mapping ¢t — exp tX|
is a curve in H. This in view of (2) proves that H has Lie algebra §.
Moreover, H is connected since it is generated by exp h which is a
connected neighborhood of e in H.
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Finally, in order-to prove uniqueness, suppose H, is any connected
Lie subgroup of G with (H,), = b. From (1) we see that H = H, (set
theoretically). Since exp is an analytic diffeomorphism of a neighborhood
of 0 in b onto a neighborhood of e in H and H,, it is clear that the Lie
groups H and H, coincide.

Corollary 2.2. Suppose H, and Hy are two Lie subgroups of a Lie
group G such that H, = H, (as topological groups). Then H, = H,
(as Lie groups).

Relation (2) shows, in fact, that H, and H, have the same Lie aigebra.
By Theorem 2.1, their identity components coincide as Lie groups.
Since left translations on H, and H, are analytic, it follows at once that
the Lie groups H, and H, coincide.

Theorem 2.3, Let G be a Lie group with Lie algebra g and H an
(abstract) subgroup of G. Suppose H is a closed subset of G. Then there
exists a unique analytic structure on H such that H is a topological Lie
subgroup of G.

We begin by proving a simple lemma.

Lemma 2.4. Suppose g is a direct sum ¢ = m -+ n where m and n
are two vector subspaces of g. Then there exist bounded, open, connected
neighborhoods U,, and U, of O in m and n, respectively, such that the
mapping D : (A, B) — exp A exp B is a diffeomorphism of U, X U, onto
an open neighborhood of e in G.

Proof: The differential d® ) is the identity on m and on h hence on all of
g. This proves the lemma in view of Prop. 3.1, Chapter 1.

Remark. The lemma generalizes immediately to an arbitrary direct
decomposition g = my + ... + m, of g into subspaces.

Turning now to the proof of Theorem 2.3, let § denote the subset
of g given by .

h={X:exptXeHforallt R}

We shall prove that b is a subalgebra of g. First we note that X € p,
s € R implies sX € §. Next, suppose X, ¥ € . By Lemma 1.8 we have
for a given t € R,

" 2
(exp -;E— X exp —:‘— Y) = eXp :‘(X+ Y) +_2t; [X, Y]+ O(;li):'

(exp (— —;— X) exp (—— -;tl— Y) exp % X exp ~:l— Y)"l = exp gt“[X, Y1+ O(’l—l);
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The left-hand sides of these equations belong to H; since H is closed,
the limit as #n — ~ also belongs to H. Thus #(X 4 Y)ebh and
[ X, Y] € b as desired.

Let H* denote the connected Lie subgroup of G with Lie algebra b.
Then H* C H. We shall now prove, that if H is given the relative
topology of G, and H, is the identity component of H, then H* = H,
(as topological groups). For this we now prove that if N is a neighborhood
of e in H*, then N is a neighborhood of e in H. If N were not a neighbor-
hood of e in H, there would exist a sequence (¢;) C H — N such that
¢, — ¢ (in the topology of G). Using Lemma 2.4 for h = n and m any
complementary subspace we can assume that ¢, = exp 4, exp B,
where 4, € Uy, B, € U, and exp B, € N. Then

Ak ;é 0, lim Ak = Q.
Since A, # 0, there exists an integer r, > 0 such that
C € Une (ri + 1) A ¢ Uy,

Now, U, is bounded, so we can assume, passing to a subsequence if
necessary, that the sequence (r,4,) converges to a limit 4 € m. Since
(r. + 1) A4 ¢ Uy and A, — 0, we see that A4 lies on the boundary of
U,; in particular 4 # 0.

Let p, ¢ be any integers (¢ > 0). Then we can write pr, = gs; + ¢,
where s, 2, are integers and 0 < ¢, < ¢. Then lim (#,/q) 4, = 0, so

expg 4 = lim exp %5 Ay = lim (exp 4",
which belongs to H. By continuity, exp tA € H for each t € R, so
A eb. This contradicts the fact that A % 0 and 4 € m.

We have therefore proved: (1) Hy is open in H (taking N = H*);
(2) H, (and therefore H) has an analytic structure compatible with the
relative topology of G in which it is a submanifold of G, hence a Lie
subgroup of G. The uniqueness statement of Theorem 2.3 is immediate
from Cor. 2.2.

Remark. The subgroup H above is discrete if and only if § = 0.

Lemma 2.5. Let Gbe a Lie group and H a Lie subgroup. Let g and b
denote the corresponding Lie algebras. Suppose H is a topological subgroup
of G. Then there exists an open neighborhood V of 0 in g such that:

(i) exp maps V diffeomorphically onto an open neighborhood of e in G.
(ii) exp (V nb) = (exp V) n H.
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Proof. First select a neighborhood W of 0 in g such that exp is
one-to-one on W, Then select an open neighborhood Ny of 0 in §
such that N, C W, and such that exp is a diffeomorphism of N, onto
an open neighborhood N, of ¢ in H. Now, since H is a topological
subspace of G there exists a neighborhood U, of ¢ in G such that
U, n H = N,. Finally select an open neighborhood ¥ of 0 in g such
that V' C W, V n y C Nj and such that exp is a diffeomorphism of V
onto an open subset of G contained in U,. Then V satisfies (i). Condition
(ii) is also satisfied. In fact, let X € V such that exp X € H. Since
exp X € U, n H = N, there exists a vector Xj € Nysuch thatexp X =
exp X. Since X, Xy € W, we have X = Xj so exp X e exp(V np).
This proves (exp V) n H C exp (V n b). The converse inclusion being
obvious the lemma is proved.

Theorem 2.6. Let G and H be Lie groups and ¢ a continuous homo-
morphism of G into H. Then ¢ is analytic.

Proof. Let the Lie algebras of G and H be denoted by g and ¥,
respectively. The product manifold G X H is a Lie group whose Lie
algebra is the product g X b as defined in §l, No. 1. The graph of ¢
is the subset of G X H given by K = {(g, ¢(g)) : g € G}. It is obvious
that K is a closed subgroup of G X H. As a result of Theorem 2.3,
K has a unique analytic structure under which it is a topological Lie
subgroup of G X H. Its Lie algebra is given by

t={X,Y)egxb:{exptX,exptY)e K fort € R}. 4

Let N, be an open neighborhood of 0 in § such that exp maps N,
diffeomorphically onto an open neighborhood N, of e in H. Let M,
and M, be chosen similarly for G. We may assume that ¢(M,) C N,.
In view of L.emma 2.5 we can also assume that exp is a diffeomorphism
of (M, X Ng) ntonto (M, x N,) n K. We shall now show that for
a given X € g there exists a unique Y € b such that (X, ¥) e t. The
uniqueness is obvious from (4); in fact, if (X, Y,) and (X, ¥,) belong
to f, then (0,Y, — Y,) €t so by (4), (e, exp (Y, — V},)) € K for all
t € R. By the definition of K, exp Y, — Y,) = ¢(e) = e for t e R
so Y; — Y, = 0. In order to prove the existence of Y, select an integer
r > O such that the vector X, = (1/r) X lies in M. Since p(exp X,) € N,,
there exists a unique vector Y, € N, such that exp ¥V, = g(exp X,)
and a unique Z, € (M, X Ny) n 1 such that

exp Z, = (exp X,, exp Y,).

Now exp is one-to-one on M, X N, so this relation implies Z, = (X,, Y,)

“¢



and we can put Y = rY,. The mapping ¢ : X — Y thus obtained is
clearly a homomorphism of g into b. Relation (4) shows that

plexp tX) = exp t)(X), Xeg. (5)
Let X, ..., X, be a basis of g. Then by (5)

#((exp 1,.X)) (exp 1,.X,) ... (exp 1,X,,)) '
= (exp (X)) (exp taf(Xy)) ... (exp t,4(X,)). (6)

The remark following Lemma 2.4 shows that the mapping (exp ¢, X)) ...
(exp t,X,) — (23, ..., t,) is a coordinate system on a neighborhood of e
in G. But then by (6), ¢ is analytic at e, hence everywhere on G.

We shall now see that a simple countability assumption makes it
possible to sharpen relation (2) and Cor. 2.2 substantially.

Proposition 2.7. Let G be a Lie group and H a Lie subgroup.Let g and
b denote the corresponding Lie algebras. Assume that the Lie group H has
at most countably many components. Then

h={XegexptXeHforalte R}.

Proof. We use Lemma 2.4 for n = § and m any complementary
subspace to hin g. Let V denote the set exp U,, exp U,, (from Lemma 2.4)
with the relative topology of G and put

a={AeU, exp A€ H}.
Then
Hn V=.4U exp A exp Uy

and this is a disjoint union due to Lemma 2.4. Each member of this
union is a neighborhood in H. Since H has a countable basis the set a
must be countable. Consider now the mapping » of V onto U, given
by m(exp X exp ¥) = X (X € Uy, Y € Uy). This mapping is continuous
and maps H N V onto a. The component of e in H n V (in the topo-
logy of V) is mapped by 7 onto a connected countable subset of U,,
hence the single point 0. Since »~'(0) = exp U; we conclude that
exp Uy, is the component of e in H N V (in the topology of V).

Now let X € g such that exp tX € H for all ¢ € R. The mapping
@:t— exp tX of R into G is continuous. Hence there exists a connected
neighborhood U of 0 in R such that o(U)C V. Then o(U)CH NV
and since @(U) is connected, p(U) C exp Uy. But exp Uy is an arbi-
trarily small neighborhood of e in H so the mapping ¢ is a continuous
mapping of R into H. By (2) we have X € b and the proposition is
proved.
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Remark. The countability assumption is essential in Prop. 2.7 as is
easily seen by considering a Lie subgroup with the discrete topology.

Corollary 2.8. Let G be a Lie group and let H, and H, be two Lie sub-
groups each having countably many components. Suppose that H, = H,
(set theoretically). Then H, = H, (as Lie groups).

In fact, Prop. 2.7 shows that H, and H, have the same Lie algebra.

Corollary 2.9. Let G be a Lie group and let K and H be two analytic
subgroups of G. Assume KCH. Then the Lie group K is an analytic
subgroup of the Lie group H.

Let t and b denote the Lie algebras of K and H. Then 1C§H by
_ Prop. 2.7. Let K* denote the analytic subgroup of H with Lie algebra t.
Then the analytic subgroups K and K* of G have the same Lie algebra.
By Theorem 2.1 the Lie groups K and K* coincide.

Let S* denote the unit circle and T the group S* x S, Let t — (1)
(t € R) be a continuous one-to-one homomorphism of R into T. If we
carry the analytic structure of R over by the homomorphism we obtain
a Lie subgroup I' = y(R) of T. This Lie subgroup is neither closed in
T nor a topological subgroup of 7. We shall now see that these anomalies
go together.

Theorem 2.10. Let G be a Lie group and H a Lie subgroup of G.
(i) If H is a topological subgroup of G then H is closed in G.

(i) If H has at most countably many components and is closed in G
then H is a topological subgroup of G.

Part (i) is contained in a more general result.

Proposition 2.41. Let G be a topological group and H a subgroup
which in the relative topology is locally compact. Then H is closed in G.
In particular, if H, in the relative topology, is discrete, then it is closed.

Proof. We first construct, without using the group structure, an open
set V' C G whose intersection with the closure H is H. Let ke H, let U,
be a compact neighborhood of % in H, and V), a neighborhood of  in G
such that ¥V, n H = U,. Let V,, be the interior of V,. If ge V;, n A
and NV, is any neighborhood of g in G, then NV, intersects the closed set
V,,r\H (N, (Vy, n HYD(N, 0 Vi) NH # ﬂ), whence ge V, n H.
Thus ¥, N Hcv,nHso f/,, NA =V, nH Taking V = Uy Vi,
wehave H=H N V.

Let be H and W be a neighborhood of e in G such that BWC V. If
ac H, aW-' n H contains an element ¢; hence bc—2a C 5WC V. Also
becle H,sobcac H. Thusbc-lac Vn H = H,soac H. Q.E.D.
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(if) H being closed in G it has by Theorem 2.3 an analytic structure
in which it is a topological Lie subgroup of G. Let H’ denote this Lie
subgroup. Then the identity mapping I: H — H’ is continuous. Each
component of H lies in a component of H’. Since H has countably
many components the same holds for H’. Now (ii) follows from Cor. 2.8.

§3. Lie Transformation Groups

Let M be a Hausdorff space and G a topological group such that to
each g € G is associated a homeomorphism p — g - p of M onto itself
such that

(1) 818 p =81 " (g - p) forp € M, g, g, € G;
(2) the mapping (g, p) — g - p is a continuous mapping of the product
space G X M onto M.

The group G is then called a topological transformation group of M.
From (1) follows that e - p = p for all p € M. If ¢ is the only element
of G which leaves each p € M fixed then G is called effective and is
said to act effectively on M.

Example. Suppose A4 is a topological group and F a closed subgroup
of A. The system of left cosets aF, a € A is denoted A/F; let = denote
the natural mapping of 4 onto A/F. The set A/F can be given a topology,
the natural topology, which is uniquely determined by the condition that
# is a continuous and open mapping. This makes A/F a Hausdorff
space and it is not difficult to see that if to each @ € A we assign the
mapping 7(a) : bF — abF, then A is a topological transformation group
of A/F. The group A4 is effective if and only if F contains no normal
subgroup of 4. The coset space A/F is a homogeneous space, that is,
has a transitive group of homeomorphisms, namely 7(A4). Theorem 3.2
below deals with the converse question, namely that of representing a
homogeneous space by means of a coset space.

Lemma 3.1 (the category theorem). If a locally compact space M
is a countable union

where each M, is a closed subset, then at least one M, contains an open
subset of M.

Proof. Suppose no M, contains an open subset of M. Let U, be
an open subset of M whose closure U, is compact. Select successively
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a; € U, — M, and a neighborhood U, of a, such that U, C U,
and U, n M, = 0;

a, € Uy — M, and a neighborhood U, of a, such that U, C U,
and U, n M, = 9, etc.

Then Uy, U, ... is a decreasing sequence of compact sets 5 .- Thus
there is a point & € M in common to all U,. But this implies b ¢ M,
for each n which is a contradiction.

Theorem 3.2. Let G be a locally compact group with a countable
base. Suppose G is a transitive topological transformation group of a
locally compact Hausdorff space M. Let p be any point in M and H the
subgroup of G which leaves p fixed. Then H is closed and the mapping

gH—>gp
is a homeomorphism of GJ/H onto M.

Proof. Since the mapping ¢ : g —g - p of G onto M is continuous,
it follows that H = ¢~}p) is closed in G. The natural mapping
7: G — G/H is open and continuous. Thus, in order to prove Theo-
rem 3.2, it suffices to prove that ¢ is open. Let V' be an open subset
of G and g a point in V. Select a compact neighborhood U of ¢ in G
such that U = U-}, gU% C V. There exists a sequence (g,) C G such
that G = U, g, U. The group G being transitive, this implies M =
U, £,U - p. Each summand is compact, hence a closed subset of M.
By the lemma above, some summand, and therefore U - p, contains an
inner point u - p. Then p is an inner point of U - p C U? - p and
consequently g - pis an inner point of V' - p. This shows that the mapping
@ is open.

Definition. 'The group H is called the isotropy group at p (or the
isotropy subgroup of G at p).

Corollary 3.3. Let G and X be two locally compact groups. Assume G
has a countable base. Then every continuous homomorphism s of G onto
X is open.

In fact, if we associate to each g € G the homeomorphism x — §i(g) x
of X onto itself, then G becomes a transitive topological transformation
group of X. If f denotes the identity element of X, the proof above
shows that the mapping g — J(g)f of G onto X is open.

Let G be a Lie group and M a differentiable manifold. Suppose G
is a topological transformation group of M; G is said to be a Lie trans-
formation group of M if the mapping (g, p) — g - p is a differentiable
mapping of G X M onto M. It follows that for each ¢ € G the mapping
p — g - p is a diffeomorphism of M onto itself.
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Let G be a Lie transformation group of M. To each X in g, the Lie
algebra of G, we can associate a.vector field X+ on M by the formula

for f € C*(M), p € M. The existence of X+ follows from the fact that
the mapping (g, p) — g * p is a differentiable mapping of G X M onto
M. 1t is also easy to check that X+ is a derivation of C*(M). It is called
the vector field on M induced by the one-parameter subgroup exp tX,
teR.

Theorem 34. Let G be a Lie transformation group of M. Let X, Y
be in g, the Lie algebra of G, and let X+, Y+ be the vector fields on M
induced by exp tX and exp tY (t€ R). Then

[X+, V4] = —[X, Y]* m

We first prove a lemma which also shows what would have happened
had we used right translation R,: g — gp instead of left translation in
the definition of the Lie algebra.

Lemma 3.5. Let X and ¥ denote the right invariant vector fields on G
suchthat X, = X, ¥, = Y. Then

[X, P]= —[X, YT @
Proof. In analogy with (5), §1 we have

d
(R) (&) = | flexp (X0p)] ©

for f€ C(G). Then if [ denotes the diffeomorphism g — g~ of G,

4R = | (fo DgexptX)| = —X(fo Re) = —Zurf.

Thus dJ(X) = —X, so (2) follows from Prop. 3.3, Chapter I.
For (1) fix pe M and the map $:ge G — g - pe M. Then

40, 2)f = 20 ) = |4 flexp (X )] __

Thus d‘I)g(Yg) = X;,-(q), 50 d(I)g([Ya ?]g) = P(+7Y+]<I'(g)- Using (2) we
deduce )

[X+) Y+]‘I’(y) - _[X7 Y]:]t(’l)

so since p is arbitrary, (1) follows.
We now come back to the introductory material in the first lecture and
prove Lie’s theorem stated there.
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First we explain how Theorem 3.4 is connected with the original
foundation of Lie group theory. Inspired by Galois’ theory for algebraic
equations, Lie raised the following question in his paper [2]: How can
the knowledge of a stability group for a differential equation be utilized
toward its integration ? (A point transformation is said to leave a differen-
tial equation stable if it permutes the solutions.) Lie proved in [2] that

a one-parameter transformation group ¢, of R? with induced vector field
_ (4@ _ @ :
@, = (S) = o) g ) g

leaves a differential equation dy/dx = Y(x, y)'X(x, y) stable if and only
if the vector field Z .- X @ 0x 4+ Y & 8y satisfies [®, Z] == AZ where A
is a function; in this case (Xn — Y§£)™! is an integrating factor for the
equation X dy — Y dx =0.

Example.

dy _ ¥+ x(>*+ %)
de = x—y(x? 4 y%)

This equation can be written

dy _y yayn _ :
@Z-D+33) ==+
and since the left-hand side is tan o where o is the angle between the
integral curve through (x, y) and the radius vector, it is clear that the
integral curves intersect each circle around (0, 0) under a fixed angle.
Thus the rotation group

@t {x,y)—>(xcost — ysint, xsint 4 ycost),

for which @ = —y8/0x + x 9/dy, leaves the equation stable and Lie's
theorem gives the solution y = x tan(}(x* + %) + C), C a constant.
Generalizing (¢,) above, Lie considered transformations (xy, .,,, x,) —
(%3, -.er X5) given by
T:xp=flxy, oy Xp by, o 8y) 1)
depending effectively on r parameters ¢,, i.e., the f; are C* functions and
the matrix (f;'0t;) has rank r. We assume that the identity transforma-
tion is given by #, = --- =t, =0 and that if a transformation S

corresponds to the parameters (sy, ..., 5,) then T'S-! is for sufficiently
small ¢, s; given by

TSt :xp = f(X1s ooy X} Uyy ooiy Uy) (2)

where the u, are analytic functions of the f; and s;. Generalizing @
above, Lie introduced the vector fields

r=3(L) 2 a<k<n

S\ Oty /g Ox;
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and, as a result of the group property (2), proved the fundamental
formula

[To T = 3, T, )
p=1

where the cP,; are constants satisfying

¢’ = —c"y, 2 (c'4eim + Pme€t + %1 mi) = 0. @
g=1
Independently of Lie, Killing had through geometric investigations been
led to concepts close to T}, and relations (3) and he attacked the algebraic
problem of classifying all solutions to (4). See Additional Readings 3.
We shall now show how (3) follows from Theorem 3.4. So the (x,)
are coordinates on M and the (#,) coordinates near e in G. We first
assume that the (#,) are “canonical coordinates of the second kind,”
i.e., for a suitable basis X}, ..., X, of g,

exp(t,Xy) ... exp(£,X,) * (%3 oy Xp)
= f1(®yy coes X} By cees )y ooy fu(%gs oo X By ooy B)
Such coordinates exist by the remark following Lemma 2.4. Then
X, =(@ot), (1 <k <<r)and '
< 0
X+ — X+ —_ ,
(XEFNP) = 2 (Xi=P) (), )

(K25)P) = |5 5(exp6Xe) (52| _

= ?_Ea;f"(xb ooy Kni 0y ey ey 0)$;=o - ( g{’: )"‘“-

It follows that X* = T}, so Theorem 3.4 implies (3) for this coordinate
system {¢;, ..., t,}. But if {s,, ..., 5,} is another coordinate system on a
neighborhood of ¢ in G, with si(e) = '+ = 5,(¢) = 0, then

iy ooy 3 S1y eey Sp) = F1(%gy veey Xy By oens )

where the f; are obtained by changing to the canonical coordinates
(%, ..., ;) of the second kind. Then

o _ 5 i o
X

05y, ~ 91, sy,

so the new T}, are certain constant linear combinations of the old T; thus (3)
holds in general. o
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§ 4. Coset Spaces and Homogeneous Spaces

Let G be a Lie group and H a closed subgroup. The group H will
always be given the analytic structure from Theorem 2.3. Let g and §
denote the Lie algebras of G and H, respectively, and let m denote
some vector subspace of g such that g = m -+ p (direct sum). Let =
be the natural mapping of G onto the space G/H of left cosets gH,
g € G. As usual we give G/H the natural topology determined by the
requirement that 7 should be continuous and open. We put p, = =(e)
and let ¢ denote the restriction of expto m.

Lemma 4.4. There exists a neighborhood U of 0 in m which is mapped
homeomorphically under  and such that = maps y(U) homeomorphically
onto a neighborhood of p, in G/H. ‘

Proof. . Let U, Uy have the property described in Lemma 2.4 for
b = n. Then since H has the relative topology of G, we can select a
neighborhood V of e in G such that V' ~n H = exp U,. Let U be a
compact neighborhood of 0 in U, such that exp(— U)exp UC V.
Then ¢ is a homeomorphism of U onto ¢ U). Moreover, = is one-to-one
on {(U) because if X', X" € U satisfy n(exp X') = n({exp X"), then
exp(— X")exp X'CV n Hsoexp X' = exp X" exp Z where Z € U,
From Lemma 2.4 we can conclude that X’ = X", Z = 0; consequently,
7 is one-to-one on Y U), hence a homeomorphism. Finally, U X Uy is
a neighborhood of (0, 0) in U, X Uy; hence exp Uexp Uy is a neigh-
borhood of € in G and since = is an open mapping, the set m(exp U
exp Uy) = m(¥(U)) is a neighborhood of p, in G/H. This proves the
lemma, The set Y(U) will be referred to as a local cross section.

Let N, denote the interior of the set #(y)(U)) and let X,, ..., X, be a
basis of m. If g € G, then the mapping '

(g exp (% X; + ... + 2,X,)) — (x4, w0y ;)
is 2 homeomorphism of the open set g - N, onto an open subset of R".
It is easy to see' that with these charts, G/H is an analytic manifold.
Moreover, if x € G, the mapping r(x) : yH — xyH is an analytic diffeo-
morphism of G/H.

Theorem 4.2. Let G be a Lie group, H a closed subgroup of G, G/H
the space of left cosets gH with the natural topology. Then G/H has a
unigue analytic structure with the property that G is a Lie transformation
group of G/H. _

We use the notation above and let B = ¢(U) where U is the interior
of U. Remembering that the mapping @ in Lemma 2.4 is a diffeo-

t See Exercise C.4,
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morphism, the set B is a submanifold of G. The mappings in the
diagram
¢GxB 2. G
IX7w:(gx)—(gxH), g€G,xeB;
are:
IX"l "l e D : (g, x) — gx, geG, xeB.
G x N, G/H

Then the mapping (g, xH) — gxH of G X N, onto G/H can be written_
mo' P o (I X )~ which is analytic. Thus G is a Lie transformation
group of G/H. The uniqueness results from the following proposition
which should be compared with Theorem 3.2.

Proposition 4.3. Let G be a transitive Lie transformation group of a
C* manifold M. Let p, be a point in M and let G, denote the subgroup
of G that leaves p, fixed. Then G, is closed. Let « denote the mapping
£G,, = £ * po of G|G,, onto M. '

(a) If « is @ homeomorphism, then it is a diffeomorphism (G|G,_ having
the analytic structure defined above). -

(b) Suppose o is a homeomorphisth and that M is connected. Then G,
the identity component of G, is transitive on M.

Proof. (a) We put H = G, and use Lemma 4.1. Let B and N,
have the same meaning as above. Then B is a submanifold of G, diffeo-
) morphic to N, under =. Let i denote the identity map-
B-—-'-» g pingof Binto Gand let 8 denote the mapping g — g - p,
of G onto M. By assumption, ay, the restriction of «
"’l lﬁ to Ny, is a homeomorphism of N, onto an open subset
N,—=2»>M  of M. The mapping « is differentiable since o)y = Boio
#~1, To show that o~ is differentiable, we begin by
showing that the Jacobian of B at g = e has rank 7, equal to dim M.
The mapping dB, is a linear mapping of g into M, . Suppose X is in
the kernel of dB,. Then if f € C*(M), we have

0 = @BX)f = X(fo ) = | flexp X - pa] (1
Lets € R; we use (1) on the function f*(q) = f(exp sX - ¢), ¢ € M. Then
0= :;; FHexptX - po)g'_u - {dit flexptX - po)g‘_.,

which shows that f (exp sX - p,) is constant in s. Since f is arbitrary,
we have exp sX * py, = p, for all s so X € . On the other hand, it is



obvious that dB, vanishes on § so h = kernel (d8,). Hence r; = dim g —
dim§. But o is a homeomorphism, so the topological invariance of
dimension implies dim G/H = dim M. Thus 7, = dim M, o« is
differentiable at p and, by translation, on M. This proves (a).

(b) If « is a homeomorphism, B above is an open mapping. There
exists a subset {x, :y €I} of G such that G = U, ., Gox,. Each orbit
Gyx, * po is an open subset of M; two orbits Gox, - pp and Gyx,, - p,
are either disjoint or equal. Therefore, since M is connected, all orbits
must coincide and (b) follows.

Definition. In the sequel the coset space G/H (G a Lie group,
H a closed subgroup) will always be taken with the analytic structure
described in Theorem 4.2, If x € G, the diffeomorphism yH — xyH
of G/H onto itself will be denoted by r(x). The group H is called the
isotropy group. The group H* of linear transformations (dr(h)),,, (k € H),
is called the linear isotropy group.

§5. The Adjoint Group

Let a be a Lie algebra over R. Let GL(a) as usual denote the group
of all nonsingular endomorphisms of a. We recail that an endomorphism
of a vector space V' (in particular of a Lie algebra) simply means a
linear mapping of V into itself. The Lie algebra gi{a) of GL(a) consists
of the vector space of all endomorphisms of a with the bracket operation
[A, B] = AB — BA. The mapping X -—>adX, Xe€a is a homo-
morphism of a onto a subalgebra ad (a) of gl{(a). Let Int (a) denote the
analytic subgroup of GL(a) whose Lie algebra is ad (a); Int (a) is called
the adjoint group of a.

The group Aut (a) of all automorphisms of a is a closed subgroup
of GL(a). Thus Aut (¢) has a unique analytic structure in which it is a
topological Lie subgroup-of GL(a). Let 8(a) denote the Lie algebra of
Aut (a). From §2 we know that -8(a) consists of all endomorphisms D
of a such that e’ € Aut (a) for each t € R. Let X, Y € a. The relation
eP’[X, Y] = [e'PX, ¢!®Y] for all t € R implies

DIX, Y] = [DX, Y] + [X, DY]. (1)

An endomorphism D of a satisfying (1) for all X, Y €a is called a
derivation of a. By induction we get from (1)
k! . . . .
DX, Y] =3 ST (DX, DY), 1>0,j>0, (2)
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where D° means the identity mapping of a. From (2) follows that
e’P[X, Y] = [¢PX, ePY] and thus 8(a) consists of all derivations of a.
Using the Jacobi identity we see that ad (a) C 8(a) and therefore Int (a) C
Aut (a). The elements of ad (a) and Int (a), respectively, are called the
tnner dertvations and inner automorphisms of a. Since Aut (a) is a topo-
logical subgroup of GL(a) the identity mapping of Int (a) into Aut (a)
is continuous. In view of Lemma 14.1, Chapter I, Int (a) is a Lie sub-
group of Aut (a). We shall now prove that Int (a) is a normal subgroup
of Aut (a). Let s € Aut (a). Then the mapping o : g — sgs~1 is an auto-
morphism of Aut (a), and (do), is an automorphism of 8(a). If 4, B are
endomorphisms of a vector space and A-! exists, then AePA-1 = 4547,
Considering Lemma 1.12 we have

(do),D = sDs~! for D € &(a).
If X €, we have sad X s1 = ad (s - X), so
(do), ad X = ad (s - X),
and consequently
o el X — pad(s.X) (X €a).

Now, the group Int (a) is connected, so it is generated by the elements
X, X € a. It follows that Int(a) is a normal subgroup of Aut (a) and
the automorphism s of a induces the analytic isomorphism g — sgs—! of
Int (a) onto itself.

More generally, if s is an isomorphism of a Lie algebra a onto a Lie
algebra b (both Lie algebras over R) then the mapping g —> sgs—? is an
isomorphism of Aut (a) onto Aut (b) which maps Int (a) onto Int (b).

Let G be a Lie group. If ¢ € G, the mapping I(0): g — ogo~! is an
analytic isomorphism of G onto itself. We put Ad (¢) = dI(c),. Some-
times we write Ad;(o) instead of Ad(c) when a misunderstanding might
otherwise arise. The mapping Ad (o) is an automorphism of g, the Lie
algebra of G. We have by Lemma 1.12

exp Ad (o) X == cexp X o~! foroce G, X eg. (3)

The mapping ¢ — Ad (o) is 2 homomorphism of G into GL(g). This
homomorphism is called the adjoint representation of G. Let us prove
that this homomorphism is analytic. For this it suffices to prove that
for each X € g and each linear function w on g the function o —
w(Ad (0) X) (¢ € G), is analytic at o = e. Select f € C®(G) such that
f is analytic at o = e and such that Yf = w(Y) for all ¥ eq.
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Then, using (3), we obtain

w(Ad(¢) X) = (Ad (0) X)f = |2 (o exp tXo) o

which is clearly analytic at ¢ = .
Next, let X and Y be arbitrary vectors in g. From Lemma 1.8 (iii)
we have

exp (Ad (exp t.X) tY) = exp (tY + t}[X, Y] + O(2%)).

It follows that
Ad(exptX)Y = Y +t[X, Y] 4+ O(s3). 4)

- The differential d Ad, is a homomorphism of g into gl(g) and due fo
(4) we have
d Ad(X) = ad X, Xeag.

Applying the exponential mapping on both sides we obtain (Lemma 1.12)

Ad (exp X) = etd X, Xeg (5)

Note that if [X, Y] = 0 then by (5)
exp X expY exp(—X) = expAd(exp X)Y =expY

0 ‘
expXexpY =expY expX =exp(X +Y),

the last identity coming from the fact that now ¢t — exptXexptY is a
one-parameter subgroup with tangent vector X + Y at e.

Let G be a connected Lie group and H an analytic subgroup. Let g
and b denote the corresponding.Lie algebras. Relations (3) and (5)
show that /1 is a normal subgroup of G if and only if b is an ideal in g.

Lemma 5.1. Let G be a connected Lie group with Lie algebra g and
let @ be an analytic homomorphism of G into a Lie group X with Lie
“algebra z. Then:

(i) The kernel p—(e) is a topological Lie subgroup of G. Its Lie algebra
is the kernel of dp (=dp,).

(i) The tmage o(G) is a Lie subgroup of X with Lie algebra do(g) C .

(iii) The factor group G|p=Y(e) with its natural analytic structure is a
Lie group and the mapping pp='(e) — @(g) is an analytic isomorphism of
Glp~e) onto ¢(G). In particular, the mapping ¢ : G — ¢(G) is analytic.

Proof. (i) According to Theorem 2.3, p~Y(e) has a unique analytic
structure with which it is a topological Lie subgroup of G. Moreover,
its Lie algebra contains a vector Z € g if and only if p(exp tZ) = e for
all £ € R. Since p(exp tZ) = exp tdp(Z), the condition is equivalent to
dp(Z) = 0. _

(if) Let X, denote the analytic subgroup of X with Lie algebra
dp(s). The group ¢(G) is generated by the elements p(exp Z), Z € q.
The group X, is generated by the elements exp (dp(2)), Z € g. Since
p(exp Z) = exp dp(Z) it follows that ¢(G) = X,.
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(iii) Let H be any closed normal subgroup of G. Then H is a topo-
logical Lie subgroup and the factor group G/H has a unique analytic
structure such that the mapping (g, xH) — g xH is an analytic mapping
of G X G/H onto G/H. In order to see that G/H is a Lie group in this
analytic structure we use the local cross section $(U) from Lemma 4.1.
Let B = (U) where U is the interior of U. In the commutative diagram

G x G/H —-—>G/H

K/

G/H x G/H

the symbols @, 7 X I, and o denote the mappings:

d: (g, xH) — g'xH, x,g€G;
n X I:(g, xH)— (gH, xH), x,g€G;
o: (gH, xH) — g~'xH, xg€0.

The mapping « is well defined since H is a normal subgroup of G.
Let gy, xo, be arbitrary two points in G. The restriction of = X I to
(g,B) X (G/H) is an analytic diffeomorphism of (goB) X (G/H) onto a
neighborhood N of (g H, xH) in G/H X G/H. On N we have a =
@ o (m x I)-! which shows that « is analytic. Hence G/H is a Lie group.

Now choose for H the group ¢~'(e) and let § denote the Lie algebra
of H. Then § = dp~(0) so § is an ideal in g. By (ii) the Lie algebra
of G/H is dn(g) which is isomorphic to the algebra g/h. On the other
hand, the mapping Z + h— dp(Z) is an isomorphism of g/ onto dp(g). The
corresponding local isomorphism between G/H and ¢(G) coincides
with the (algebraic) isomorphism gH — ¢(g) on some neighborhood
of the identity. It follows that this last isomorphism is analytic at e,
hence everywhere.

Corollary 5.2. Let G be a connected Lie group with Lie algebra g.
Let Z denote the center of G. Then:

(1) Adg is an analytic homomorphism of G onto Int (g) with kernel Z.

(i) The mapping gZ — Adg(g) is an analytic isomorphism of G|Z
onto Int (g).

In fact Adg (G) = Int(g) due to (5) and Adgl(e) = Z due to (3).

The remaining statements are contained in Lemma 5.1,

Corollary 5.3. Let g be a Lie algebra over R with center {0}. Then
the center of Int (g) consists of the identity element alone.



In fact, let G’ = Int(g) and let Z denote the center of G'. Let ad
denote the adjoint representation of g and let Ad’ and ad’ denote the
adjoint representation of G’ and ad (g), respectively. The mapping

6:9Z — Ad’ (g), geG,

is an isomorphism of G'/Z onto Int (ad (g)). On the other hand, the
mapping s: X — ad X (X eg) is an isomorphism of g onto ad (g) and
consequently the mapping S: g —so go s~ (g € G’) is an isomorphism
of G’ onto Int (ad (g)). Moreover, if X € g, we obtain from (5)

S(e2X) = 50 eMX o 51 = elad" 84X = Ad’ (eadX),

ad (g) being the Lie algebra of G'. It follows that S0 8 is an iso-
morphism of G'/Z onto G’, mapping gZ onto g (g € G’). Obviously Z
must consist of the identity element alone.

Remark. The conclusion of Cor. 5.3 does not hold in general, if g
has nontrivial center. Let, for example, g be the three-dimensional Lie
algebrag = RX, 4+ RX, + RX; with the bracket defined by: [X,X;] =
X, [ Xy, X3] = [X,, X3] = 0. Here g is nonabelian, whereas Int (g) is
abelian and has dimension 2.

Definition. Let g be a Lie algebra over R. Let t be a subalgebra of g
and K* the analytic subgroup of Int(g) which corresponds to the
subalgebra ad(f) of ady(g). The subalgebra t is called a compactly
imbedded subalgebra of ¢ if K* is compact. The Lie algebra g is said
to be compact if it is compactly imbedded in itself or equivalently if
Int (g) is compact.

It should be observed that the topology of K* might a priori differ
from the relative topology of the group Int (g) which again might differ
from the relative topology of GL(g). The next proposition clarifies this
situation.

Proposition 54. Let K denote the abstract group K* with the relative
topology of GL(g). Then K* is compact if and only if K is compact.

The identity mappmg of K* into GL(g) is analytic, in particular,
continuous. Thus K is compact if K* is compact. On the other hand,
if K is compact, then it is closed in GL(g); by Theorem 2.10, K* and K
are homeomorphic.

Remark. Suppose G is any connected Lie group with Lie algebra g.
Let K be the analytic subgroup of G with Lie algebra t. Then the
group K* above coincides with Adg (K); in fact, both groups are
generated by Ad; (exp X), X e t.
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§ 6. Semisimple Lie Groups

Let g be a Lie algebra over a field of characteristic 0. Denoting by
Tr the trace of a vector space endomorphism we consider the bilinear
form B(X,Y) = Tr(ad Xad Y) on g X g. The form B is called the
Killing form of g. It is clearly symmetric.

For a subspace a C g let at = {X : B(X,a) = 0}. The map X — X" of
g — g (dual of g) given by X*(Y) = B(X,Y) has kernel gt. Let V C g and
V! = {X € g:V(X) = 0}. By linear algebra,dimV +dimV’ = dimg. If
V = a*, the image of a under X — X*, then V' = at so

dima* + dima’ = dimg.
But then map X — X* from a to a* has kernel an g+ so
dim a = dim a* + dim(a N gt).
Eliminating a* we get

dim a + dima’ = dim g 4 dim(a N g*) (1)

If o is an automorphism of g, then ad(cX) = o 0 ad X 0 0~? so by
Tr(AB) = Tr(BA), we have

B(cX, oY) = B(X, Y), o€ Aut (g),
B(X,[Y,Z]) = B(Y,[Z, X]) = B(Z,[X,Y)), X, Y,Zeg. (2

Suppose a is an ideal in g. Then it is easily verified that the Killing form
of a coincides with the restriction of B to a X a.

Definition. A Lie algebra g over a field of characteristic 0 is called
semisimple if the Killing B of g is nondegenerate. We shall call a Lie
algebra g # {0} simplet if it is semisimple and has no ideals except {0}
and g. A Lie group is called semisimple (simple) if its Lie algebra is
semisimple (simple).

Proposition 6.1. Let g be a semisimple Lie algebra, o an ideal in g.
Let ot denote the set of elements X € g which are orthogonal to o with
respect to B. Then a is semisimple, a' is an ideal and

g = a4 at (direct sum).

Proof. The fact that al is an ideal is obvious from (2). Since B is
nondegenerate, (1) implies dima + dimal = dimg. If Zeg and
X, Yeanat,wehave B(Z,[X, Y]) = B([Z,X], Y)=0s0[X, Y]=0
Hence a n at is an abelian ideal in g. Let b be any subspace of g com-
plementary to a N at. If Z e gand T € a N a?, then the endomorphism
ad Tad Z maps a na't into {0}, and b into a Nal. In particular,
Tr (ad T ad Z) = 0. It follows that a N a! = {0} and we get the direct
decomposition g = a + a*. Since the Killing form of a is the restriction
of B to a X a, the semisimplicity of a is obvious.

t This definition of a simple Lie algebra is convenient for our purposes but is formally

different from the usual one: A Lie algebra g is simple if it is nonabelian and has no
ideals except {0} and a. However, the two definitions are equivalent, .. ~~
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Corollary 6.2. A semisimple Lie algebra has center {0}.

Corollary 6.3. A semisimple Lie algebra g is the direct sum

8 =g+ + 8y

where g, (1 < i < ) are all the simple ideals in g. Each ideal o of g is the
direct sum of certain g,.

In fact, Prop. 6.1 implies that g can be written as a direct sum of
simple ideals g; (1 < ¢ < s) such that a is the direct sum of certain of
these g;. If b were a simple ideal which does not occur among the ideals
g; (1 <1< 5s) then [g;,8] Cg, nb = {0} for | ¢ < 5. This contra-
dicts Cor. 6.2.

Proposition 64. If g is semisimple, then ad (5) = &(g), that is, every
dertvation ts an inner derivation.

Proof. The algebra ad (g) is isomorphic to g, hence semisimple. If
D is a derivation of g then ad (DX) = [D, ad X] for X eg, hence
ad (g) is an ideal in &(g). Its orthogonal complement, say a, is also an
ideal in 8(g). Then a N ad (g) is orthogonal to ad (g) also with respect
to the Killing form of ad (g), hence a n ad (g) = {0}. Consequently
D ea implies [D,ad X] eanad(g) = {0}. Thus ad (DX) =0 for
each X € g, hence D = 0. Thus, o = {0} so, by (1), ad (g) = &(g).

Corollary 6.5. For a semisimple Lie algebra g over R, the adjoint
group Int (g) is the identity component of Aut(g). In particular, Int (g)
is a closed topological subgroup of Aut (g).

Remark. If g is not semisimple, the group Int (g) is not necessarily
closed in Aut (g) (see Exercise D.3 for this chapter).

Proposition 6.6.

(i) Let g be a semisimple Lie algebra over R. Then g is compact if and
only if the Killing form of g is strictly negative definite.

(i) Every compact Lie algebra g is the direct sum g = 3 + [g, o] where
3 15 the center of g and the ideal (g, g] is semisimple and compact.

Proof. Suppose g is a Lie algebra over R whose Killing form is
strictly negative definite. Let O(B) denote the group of all linear trans-
formations of g which leave B invariant. Then O(B) is compact in the
relative topology of GL(g). We have Aut(g) C O(B), so by Cor. 6.5,
Int (g) is compact.

Suppose now g is an arbitrary compact Lie algebra. The Lie subgroup
Int (3) of GL(g) is compact; hence it carries the relative topology of
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GL(g). There exists a strictly positive definite quadratic form Q on g
invariant under the action of the compact linear group Int(g). There
exists a basis X, ..., X, of gsuch that Q(X) = X1, «2if X = X1, x, X,
By means of this basis, each ¢ € Int (g) is represented by an orthogonal
matrix and each ad X, (X € g), by a skew symmetric matrix, say (a;;(X)).
Now the center 3 of g is invariant under Int (g), that is ¢ - 3 C 3 for each
o € Int (g). The orthogonal complement ¢’ of 3 in g with respect to Q
is also invariant under Int (g) and under ad (g). Hence ¢ is an ideal in g.
This being so, the Killing form B’ of ¢’ is the restriction to g’ X ¢’ of
the Killing form B of g. Now, if X g

B(X, X) = Tr(ad X ad X) = 3, a,(X) a;(X) = — 2, a,(X)* < 0.

1.9

The equality sign holds if and only if ad X = 0, that is, if and only
if X 3. This proves that g’ is semisimple and compact. The decom-
position in Cor. 6.3 shows that [g', 9] = ¢’. Hence g’ = [g, g] and the
proposition is proved.

Coroltary 6.7. A Lie algebra g over R is compact if and only if there
exists a compact Lie group G with Lie algebra isomorphic to g.

For this corollary one just has to remark that every abelian Lie
algebra is isomorphic to the Lie algebra of a torus S* x ... x S.

Proposition 6.8. Let g be a Lie algebra over R and let 3 denote the
center of 9. Suppose t is a compactly imbedded subalgebra of g. If £ N~ 3 = {0}
then the Killing form of qa is strictly negative definite on t.

Proof. Let B denote the Killing form of g, and let K denote the
analytic subgroup of the adjoint group Int (g) with Lie algebra ad, (¥).
Owing to our assumptions, K is a compact Lie subgroup of GL(g);
hence it carries the relative topology of GL(g). There exists a strictly
positive definite quadratic form Q on g invariant under K. There exists
a basis of g such that each endomorphism ad, (T) (T € f) is expressed
by means of a skew symmetric matrix, say (a;;(T)). Then

B(I, T) = 2 ay(T) ay(T) = — 2 ai(T) <0,

and equality sign holds only if T €3 n t = {0}.
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Theorem 69. Let G be a compact, connected semisimple Lie group.
Then the universal covering group G* of G is compact.

There are several proofs of this result in the literature but Samelson’s geo-
metric proof, which we give below, is rarely to be seen. It relies on a few
basic results in Riemannian geometry. These results will be familiar to many
readers but in any case their proofs can be found in Chapter I of the text.
These results are the following.

(i) If (M, ) is a covering manifold of a complete Riemannian manifold N
with Riemannian structure g then M with the Riemannian structure
m*g is also complete. (Proposition 10.6, Ch. I.)

(ii) Let o be a point in a complete, noncompact Riemannian manifold M.
Then M contains a ray with initial point o (i.e., a geodesic which
realizes the shortest distance between any two of its points). (Propo-
sition 10.7, Ch. L.)

(iii) If in a Riemannian manifold a piecewise differentiable curve v joining
p to q has length L(7y) = d(p, ¢) then it is geodesic.

(iv) In a éomplete Riemannian manifold any two points can be joined by
a geodesic. (Theorem 10.4, Ch. 1.)

The universal covering group will be covered in the next section.

Proof. Let g denote the Lie algebra of G (and G*), and let B be the
Killing form of g. There exists unique left invariant Riemannian structures
O and Q* on G and G*, respectively, such that O, = Q% = — B. Here
e and e* denote the identity elements in G and G*, respectively. Since

B(Ad (g) X, Ad(g) Y) = B(X, Y), X, Yegg€G,

it follows that Q and Q* are also invariant under right translations on G
and G*. Let = denote the covering mapping of G* onto G. Then
O* = #*Q and since G is complete, the covering manifold G* is also

complete (by (i)). Because of Exercise A6, Ch. I the geodesics in G* through
e are the one-parameter subgroups.

Suppose now the theorem were false for G. Then, due to Prop. 10.7,
Chapter I, G* contains a ray emanating from e*. Let y be the one-
parameter subgroup containing this ray. Then y is a “straight line” in
G*, that is, it realizes the shortest distance in G* between any two of its
points. In fact, any pair of points on y can be moved by a left translation
on a pair of points on the ray. We parametrize y by arc length ¢ measured
from the point e* = y(0). The set n(y) is a one-parameter subgroup
of G; its closure in G is a compact, abelian, connected subgroup, hence
a torus. By the classical theorem of Kronecker, there exists a sequence
(t.) € R such that ¢, — « and m(y(t,)) — ¢. We can assume that all
n(y(t,)) lie in a minimizing convex normal ball B,(e) and that each
component C of #-}(B,(e)) is diffeomorphic to B,(e) under . Then
the mapping 7: C — B,(e) is distance-preserving; hence there exists
an element 2, € G* such that
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n(2,) = ¢, A3)
d(zm Y(tn)) = d(es "(Y(tn))'

Here d denotes the distance in G as well as in G*. Since (G*, ) is a
covering group of G, the kernel of 7 is contained in the center Z of G*.
Hence by (3), we have z, € Z. We intend to show y C Z.

Now for a given element a € G*, consider the one-parameter sub-
group 8:t— ay(t)a-l (t € R). Since left and right translations on G* .
are isometries, & is a “straight line” and [¢| is the arc parameter measured

from e*. Since 2, € Z we have d(8(t,), 2,) = d(y(t,), 2,) and this shows

that
ll_l;‘; d(y(tn)$ 8(‘1:)) =0, (4)

Suppose now &(t) # y(t) for some t # 0. Then the angle between the
vectors (0) and 8(0) is different from 0 (possibly 180°). In any case,

we have from (iii) above
d(y(— 1), 8(+ 1)) < d(e*, y(— 1)) + d(e*, (1)) = 2.

From (4) we can determine an integer N such that
tv > 1, dy(ty), 8(tn)) < 2 — d(y(— 1), 8(+ 1)).

We consider now the following broken geodesic {: from y(— 1) to
8(4 1) along a shortest geodesic, from §(+ 1) to §(ty) on 8, from 3(ty)
to y(ty) along a shortest geodesic. The curve { joins y(— 1) to y(¢y) and
has length

di(— 1), 8(+ 1)) + (v — 1) + d(8(t), (tw)),

which is strictly smaller than ty + | = d(y(— 1), ¥(ty)). This contra-
dicts the property of y being a straight line.

It follows that (t) = y(#) for all t € R. Since a € G* was arbitrary
it follows that y C Z. But then 3, the Lie algebra of Z, is # {0}, and this
contradicts the semisimplicity of g.

Proposition 6.10. Let G be a connected Lie group with corﬁpact Lie
algebra g. Then the mapping exp : ¢ — G is surjective.

The proof is contained in the first part of the proof of Theorem 6.9.
In fact, Ad(G) being compact, there exists a strictly positive definite
quadratic form on g invariant under Ad(G). In the corresponding left
and right invariant Riemapnian metric on G the geodesics through e
are the one-parameter subgroups. Thus G is complete and the result
follows from (iv) above,
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7 The Universal Covering Group

We shall now sketch the construction of the universal covering group. relying
on Pontrjagin’s Topological Groups for proofs of some of the results.

Let M and N be connected and locally connected spaces and 7 :
M — N a continuous mapping. The pair (M, ) is called a covering space
of N if each point z € N has an open neighborhood U such that each
component of #~1(U) is homeomorphic to U under 7.

Suppose N is a differentiable manifold and that (M, =) is a covering
space of N. Then there is a unique differentiable structure on M such
that the mapping = is regular. If M is given this differentiable structure,
we say that (M, =) is a covering mantfold of N.

We shall require the following standard theorem from the theory of
covering spaces. We state it only for manifolds although it holds under
suitable local connectedness hypotheses.

Let (M, ) be a covering manifold of N and let I': [a, b] — N be a
path in N. If m is any point in M such that m(m) = I'(a), there exists a
unique path I'* : [a, b] — M such that I'(a) = mand mo I'* = T

The path I'* is called the lift of I' through m.

Proposition .- .. Let N be a Riemannian manifold with a Riemannian
structure g. Let (M, ) be a covering manifold of N. Then n*g is a Rieman-
nian structure on M. Moreover, M is complete if and only if N is complete.

Proof. The mapping = is regular, so obviously #*g is a Riemannian
structure on M. If y is a curve segment in M, then = o y is a curve
segment in N. Using the characterization of geodesics by means of
differential equations (3), (§ 5), it is clear that y is a geodesic if and only
if w7 0 y is a geodesic. But completeness is equivalent to the infiniteness
of each maximal geodesic. The proposition follows immediately.
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Consider a continuous path £ : t — f(t) (0 < ¢t < 1) and its inverse £~} :
t— f(1-t). Ifk:t— g(t) (0 <t <1)is another path and f(1) = g(0)
then k€ : t — h(t) (0 <t < 1) is the path defined by

flety  0<t<

N|—

h(t) =
g(2t—1) 3<t<

—

£ is closed if f(0) = f(1). We say k is homotopic to £, denoted k ~ £ if there
is a continuous function on 0 < ¢ < 1, 0 < s < 1 such that ¢(0,t) = f(¢),
o(1,t) = g(t). Fix p € M and let P denote the set of closed paths starting
at p. The homotopy classes in P form a group, the fundamental group of M.
Up to isomorphism this is independent of the point p. M is simply connected
if the fundamental group ise.
_ The universal covering space N of N above is constructed as follows. Let
N denote the set of equivalence classes of paths, starting at a point p € N.
Then we have a map ¢ : N — N mapping each path into its endpoint. Given
a neighborhood of a point in NV let U* denote the set of equivalence classes of
paths ending in U. These U* topologize the set N and themap ¢ : N — N is
a covering, the universal covering space of N. If (V, ) and (N1, ¢1) are two
universal covering spaces of N then there is a homeomorphism 7 : N — Ny
such that @1 o7 = ¢. N is simply connected.

Suppose now G is a connected topological group. A covering group of
G is a covering space (G,7) of G such that G is a topological group and

:G—Gisa homomorphism. Suppose (G 7) is a universal covering space
of G. We make G into a group as follows. Let A, B € G let k be a path in
the class A, £ a path in class B, both starting at ¢. Let 7(A) = a, 7(B) = b,
a and b being the end points of k and £, respectively. If f(¢) is the path of £,
af(t) is a new path, denoted af . Then £ ~ ¢ implies af ~ af'. Since k ends
at a, k and af can be composed. Let C denote the class of the composite
path k(af). This turns G into a group and (G m) is a covering group of G.

If G is a Lie group, and we give G the analytic structure such that 7 is
regular then it is not hard to show that G is a Lie group. The kernel D of
7 is a normal subgroup which is discrete. In fact, if U is a neighborhood of
the identity in G on which 7 is injective we have DN U = (e) so e is open
in D. We also have

Lemma 7.1. A discrete normal subgroup D of a connected topological group
G is contained in the center.
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In fact let d € D and N a neighborhood of d such that N N D = (d)
and let V be a neighborhood of e in G such that VdV~! ¢ N. Since D
is normal, o € V implies odo™! ¢ NN D = d. Since G is connected, V
generates G so gdg™! = d for all g € G.

Theorem 7.2. Let G be a connected, locally arcwise connected topological
group. Let H C G be a closed subgroup and Hy the identity component of
H. Then

(i) G/H is connected and locally arcwise connected.

(1) The natural map G/Hy — G/H is a covering.

(i1i) If G/H is simply connected then H = Hy.

(iv) If H is discrete, G — G/H is a covering.
Proof: (i) The natural map 7 : G — G/H is continuous so G/H is con-
nected. If a is in an open subset V C G/H take @ € m~!(a) and a connected
arcwise connected neighborhood W of @ contained in 7#=(V'). Then m(W)
is an arcwise connected neighborhood of a contained in V.

For (ii) let mp : G —» G/Hy, 7 : G — G/H and ¢ : G/Hy — G/H be
the natural maps. If U € G/H is open then o~ 4(U) = mo(w~1(U)) is open
s0 o is continuous. Also if V C G/Hp is open, o(V) = n(ny(V)) is open
S0 0 is a continuous open mapping. H is locally connected so Hy is open
in H. Thus there exists an open subset V C G such that VN H = H,.
Choose a connected neighborhood U of e in G such that U7'U C V and

U-lUNH c Hy. Then UH is a neighborhood of the origin in G/H.
Consider the inverse immage

o UH)={gHy:0(9) € UH} = {UhH, € G/Hy : h € H}

the latter equality holding since gH € UH implies g = uh. Each UhHj is
open in G/Hy and is connected and their union is o1 (UH). If

UhyHoNUhyHp # 0 1)
then since Hy is normal in H,

UHohy NUHgha #
and hence U~1UH, N Hohyhy 1 # (. Again since Hp is normal in H,

U™'U N Hohythy # 0.
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Thus U~U contains an element h € H so since U"'UNH < Hy, h € Hy
so hy'hy € Hy. Thus (1) implies

UhiHo = UhyHy. 2)

We claim now that for each h € H the map ¢ : UhHy — UH is a bijection.
In fact if o(uihHy) = o(ughHp) then uih = uphh* for some h* € H so
uz'lul € H so by U'\UNH C Hy, u; = ughg for some hy € Hy, whence
the injectivity of o. The surjectivity is obvious. The sets UhHjy being the
components of 0~} (UH), UH is evenly covered. By translation we see that
o is a covering. Now (iii) and (iv) follow from (ii}.

Theorem 7.3. Let G and H be Lie groups with Lie algebras g and b, re-
spectively. Assume G simply connected. If o : g — b is a homomorphism
there exists an analytic homomorphism 8 : G — H such that dS = 0.

Proof:

Consider the product group G x H and the two projections p; : GX H —
G, p2 : G x H — H given by pi(g,h) = g, p2(g, h) = h which have differ-
entials dp1(X,Y) = X, dp2(X,Y) =Y. Let t denote the graph {(X,cX) :
X € g} and K the corresponding analytic subgroup of G x H. The re-
striction ¢ = p;|x has differential dy = dp;|¢ which is the isomorphism
(X,0X) — X of £ onto g. Thus ¢ : K — G is a surjective homomorphism
with a discrete kernel, hence by Theorem 7.2 a covering. But G is simply
connected so ¢ is an isomorphism. The homomorphism p; o ¢! of G into
H has the differential o.

The automorphism group. Let G be a connected Lie group with Lie
algebra g, (G, ) its universal covering group so G = G/D where D is a
discrete central subgroup. The group Aut (6’) of automorphisms of G is by
Theorem 7.3 identified with Aut (g) and is thus a Lie group. Then Aut (G)
is identified with the closed subgroup preserving D and is thus also a Lie
group. In fact, if o € Aut(G) there exists an antomorphism 6 of G such
that df = dr~' o do o dn. Then 78 = o so § maps D into itself.
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