8 General Lie Groups

In §6 we considered semisimple Lie groups; now we shall make a few remarks
about another major class of Lie groups, the solvable Lie groups.

If g is a Lie algebra the vector space spanned by all elements [X,Y]
(X,Y € g) is an ideal in g, called the derived algebra Dg of g. Then Dy
is defined inductively by D% = g, D*g = D(D"lg). The Lie algebra is
solvable if D™g = 0 for some n > 0. A Lie group is solvable if its Lie algebra
is solvable.

Proposition 8.1. Let g be a Lie algebra, a or b solvable ideals. Then a+b
1s also a solvable ideal.

Proof: a+ b is of course an ideal. Now consider the map A + B —
B( mod (anb)) which is a well-defined homomorphism with kernel a. Thus
(a+b)/a ~ b/(anb) so (a+b)/a is solvable. Image of D*(a+b) in (a+b/a)
is contained in D¥((a+b)/a) so D*(a+b) C a for k large. Since a is solvable,
Df(a + b) = 0 for £ large so a + b is solvable.

Thus if t C g is a solvable ideal of maximal dimension then every solvable
ideal is contained in v. Thus t is the union of all solvable ideals. It is called
the radical. The following basic result we now state without proof.

Theorem 8.2 (Levi decomposition.). Each Lie algebra g has the decom-
position
g=t+s tNs=0

where t is the radical and s is semi-simple.
Using that theorem we can prove the following fundamental theorem.

Theorem 8.3. For each Lie algebra g over R there exists a Lie group G
with Lie algebra g.

The local version of this theorem is the so-called third theorem of Lie
which will be proved later, The global version was proved by Cartan in 1930.
It is actually a simple consequence of Theorem 8.2.
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'If A and B are abstract groups and b — o} a homomorphism of B into
Aut (4) the semi-direct product 4 X, B is the group defined by the product

(a,b)(a’, ') = (aop(a’), bb')

on A x B. This is indeed a group containing 4 as a normal subgroup.

Proposition 8.4 Suppose A and B are connected Lie groups, o an ana-
lytic homomorphism of B into Aut (A). Let a and b denote their respective
Lie algebras. Then the group G = A x, B has Lie algebra

g=a+b
with the bracket relation
X+Y, X' +Y)=[X, X+ dyp(Y)(X) - dp(Y')(X) + [Y,Y],
where X, X' € a, Y,Y' € b and ¥ is the map b — doy of B into Aut(a).

Proof Since a and b are subalgebras of g it remains to prove
(X, Y] = —dp(Y}(X), X e€aqYeb.

The differential dy is a homomorphism of b into 8(a), the Lie algebra of
derivations of a. We have

AOexpry = P(exptY) = et
Hence by the multiplication in A x, B,

exp(—tX) exp(—tY)exp(tX)exp(tY) = exp(—r.:'X)aexp(__tY) (exp(tX))
= exp(—tX) exp(t dexp(~ty)(X)) = exp(—tX) exp(te™ W),

Expanding this in powers of ¢t we deduce from Lemma 1.8, [X,Y] =
—dy(Y)(X) as desired.

Lemma 8 § If g is a solvable Lie algebra then there exists a Lie group
G with Lie algebra g.

Proof. This is proved by induction on dimg. If dimg = 1 we take
G = R. If dimg > 1 then Dg # g so there exists a subspace h such that
Dp C hand dimh =dimg—1. Let X € g, X ¢ h. Then [h,g] C Dg C § so
his anideal in g and g = h+RX. Let by induction H be a simply connected
Lie group with Lie algebra ) and A a Lie group with Lie algebra RX. The
derivation Y — [X,Y] of h extends to a homomorphism o : A — Aut (h)
so by Proposition 84, H x, A serves as the desired G.

Now let g be an arbitrary Lie algebra over R. Assuming the Levi decom-
position g = r + 5, we deduce from the Lemma 8.5, Proposition 8.4 and
Corollary 6.5 that g is the Lie algebra of a Lie group.
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§9 Differential Forms*

We shall now deal with the general theory of differential forms on a manifold
M and in a later section specialize to the case when M is a Lie group.

Let A be a commutative ring with identity element, E a module over
A. Let E* denote the set of all A-linear mappings of E into 4. Then
E* is an A-module in an obvious fashion. It is called the dual of E.

Definition. Let M be a C* manifold and put § = C°(M). Let
D,;(M) denote the dual of the F-module DY(M). The elements of D,(M)
are called.the differential 1-forms on M (or just 1-forms on M).

Let X € DY(M), w € D,(M). Suppose that X vanishes on an open
set V. Then the function w(X) vanishes on V. In fact, if p € V, there
exists a function f € C*(M) such that f = 0 in a compact neighborhood -
of p and f= 1 outside V. Then fX = X and since w is F-linear,
w(X) = fw(X). Hence (w(X)) (p) = 0. This shows also that a 1-form
on M induces a 1-form on any open submanifold of M. Using (3) we
obtain the following lemma.

Lemma 21. Let X € D(M) and w € DY(M). If X, = 0 for some
p € M, then the function w(X) vanishes at p.

. This lemma shows that given w € D,(M), we can define the linear
function w, on M, by putting w,(X,) = (w(X)) (p) for X e D}(M).
The set Dy(p) = {w, : w € (M)} is a vector space over R.

We have seen that a ]-form on M induces a I-form on any open
submanifold. On the other hand, suppose 6 is a 1-form on an open
submanifold ¥ of M and p a point in V. Then there exists a |-form §
on M, and an open neighborhood N of p, p € N C V, such that § and §
induce the same 1-form on N. In fact, let C be a compact neighborhood
of p contained in ¥ and let N be the interior of C. Select y € C*(M) of

*Note that in this section we have kept the original numbering
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[N

compact support contained in ¥ such that 4 = | on C. Then a I-form
g with the desired property can be defined by

6(X) = y8(Xy) on ¥, 6(X) = 0 outside V,
where X € DI(M) and X, denotes the vector field on V induced by X.

Lemma 2.2. The space D,(p) coincides with M}, the dual of M,,.
We already know that Dy(p) C My. Now let {x,, ..., x,,} be a system
- of coordinates valid on an open neighborhood U of p. Owing to (3),
there exist 1-forms ' on U such thatt «¥(9/0x;) = 8, (1 < i,j < m).
Let L € M}, I, = L((9/0x,),) and 6 = I l;w'. Then there exists a
I-form § on M and an open neighborhood N of p (N C U) such
that § and 6 induce the same form on N. Then (§), = L and the
lemma is proved.
Each X € DY(M) induces an §-linear mapping w — w(X) of D,(M)
into §. If X, # X,, the induced mappings are different (due to
Lemma 2.2). Thus, DM) can be regarded as a subset of (D,(M))*.

Lemma 23. The module D(M) cotncides with the dual of the module
Dy(M).

Proof. Let Fe Dy(M)*. Then F(fw) = fF(w) for all f € C°(M)
and all w € D,(M). This shows that if w vanishes on an open set V,
F(w) also vanishes on V. Let p € M and {x,, ..., ,,} a system of local
coordinates valid on an open neighborhood U of p. Each 1-form on U
can be written X7, f,w® where f; € C*(U) and w* has the same meaning
as above. It follows easily that F(w) vanishes at p whenever w, = 0;
consequently, the mapping w, — (F(w)) (p) is a2 well-defined linear
function on D,(p). By Lemma 2.2 there exists a unique vector X,, € M,
such that (F(w)) (p) = w,(X,) for all w € DY(M). Thus, F gives rise
to a family X, (p € M) of tangent vectors to M. For each g e U we
can write

X, =‘§3 a(9) (—5%)'1 ,

where a,(q) € R. For each i (I < ¢ < m) there exists a 1-form &@‘ on M
which coincides with w?in an open neighborhood NV, of p, (N, C U).
Then (F(a')) (g) = @(X,) = a,q) for ¢ € N,,. This shows that the func-
tions a; are differentiable. If fe C*(M) and we denote the function

— X,f(q € M) by Xf, then the mapping f — Xf is a vector field on
M which satisfies w(X) = F(w) for all w € D,(M). This proves the
lemma.

tAsusual, 8, = 0ifij, 8; = 1ifi =.
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The Tensor Algebra

~ Let A be a commutative ring with identity element. Let I be a set
and suppose that for each 7 € I there is given an 4A-module E;. The
product set II,; E; can be turned into an A-module as follows: If
e={e}h e = {e{} are any two elements in T1E; (where ¢, e; € E;), and
a € A, then e -+ ¢’ and ae are given by

(e -+ €) =e +e, (ae); = ae, foriel.

The module I1E, is called the direct product of the modules E;. The
direct sum T, E; is defined as the submodule of I1E; consisting of
those elements ¢ = {e;} for which all ¢; = 0 except for finitely many i.
Suppose now the set I is finite, say I = {i,..,s}. A mapping
f:E; X ... X E,— F where F is an A-module is said to be A-multi-
linear if it is A-linear in each argument. The set of all A-multilinear
mappings of E; X ... X E, into F is again an A-module as follows:

(f +fl) (eh ey &) =j(21, wer €g) +f,(el' eey en)i
(af) (e, oo, &) = a(f(ey, ..., ey)).

Suppose that all the factors E; coincide. The A-multilinear mapping f
is called alternate if f(X,, ..., X,) = 0 whenever at least two X coincide.
Now, let M be a C* manifold and as usual we put § = C°(M). If
5 is an integer, s == 1, we consider the §-module

DX DX .o XD (s times)

and let D, denote the F-module of all F-multilinear mappings of
D! X ... X D!into §. Similarly D7 denotes the §-module of all F-multi-
linear mappings of

Dy X Dy X oo X Dy (r times)”

into § This notation is permissible since we have seen that the modules
D! and D, are duals of each other. More generally, let D7 denote the
F-module of all F-multilinear mappings of

Dy X X Dy X DX X D (D, r times, D! s times)

into §. We often write D}(M) instead of D]. We have D) = D7, D! = D,
-and we put Dj = .

A tensor ﬁeld T on M of type (, s) is by definition an element of
Dy(M). This tensor field T is said to be contravariant of degree r,
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covariant of degree s. In particular, the tensor fields of type (0, 0),
(1,0), and (0, 1) on M are just the differentiable functions on M, the
vector fields on M and the I-forms on M, respectively.

If p is a point in M, we define DY(p) as the set of all R-multilinear

mappings of
Mf X X M} X M, X . XM, (M} rtimes, M, s times)

into R. The set Dp) is a vector space over R and is nothing but the
tensor product

CM,®R. M, M} ®..Q M} (M, rtimes, M} s times)
or otherwise written

(p) = @ "M, ® "M}
We also put Dg(p) = R. Consider now an element T € D)(M). We have
T8y vovs 8900 121 v [oZn) = 81 oo @r S vos [T By oons By 23y v Zo)

for f,, g, € C*(M), Z; € DY(M), §; € Dy(M). It follows from Lemma 1.2
that if some 8; or some Z; vanishes on an open set V, then the function
T8, ..., 0,, Z,, ..., Z,) vanishes on V. Let {x), ..., x,} be a system of
coordinates valid on an open neighborhood U of p. Then there exist
vector fields X; (I < ¢ < m) and l-forms w; (1 <j < m) on M and
an open neighborhood N of p, p € NC U such that on N

0 ..
X = Rk w)(X;) = 8 (I<sj<m).
i

On N, Z; and 4, can be written

Z; = ifikav 6; = i Enwr,

k=1 I=1

where fy;, g, € C*(N), and by the remark above we have for ¢ € N,
T®,,...0, 2, ... Z,)(q)

m

= 2 gu‘ e g”'f”‘l ...f,k_T(wll, ey Wy, X"l’ cery Xk.) (q)-

=1,k=1

This shows that T'(8,, ..., 8,, Z;, ..., Z,) (p) = O if some 6; or some Z,
vanishes at p. We can therefore define an element T, € D(p) by the
condition

Tp((al)w Ty (or)m (Zl)m o0 (Zs)p) = T(ol’ ety 0,, Zl! o) Za) (P)
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The tensor field T thus gives rise to a family T,,, p € M, where T,, € D(p).
It is clear that if T, = O for all p, then T = 0 The element T € Dy(p)
depends dlﬂ”erenttably on p in the sense that if Nisa coordinate neigh-
borhood of p and T, (for ¢ € N) is expressed as above in terms of bases
for D,(N) and D‘(N), then the coefficients are differentiable functions
on N. On the other hand, if there is a rule p — T(p) which to each
p € M assigns a member T(p) of DY(p) in a differentiable manner (as
described above), then there exists a tensor field T' of type (7, s) such
that T,,.= T(p) for all p € M. In the case when M is analytic it is clear
how to define analyticity of a tensor field T, generalizing the notion
of an analytic vector field.

The vector spaces Di(p) and DY(p) are dual to each other under the
nondegenerate bilinear form (,) on DYp) X Di(p) defined by the
formula

6®..®,Rf[® - Bfrg®..Qe,Bf; ® .. QL =I:If,(e;)f¢'(e,),
o

where e;, ¢; are members of a basis of M,, f;, f; are members of a dual
basis of M. It is then obvious that the formula holds if ,, ¢; are arbitrary
elements of M, and f}, f; are arbitrary elements of My. In particular,
the form { , ) is independent of the choice of basis used in the definition.

Each T € Dy(M) induces an §-linear mapping of D}(M) into § given
by the formula

(T(S) (p) =<1y, S for Se D;‘-(JM)

If T(S) = O for all S € D(M), then T, = O for all p e M, so T = 0..
Consequently, Dj(M) can be regarded as a subset of (D}(M))*. We have
now the following generalization of Lemma 2.3.

Lemma 2.3'. The module DY(M) is the dual of DY(M) (r,s = 0).

Except for a change in notation the proof is the same as that of
Lemma 2.3. To emphasize the duality we sometimes write (T, S
instead of T(S), (T € D, S € D).

Let D (or D(M)) denote the direct sum of the §-modules D;(M),

o0

D= Y D
r,8=0
Similarly, if p € M we consider the direct sum

Dp) = D, Dip).

7,8=0
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The vector space D(p) can be turned into an associative algebra over
R as follows: Let a = ¢, @ ... ®¢, Qf1 Q... Qf b =6 ®... Q¢
®f ... ® f., where e;, e; are members of a basis for M, f;, f; are
members of a dual basis for M. Then a ® b is defined by the formula

(Qb=6,0.. 060D 0B,® OO ® . ®f

Weputa ® 1 = 4,1 ® b = b and extend the operation (2, ) - a ® b
to a bilinear mapping of D(p) X D(p) into D(p). Then D(p) is an asso-
ciative algebra over R. The formula for @ ® b now holds for arbitrary
elements e, ¢; € M, and f;, f; € M. Consequently, the multiplication
in D(p) is independent of the choice of basis.

The tensor produet ® in D is now defined as the §-bilinear mapping
(S, T)—> S @ T of D X D into D such that

ST, =S,7T,, SeD, Ted,peM.
This turns the §-module D into a ring satisfying
fS®T)=fSQ®T =SQST

for fe§, S, T €. In other words, D is an associative algebra over
the ring § The algebras D and D(p) are called the mixed tensor algebras
over M and M, respectively. The submodules

are subalgebras of D (also denoted D*(M) and D,(M)) and the subspaces

DHp) =3 D) Dyp) =3 D)

= =0

are subalgebras of D(p).

Now let », s be two integers >> 1, and let 1, j be integers such that
1 €i<gr 1 <j<s Consider the R-linear mapping Ci;: Dy(p) —
D.7}(p) defined by

Ciie,®...Qe, Rf) ® v @f) =Leuf e @ .. b Qe ®HQ fi @)

where ¢y, ..., e, are members of a basis of M,, f,, ..., f, are members of
the dual basis of M}. (The symbol " over a letter means that the letter
is missing.) Now that the existence of C* is established, we note that
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the formula for C% holds for arbitrary elements e, ..., e, € M,, f,, ...,
fs € Mj. In particular, C is independent of the choice of basis.

There exists now a unique §-linear mapping C%;: DYM) — D;-}(M)
such that

(C(T))y = Ci(Ty)
for all T € Df(M) and all p € M. This mapping satisfies the relation

CiyX, @ X, Q... ®w,)
’ =dXp o) (X1 ® e X e @ X, Qg ® e By @ w,)

for all Xj, ..., X, € D, wy, ..., w, € D;. The mapping C% is called the
contraction of the ith contravariant index and the jth covariant index.

". The Grassmann Algebra

As before, M denotes a C* manifold and § = C°(M). If 5 is an
integer > 1, let 4, (or A, (M)) denote the set of alternate F-multilinear
mappings of D! X ... X D! (s times) into §. Then ¥, is a submodule
of D,, We put %, = § and let % (or A(M)) denote the direct sum
% = X, %, of the §-modules %, The elements of A(M) are called
exterior differential forms on M. The elements of %, are called differential
s-forms (or just s-forms).

Let &, denote the group of permutations of the set {1, 2, ..., s}. Each .
o € &, induces an §-linear mapping of D! X ... X D! onto itself given by

(Xlr L) Xs) - (Xn-l(lh seey Xa"(l)) (Xi € Dl)'

This mapping will also be denoted by . Since each d € D, is a multi-
linear map of D* X ... X D!into §, the mapping d o o-1 is well defined.
Moreover, the mapping d — d 0 01 is a one-to-one §-linear mapping
of D, onto itself. If we writeo - d = do o-1we haveor - d = o - (7 - d).
Let €(0) = 1 or — 1 according to whether o is an even or an odd
permutation. Consider the linear transformation A D, — D, given by

A(d) = % é (o)o-d,  d,eD,

If s =0, we put 4,(d,) = d,, We extend 4, to an §-linear mapping
A: D, — D, by putting Ad) = I, 4,d,) if d = X, ,d,, d, €D,
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If » € 6,, we have

rAfd) = 2o Bele) 7+ (o d) = =D, o) (r0) 4,

0eS, sl 0eS,

= ¢(7) —;—I—E e{a)o-d,.

0ES,

Hence, 7 - (4,(d,)) = () A(d,). This shows that 4,(9,)C%, and
A(D,) CAU. On the other hand, if d, € %,, then o - d, = €{(0) d, for each
o € 8,. Since ¢(0)® = |, we find that

Afd) = d, ifd, e,

It follows that A% = A and A(D,) = ¥%; in other words, 4 is a projec-
tion of D, onto ¥U. The mapping A is called alternation.
Let N denote the kernel of A. Obviously N is a submodule of D,.

Lemma 24.: The module N is a two-sided ideal in D,.
it suffices to show that if n, € N n D, d, € D, then 4,;,(n, @ d,) =
A,/d, ® n) = 0. Let b,,, = A,,(n, ® d,); then

r +Nby = 3 ela)o (1, ®d),

aeS,,,
where

o - (ﬂ,. ® dt) (Xv ey Xr—l—n) = nr(Xa(l)v evey Xa(r)) dS(Xa(r+1)’ vy Xa(r+.t))'

The elements in &,,, which leave each number r + 1, ..., 7 4 s fixed
constitute a subgroup G of &,,,, isomorphic to S,. Let S be a subset
of S,,, containing exactly one element from each left coset o,G of
S,., Then, since e(o,0,) = €(o;) €(a,),

S (o)o-(r, @d) =, e(oo)zé e(7) (oq7) - (1, ® d,).

0eS,,, 6,eS
LEt Xi e D! (l g ] < r + S), (Yly veey Yr+g) = Ual(Xl, ceey XT';'C)' Theﬂ
2, <) (o) (1r @ ) (Xr. o Xo)

= .I(Yf+|.l e Yr-u)z E("') (-r . ﬂ,) (YI! ey Y,) =0.

G,

This shows that b,,, = 0. Similarly one proves 4,, (d, ® n,) = 0.
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For any two 0, w € % we can now define the exterior product
A w=A40Q w)

This turns the §-module ¥ into an associative algebra, isomorphic to
D,/N. The module %(M) of alternate F-multilinear functions with the
exterior multiplication is called the Grassmann algebra of the manifold M.

We can also for each p € M define the Grassmann algebra %(p) of the
tangent space M,. The elements of %(p) are the alternate, R-multilinear,
real-valued functions on M, and the product (also denoted A) satisfies

0, \ wy, =0 A w), 0, wel

This turns %A(p) into an associative algebra containing the dual space
My Ifb,we M;',‘, we have 8 A w = — w A #; as a consequence one
derives easily the following rule:’ ,

Let 6%, ...,0' € M} and let of = X}, a;0, 1 <1i,j <1, (a; €R).
Then

w! /\ o /\ w! = det (ai,) o /\ " /\ [

For convenience we write down the exterior multiplication explicitly.
Letf,ge C°(M), 0 ¥, w €Y, X; € D!, Then

fANgE=/a
A 0 (Xy o X)) = fO(Xy, .., X)),
(w A 8) (X, ooes X)) = g (X5, 0y X,),
(0 A @) (X)) ) Xrid) 4

1
= (r + 5)! Z €(0) (X 51131 +vey Xan) w(Xa(rH)v eoey Xu(r-H))'
OES 4y

We also have the relation

ONw=(—D"*w ALH (5)

Exterior Differentiation
Let M be a C* manifold, %(M) the Grassmann algebra over M. The

operator d, the exterior differentiation, is described in the following
theorem.
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Theorem 25. There exists a unique R-linear mapping d: U(M) - A(M)
with the following properties:

(i) du, C U, for each s = 0.

(1) If f € Yy (= C=(M)), then df is the 1-form given by df(X) = Xf,
X € DY(M).

(iil) dod = 0.

(iv) dlwy Awg) = dwy Awy + (— 1) w3 A dwy if wy €%, w, e U(M).

Proof. Assuming the existence of d for M as well as for open sub-
manifolds of M, we first prove a formula for d ((9) below) which then
has the uniqueness as a corollary. Let p € M and {x,, ..., x,} a coordinate
system valid on an open neighborhood U of p. Let V' be an open subset
of U such that ¥ is compact and p € V, V C U. From (ii) we see that
the forms dx; (1 <7 << m) on U satisfy dx,(&/dx;) = 8;; on U. Hence
dx; (1 <1< m)is abasis of the C*(U)-module D,(U); thus each element
in D, (U) can be expressed in the form

E Fi i,d%;, ®..® dxi,» Fi,...i, g C*(U).

It follows that if § € (M) and if 8, denotes the form induced by 6§
on U, then 8, can be written

By =3, firoiy dxy A o A dx;, firoi, € C=(U). (6)

This is called an expression of 8, on U. We shall prove the formula

d(fy) = (db)y-

Owing to Lemma 1.2 there exist functions ¢; ; € C*(M), p; € C*(M)
(I < ¢ < m) such that

‘/’«'l...i, =fi,...1',1 PL = Xy ooy P = X on V.
We consider the form
w = E Yiri, Ay A o N do;,
on M. We have obviously w, = 6,. Moreover, since d(f(f — w)) ==
df A (8 — w) + fd@ — w) for each fe C*(M), we can, choosing f

identically O outside V, identically 1 on an open subset of V, deduce
that (d6), = (dw)y-.
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Since
do = zd'/'n...i, A doi, A\ o N do;,

owing to (iii) and (iv), and since d(fy) = (df), for each fe C*(M),
we conclude that

@w)y =3, dfsi, A drg A oo A dx,,. 7
This proves the relation
(@) = d(8y) = X, dfiy..i, N dxiy A oo A dx,, )

On M itself we have the formula
P
(® + 1) do(X,, ooy Xpi1) =‘21 (— DX Xy, ey Xy oo Xpay)

+ 3, (= D[ Xa X} Xy, ces Ky coor Xy oy X)) (9)

1<2

for w € A (M) (p = 1), X; € D(M). In fact, it suffices to prove it in
a coordinate neighborhood of each point; in that case it is a simple
consequence of (8). The uniqueness of d is now obvious.

On the other hand, to prove the existence of d, we define d by (9)
and (ii). Using the relation [X,fY] =f[X, Y]+ (X)Y (fe§ X
Y € D), it follows quickly that the right-hand side of (9) is F-linear .
in each variable X; and vanishes whenever two variables coincide.
Hence dw € U,,,, if w € U,. If X € D!, let X, denote the vector field
induced on V. Then [X, Y], = [X;, ¥}/] and therefore the relation
(d9), = d(8y) follows from (9). Next we observe that (8) follows from (9)
and (ii). Also . '

d(fe) = fdg + gdf (10)

as a consequence of (ii). To show that (iii) and (iv) hold, it suffices to
show that they hold in a coordinate neighborhood of each point of M.
But on V, (iv) is a simple consequence of (10) and (8). Moreover,
(8) and (ii) imply d(dx;) = 0; consequently (using (iv)),

d(df)=d(2—:£’—dx,-) =3 g pdr, =0

1.5 3.::,-3«,

for each f € C*(U). The relation (iii) now follows from (8) and (iv).
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. Effect on Differential Forms

Let M and N be C* manifolds and ¢ : M — N a differentiable
mapping. Let o be an r-form on N. Then we can define an r-form
&*w on M which satisfies

B*a( Xy, ooy X)) = (¥}, ooy Y,) 0 D
whenever the vector fields X; and ¥; (1 i < r) are ®-related. It
suffices to put
(P*w)p(Ay;s vory Ar) = wo(n)(dPy(4,), ..., dP(4,))
for each p € M, and 4, € M,,. If f € C*(N), we put ¢*f = fo ® and
by linearity ®*f is defined for each 8 € A(M). Then the following
formulas hold:

Do N\ wy) = P¥(w;) \ P¥(w,), wy, wy € UM); &)
d(P*w) = O*(dw). (6)

In fact, (5) follows from (4), §2, and (6) is proved below. In-the same
way we can define @*T for an arbitrary covariant tensor field T € D (M).
If M = N and @ is a diffeomorphism of M onto itself such that *T = T,
we say that T is invariant under &,

The computation of @®*w in coordinates is very simple. Suppose U
and V are open sets in M and N, respectively, where the coordinate
systems

£:q— (59 oo 2l 77 = (317, oves (7))
are valid. Assume ®(U)C V. On U, & has a coordinate expression
Vi = @fxy, cery Xm) (1<j<n).
If w € %(N), the form w), has an expression
wy = Egi,...}, dy;, A .. A dy;, (7

where g; ... ; € C*(V). The form $*w induces the form ($*w)y on U,
which has an expression

(¢*(D)u = zfil---‘r dx‘,‘ /\ --.. /\ dx‘-'»

This expression is obtained just by substituting

hil

Op; .
yi = ‘P;‘(x'h '"’xm)) d}’: = E l dxf (1 <] < ")

~ ax;

into (7). This follows from (5) if we observe that (2) implies
OHdr) = 3, (2 0 ) di
f=1

ox;

This proves (6) if w is a function, hence, by (7), in general.
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Let V' be a finite-dimensional vector space and Zy, ..., Z, a basis of V.
In order that a bilinear map (X, Y) — [X, Y]of ¥ x Vinto V turn V
iqto a Lie algebra it is necessary and sufficient that the structural constants
y'; given by

n
[Z; 2] = 2 Yindi
1
satisfy the conditions
Y+ ¥ = 0

n
D Vihem + Vmy i + Voym = 0.

i=1

Theorem R, € (the third theorem of Lie) Let ¢y, € R be constants

(I < i, §, k < n) satisfying the relations

Ci:ik + Cikj =0 (8)

n
;(Cin‘jkm + Eimln + ) = 0. (9)

Then there exist an open neighborhood N of 0 in R and a basis Y, ..., Y,
of DYN) over C*(N) satisfying the relations

n
[V, Vi] = 2 Y (10)
=1

Proof. We shall find a basis w,, ..., w, of D;(N) over C*(N) satisfying
the relations
du; = —} z ctpws N (in

j.ke=1

Then the Yy, ..., Y, can be chosen as the basis dual to w,, ..., w,

(Lemma 2.3, Chapter 1), and (10) follows from (I1).
A " VWe start by defining 1-forms

0, = 0,(t,ay, ... a,) = Zf,j(t, ay, ..., a,) da;
=1
as solutions to the differential equations
aei*d -Zc"ab’ 8,40, a a,) =10 13)
T o x4V it Gy ey 8y ) = U {

This amounts to a linear inhomogeneous constant coefficient system
of differential equations for the- functions f;, so these functions are
uniquely determined for (¢, a,, ..., a,) € R"*}. Using (13) we get
o of
d6; = ]z Sl2dt N\ da;+ J}; o day A\ da;

A o,
= (——dai -+ ;c cl,-,cajek) A dt + JEk é%z; da, A da,.

We write this formula
do, = o, A dt -+ B, (14)

>0
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where the «; and B, are 1-forms and 2-forms, respectively, which do not
contain dt. Next we put

oo =B+ 4% Ec‘,,ﬁ, A B
ik
and since we would by = Chapter I expect the forms 8,(¢, a,, ..., a,),.,

to satisfy (11) we now try to prove that o; = 0. Using (8), and writing ---
for terms which do not contain dt, we have

do, = dB; + 3, c'udby A By
ik
= —dt /\ d(!'- —dt /\ Z ci,ku, /\ Bk + aee
ik
Using the expression for «; and (14), this becomes

—dt A z ¢'slda; A O + aiBy + a; A b)) + ...
ik

= —dt A\ 20‘,,, (Z‘jmanea A6+ aiﬁk) + .
ik g '

But since 6, A 6, = —0;, A b we have
z Eieclpafa N\ O =} 2 (€xCpq — €547 5k)0q N\ Oy
ik.a ik

which by (8) and (9) equals

—% E igllaifa A Oy
jukiq
This proves

do; = —dt A\ ( ¢ e — fz ayts5akbe A ek) + ..

ik kP
= —dt \ 2 tix (—akﬁj | 2 aorfe A or) + ..
ik . qr

50

dgi = dt /\ Zc"ikako, + e o (ls)
ik
This amounts to
6(71'
a—t = ]Zk C‘jkak"j

which, since the o; all vanish for ¢t = 0, implies that each o; vanishes

identically. Thus we see from (14) that the forms w; = 6, (1, a,, ..., a,,)
will satisfy (11). Finally, (13) implies that '

82,0, ..., 0) = t da,,

so the forms w; are linearly independent at (a, ..., a,) = (0, ..., 0),
hence also in a suitable neighborhood of the origin. This concludes the
proof.
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10 Integration of Forms

A manifold M is said to be orientable if there exists a collection (Uy, ¢¥a)aca
of local charts such that {Uy}aca is a covering of M and such that for any
a, B € A, the mapping 9501, has strictly positive Jacobian on its domain
of definition 94(Us NUpg). The manifold M is said to be oriented if such a
collection (Uy,¥a)aca has been chosen.

For the definition of integration on M the following weak form of parti-
tion of unity is useful.

Lemma 10.1. Let K C M be compact and V1,...,V, open sets such that
K c UTV;. Then there exist functions @; € CX(V;) such that ¢; > 0 and
S T <1 with equality sign holding in a neighborhood of K.

Proof:
For each j there exists a compact set C; C V;. Using Lemma 1.2 in Ch. I
we can pick a func’(lon ; € €°(V;) such that 0<y;<landy;=1lina

neighborhood of £ - We can also arrange that KCUC Then
or="11,...,05 =Pl —91)... (1 = ;1)

has the desired property.

Let S be a locally compact Hausdorff space. The set of real-valued
continuous functions on S will be denoted by C(S), and CS) shall
denote the set of functions in C(S) of compact support. A measure on §
is by definition a linear mapping u: C(S) — R with the property that
for each compact subset K < § there exists a constant M, such that

fu()| < My suglf(x)l
X€e€
for all fe C/(S) whose support is contained in K. We recall that a linear
mapping u: C(S) — R which satisfies u(f) >0 for f =0, feC(S), is a
measure on S. Such a measure is called a positive measure. For a
manifold M we put &(M) = C°(M), (M) = &M) n C(M). Suppose
M is_an orientable m-dimensional manifold and let (U,,, d»,,),,E 4 bea col-
lectlon of local charts on M by which M is oriented,
" Let w be an m-form on M. We shall define the integral [, fw
for each fe C(M). First we assume that f has compact support con-
tained in a coordinate neighborhood U, and let

¥



¢u(q) = (x4(q), .., xu(q)) g€ U,.
On U,, w has an “_expression ” (cf.,, [DS], Chapter I, §2, No. 4)
(1) wy, = F(xy,...,x)dx; A -+ A dx,,
and we set
f Jo = J (o Wxgse oo XdFalXys oy Xn) dXy - - dXp,.
M bullUa)
On using the transformation formula for multiple integrals we see that

if / has compact support inside the intersection U, n U; of two coor-
dinate neighborhoods, then the right-hand side in the formula above is

f (fo(b,,")(yl,...,y,,.)F,,(y,,...,y,,.)dyl'--dy,,.,
¢p(Up)

if Fpdy( A -++ A dy, is the expression for w on U,. Thus [y fw is well-
defined. Next, let f be an arbitrary function in C,(M). Then f 'vanishes

outside a compact subset of M so by Lemma 10.1, f can be expressed as a
finite sum f = 3", fi

cach f; has compact support inside some neighborhood U, from our

covering. We put
[ =3[ o
M i M

l-_lere it has to be verified ) . that the right-hand
side is independent of the chosen decomposition f = 3", f; of f. Let S =
ng,- be another such decomposition and select ¢ € C.(M) such that
¢ =1 on the union of the supports of all f; and g;- Then ¢ =Y ¢,

(finitc sum), wherc cach ¢, has support inside a coordinate neighborhood
from our covering. We have

Z-/;'¢¢ = Zgj¢a:
' J

and sincc cach summand has support nside a fixed coordinate neigh-
borhood,

;fm¢m=§fmmm

For the same reason the formulas

./,:‘:Zf,:ll),, .qj=zgj(ba
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imply that

[ = ) [vigo,  [o0-% [@.900.

from which we derive the desired relation

3 fro=3 [ae

The integral j Jo is now well-defined and the mapping

1= fo reco,
M
is a measure on M. We have obviously _
Lemma 10,2,1f [y fo = 0 for all fe C(M), then w = 0.

Definition. The m-form w is said to be positive if for cach a€ A,
the function F, in (1) is >0 on ¢, (U),).

If w is a positive m-form on M, then it follows readily from Theorem
Lemma 10.1 proved above that [, fw > 0 for each nonnegative function

fe C(M). Thus, a positive m-form gives rise to a positive measure.

Suppose M and N are two oriented manifolds and let ® be a diffeo-
morphism of M onto N. We assume that @ is orientation preserving, that
is, if the collection of local charts (U,, ¢,),.. defines the orientation on
M, then the collection (®(U,), ¢, ®!),., of local charts on N defines
the orientation on N. Let m denote the dimension of M and N.

Let w be an m-form on N and ®*w its transform or pullback by
® ' (last section), Then the formula

@ L [0 = L(fotb“)w

holds for all fe C(M). In fact, it suffices to verify (2) in the case when
J has compact support inside a coordinate neighborhood U,. If we
evaluate the left-hand side of (2) by means of the coordinate system ¢,
and the right-hand side of (2) by means of the coordinate system
@, @, both sides of (2) reduce to the same integral. '
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§ 7. Invariant Differential Forms

Let G be a Lie group with Lie algebra g. A differential form w on G
is called left invariant if L(x)* w = w for all x € G, L(x) denoting the
left translation g — xg on G. Similarly we define right invariant differen-
tial forms on G. A form is called di-invariant if it is both left and right

invariant.

Let w be a left invariant p-form on G. Then if X, ..., X,., €4 are
arbitrary, X, the corresponding left invariant vector fields on G, we
have by (9), Chapter I, §2,

(0 + 1 dw(X, .., X,,,)
=2 (=1 o[y X1, By vy Ziy oy Ry s B (1)

i<j

Lemma 7.1. Let w be a left invariant form on G. If w is right invariant
then w is closed, that is, dw = Q.

Proof: Let w be a p-form, J the mapping  — 2~!. Then the pull-back
J*w is still bi-invariant and J*w = (—1)’w. Now dw is also bi-invariant and
= dJ*w = J*dw = (~1)P*! dw. Since the left hand side equals (—1)? dw we
have dw = 0.

Proposition 7.2. Let X, ..., X, be a basis of g and w,, ..., w, the
1-forms on G determined by wy(X,) = 8. Then

n

doy = —} D) s A oy &)

Jok=1

if ¢'y. are the structural constants given by

[X, X] = 3, claXe
fa}
Equations (3) are known as the Maurer-Cartan equations. They
follow immediately from (I). Note that the Jacobi identity for g is reflected

in the relation d2 = 0. .

Example. Consider as in §1 the general linear group GL(n, R) with
the usual coordinates ¢ — (x;,(c)). Writing X = (x), dX = (dx,), the
matrix

R = X1dX,

whose entries are |-forms on G, is invariant under left translations
X — ocX on G. Writing
' dX = XQ,
we can derive ’
0=(dX) A2+ X AdQ,

where A denote the obvious wedge product of matrices. Multiplying
by X1, we obtain



iQ+QNQR=0, (4)

which is an equivalent form of (3).
More generally, consider for each x in the Lie group G the mapping

dL(x),: G,—~g
and let £ denote the family of these maps. In other words,
Q.(v) = dL{(x")(v) if veG,
Then 2 is a ]1-form on G with values in g. Moreover, if x, y € G, then

2., 0dL(x), = Q,,

so R is left invariant. Thus 2, = X}, (8,), X; in terms of the basis
Xy ooy X in Prop. 7.2, 6,, ... 0 being left invariant 1-forms on G. But
applymg .Q to the vectors (X,), it is clear that 0, = w; (1 < j < n).
Hence we write

0= X, d=3dux,

i=1 im]l

If 8 is any g-valued 1-form on a manifold X, we can define [0, 6] as
the 2-form with values in g given by

[0, 6]: (v, v) = [02(21), O:(va)], reX, v,veX,.

Then Prop. 7.2 can be reformulated as follows.

Proposition 7.3, Let Q2 denote the unique lefi invariant g-valued 1 form
on G such that 2, is the identity mapping of G, into g. Then

2 + 3[2,0] = 0.

In fact, since ¢y, is skew in (j, k)
(9,21, (0, 9) = [ 3 (o) Xs, 3, enlen) X,
J

= z wy(v;) wy(vy) € Xy = 2 cplwy A wi)(oy, vg) X

..k i,j.k
= _z(d'Q)z (vlv vﬁ)'

We shall now determine the Maurer-Cartan forms w,; explicitly in
terms of the structural constants c';. Since exp is a C® map from g into
G, the forms exp* w, can be expressed in terms of the Cartesian coordi-
nates (x,, ..., ¥,)-of g with respect to the basis X, ..., X,

(expX(wl)x (X3) = Ays(®%1 -ovs %), 5)
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where X = X, x,X; and 4, € C*(R"). Now let N, be an open star-
shaped neighborhood of 0 in g which exp maps diffeomorphically onto
an open neighborhood N, of ¢ in G. Then (x,, ..., x,,) are canonical
coordinates of x = exp X (X € N,) with respect to the basis X, ..., X,.
Then, if f € C=(G),

dexpr(X)f = (X)x (f0 exp) = (- Flexp(X + 1X)))

i=0

whence _
0
dCpr(X,-) = a; .

Consequently,

0

(@ (55-) = wild expe(X)) = exp*(w)x (X)),
§

50

(e = ;; Ay oo 22) d, (6)

Thus by Theorem 1.7 and the left invariance of w;,

A1, 32) = (0 (d xPr(X)) = (e (i (X))

Summarizing, we have proved the following result.

Theorem 74. Let.X,, ..., X, be a basis of g and the left-invariant
1-forms w, determined by w(X,) = 8,,. Then the functions A,;in (5) and (6)
are given by the structural constants as follows. For X = T, %,X, in g .
let A(X) be defined by '

AXNX) = 3, Ayl v x) Xe (1 <5 < ).

Then
1 — e8d X
AX) = 75— ™
and

ad X(X,) = ; ( 3, xic"”) X,.
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. »
8 1. Invariant Measures on Coset Spaces

Let M be a manifold and @ a diffeomorphism of M onto itself. We re-
call that a differential form @ on M is called invariant under @ if

D*w = .

Let G be a Lie group with Lie algebra g. A differential form w on G is
called left-invariant if L¥w = w for all xe G, L, [or L(x)] denoting the
left translation g — xg on G. Also, R, [or R(x)] denotes the right trans-
lation g — gx on G and right-invariant differential forms on G can be de-
fined. If X e g, let X denote the corresponding left-invariant vector field
on G. Let X,,...,X, be a basis of g. The equations w'(X ) = & deter-
mine uniquely n 1-forms o' on G. These are clearly left-invariant and the
exterior product @ = w! A --- A @" is a left-invariant n-form on G. Each
1- form on G can be written ):;;, fio', where f; e &G); it follows that
each n-form can be written fw, where fe&(G). Thus, except for a
constant factor, w is the only left-invariant n-form on G. Let

$:x = (x,(x)s. ., X4(x))

%
Note that 1.1,1.2,1.3,1.11, 1.12,and 1.13 do not appear in this section.
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be a system of canonical coordinates with respect to the basis X,..., X,
of g, valid on a connected.open neighborhood U of e (cf. [DS], Chapter
I, §1). On U, w has an expression

oy = F(xy,...,%,)dxy A -+ A dx,

and F > 0. Now, if g€ G, the pair (L,U, ¢ o L,-1) is a local chart on a

connected neighborhood of g. We put (¢o L,-:)(x) = (¥,(x),. .., yalX))

(x € L,U). Since y,(gx) = x{(x) (xe U n L,U), the mapping
L,:U-LU

has coordinate expression given by

(.Vh""yn) =(x,,...,x,,).

On L,U, w has an expression

oy =G, ydyy A - A dy,,

so that the invariance condition o, = L¥w, (xe U n L,U) can be
written

Gy (x)s - .. yuXN(dyy A -2 A dy,),
= G(x{(x)s.... X% (xXNdx; A -+ A dx,),.

Hence F(x,(x),..., x(x)) = G(x4(x), ..., x,(x)) and

a(yl(x), ey yn(x))
0(xy(x), . ..., x4(x))

for xe U n L,U, which shows that the Jacobian of (¢oL,-1)o @' is
>0. Consequently, the collection (L, U, ¢ o L,-1),.¢ of local charts turns
G into an oriented manifold and each left translation is orientation pre-
serving. The orientation of G depends on the choice of basis of g. If

©»--.» X, is another basis, then the resulting orientation of G is the same
as that before if and only if the linear transformation

X,»X, (<i<n)

Fx, (%), .., %)) = F(py(x), ., ys(%)

" has positive dcterminant.

The form w is a positive left-invariant n-form on G and except for a
constant positive factor, w is uniquely determined by these properties.
We shall denote it by d;g. Thc lincar mapping of C.(G) into R given by
f— | fdyg is a measure on G, which we denote by y,. This measure is
positive; moreover, it is left-invariant in the sense that p(foL.) = u(f)
for xe G, fe C(G).

Similarly, G can be turned into an oriented manifold such that each
R, (g € G) is orientation preserving. There exists a right-invariant posi-



tive n-form d,g on G and this is unique except for a constant positive
factor. We define the right-invariant positive measure y, on G by

w(f) = f fdg, feCG).

The group G has been oriented in two ways. The left-invariant orienta-
tion is invariant under all right translations R, (x € G) if and only if it is
invariant under all I(x) = L, o R,-: (x € G). Since the differential dI(x),
satisfies

dI(x), = dL -1 o Ad(x) o dL,-1,

the necessary and sufficient condition is det Ad(x) > O for all x € G. This
condition is always fulfilled if G is connected.

Lemma 1.4. With the notation above we have
d.g = c det Ad(g) d,g,

where c is a constant.

Proof. Let 6 = det Ad(g) d,g and let x € G. Then

(R,-)*0 = det Ad(gx~')(R,-1)*d,g = det Ad(gx~DI(x)* d,g.
At the point g = e we have
(I(x)*(d,9)). = det Ad(x)(d,g)..
Consequently,
(R,-1%6), = det Ad(e)d,g), = 0.

Thus, 6 is right-invariant and therefore proportional to d,g.

Remark. If G is connected it can be oriented in such a way that all
left and right translations are orientation preserving. If d.g and d,g are
defined by means of this orientation, Lemma 1.4 holds with ¢ > 0.

Corollary 1.5. Let x, ye G and put d(ygx) = (L,R,)* dg, d(xgy) =
(L,R,)*d.g. Moreover, if J denotes the mapping g —g~*, put dg~"') =
J*(d,g). Then

d\(gx) = det Ad(x~") d\(g), d(xg) = det Ad(x) d, g,
d(g™") = (—1)*™C det Ad(g) d,g.
In fact, the lemma implies that _
c det Ad(g) d,g = d.g = d(gx) = c det Ad(gx) d,(gx),
d.(xg) = c det Ad(xg) d\(xg) = c det Ad(xg) d,g.
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Finally, since JR, = L,-.J, we have
(R)*d(g™") = R)J*dig = (JR)* dig = (Ly-J)* d\g = J* dyg,
so that dy(g~!) is right-invariant, hence proportional to d,g. But obviously
(di(g™ e = (=1)™%(d,g).,

so that the corollary is verified.

Definition. A Lie group G is called unimodular if the left invariant
measure y, is also right-invariant.
In view of Corollary 1.5 we have by (2)

(6) t(f e Ry) = |det Ad(x)|m(f).

1t follows that G is unimodular if and only if |det Ad(x)] =1 for all
x € G. If this condition is satisfied, the measures y, and y, coincide except
for a constant factor.

Proposition 1.6. The following Lie groups are unimodular-:
(i) Lie groups G for which Ad(G) is compact;

(ii) semisimple Lie groups;

(i) connected nilpotent Lie groups.

Proof. In the case (i), the group {|det Ad(x)|:x e G} is a compact
subgroup of the multiplicative group of positive real numbers. This sub-

group necessarily consists of one element, so that G is unimodular. In

the case (ii), each Ad(x) leaves invariant a nondegenerate bilinear form
(namely, the Killing form). It follows that (det Ad(x))? = 1. Finally, let
N be a connected nilpotent Lie group with Lie algebra n. If X en, then
ad X is nilpotent, so that Tr(ad X) = 0. Since

det et = T4
for an arbitrary linear transformation A4, we obtain
det Ad(exp X) = ™A = |,
This proves (iii).

Notation. In the sequel we shall mostly use the left invariant measure
i The measure dg is usually called Haar measure on G. For simplicity
we shall write u instead of y; and dg instead of d,g.

Let G be a Lie group with Lie algebra g; let H be a closed subgroup
with Lie algebra h — g. Each x € G gives rise to an analytic diffeomor-
phism t(x):gH — xgH of G/H onto itself. Let n denote the natural
mapping of G onto G/H and put o = n(e). If h e H, (dt(h)), is an endo-
morphism of the tangent space (G/H),. For simplicity, we shall write
dt(h) instead of (dt(h)), and dn instcad of (d=n),.
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Lemma 1.7.

det Adg (h)
det Ad, (h)

Proof. It was shown in [DS], Chapter II, §4, that the differential d=
is a linear mapping of g onto (G/H), and has kernel h. Let m be any sub-
space of g such that g =b + m (direct sum). Then dn induces an
isomorphism of m onto (G/H),. Let X e m. Then

Adg(h) X = dR,-1°dL,(X).
Since noR, =x, (he H) and no L, = 1(g) - 7. (g € G), we obtain
@) drno Adg(h) X = dt(h)odn(X), heH, Xem.
The vector Adg(h) X decomposes according to g = b + m,

Adg(h) X = X(h), + X(h),,.
The endomorphism A4,: X — X(h),, of m satisfies

dno Ay(X) =dt(h) cdn(X), Xem,
so that det A, = det(dt(h)). On the other hand,
exp Adg(h)tT = hexptT h™' = exp Ady(h) ¢t T
for te R, Teb. Hence Adg(h) T = Ady(h) T so that
det Adg(h) = det A, det Ady(h),

and the lemma is proved.

det(dz(h)) = (h € H).

Proposition 1.8. Let m = dim G/H. The following conditions are
equivalent :

(i) G/H has a nonzero G-invariant m-form w;
(ii) det Adg(h) = det Adg(h) for he H.

If these conditions are satisfied, then G/H has a G-invariant orientation
and the G-invariant m-form w is unique up to a constant factor.

Proof. Let w be a G-invariant m-form on G/H, w # 0. Then the re-
lation (h)*w = w at the point o implies det(dt(h)) = 1, so (i1) holds.
On the other hand, let X,,...,X, be a basis of (G/H), and let
w',...,w" be the linear functions on (G/H), determined by w'(X;)=4;;.
Consider the element w' A --- A @™ in the Grassmann algebra of the
tangent space (G/H),. Condition (ii) implies that det(dt(h)) = 1 and the
element w! A --- A @™ is invariant under the linear transformation
dz(h). It follows that there exists a unique G-invariant m-form @ on G/H
such that w, = w! A --- A @™ If w* is another G-invariant m-form on
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G/H, then w* = fw, where fe &(G/H). Owing to the G-invariance, f =
constant.

Assuming (i), let ¢:p — (x,(p),...,x,(p)) be a system of coordinates
on an open connected neighborhood U of o € G/H on which w has an

gxpression

oy = F(xq...., X dx, A - A dx,,

with F > 0. The pair (t(g)U, ¢ o t(g~?!)) is a local chart on a connected
neighborhood of g-oe G/H. We put (¢ot(g™ ))p) = (y1(P), - -, YD)
for pe 1(g)U. Then the mapping t(g): U — 1(g)U has expression ([DS],
Chapter 1, §3.1) (y(r--->Vm) = (X1,...,X). On 1(g)U, w has an expres-
sion

Wy = G(yla- '-’ym)dyl AR d.Vrn

and since w, = ©(g)*wyy,, we have for ge U n t(g)U

w, = Gy(q),- .., Y @Ndyy A --+ A dYy),
= G(x4(q) - - - » X @)Xy A -+ A dXp),.

Hence. F(xl(q)s v xm(q» = G(xl(q)3 ] xm(Q)) and

a(y1(Q), st ym(q))
a(xl(Q)’ ] xm(q)) ,

which shows that the Jacobian of the mapping (¢ o 1(g~ )¢~ ! is >0.
Consequently, the collection (t(g)U, ¢ o 1(g™ ")), of local charts turns
G/H mto an oriented manifold and each 1(g) is orientation preserving.

The G-invariant form @ now gives rise to an integral | fw which is in-
variant in the sense that

F(x1(q)s - xu@) = F(y1(a), . - - » ym@))

Jo=1) (foughw, geG.
G/H G/H
However, just as the Riemannian measure did not require orientability,
an invariant measure can be constructed on G/H under a condition
which is slightly more general than (ii). The projective space P?(R) will,
for example, satisfy this condition but it does not satisfy (ii). We recall
that a measure 4 on G/H is said to be invariant (or more precisely G-
invariant) if u(f o 17(g)) = u(f) forallg € G.

Theorem 1.9. Let G be a Lie group and H a closed subgroup. The
relation

(8) |det Adg(h)| = |det Adg(h)l, heH,
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is a necessary and sufficient condition for the existence of a G-invariant
measure >0 on G/H. This measure dgy is unique (up to a constant factor)
and

©) Lf(g) dg = L,H( Lf(gh) dh)dgu, feCLG),

if the left-invariant measures dg and dh are suitably normalized.

Formula (9) is illustrated in Fig. 6, where n: G — G/H is the natural
mapping.
We begin by proying a simple lemma.

Lemma 1.10. Let G be a Lie group and H a closed subgroup. Let dh
be a left-invariant measure >0 on H and put

JgH) = L flghydh,  feCLG).

Then the mapping f — f is a linear mapping of C(G) onto C.(G/H).

Proof. Let F e C(G/H); we have to prove that there exists a function
f€CG) such that F = f Let C be a compact subset of G/H outside
which F vanishes and let C' be a compact subset of G whose image is C
under the natural mapping n: G — G/H. Let Cy, be a compact subset of
H of positive measure and put C = C'-Cy. Then n(C) = C. Select
fi € C(G) such that f; >0 on G and f;, >0on C. Then f, >0 on
C (since Cy has positive measure) and the function

F(ng)) .. -
S f C
flg) = fi(@) o) n(g) €

0 if n(g)¢C
belongs to C(G) and f = F.

G H
agh e
k2
G/H
FI1G. 6
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Now in order to prove Theorem 1.9 suppose first that the relation

|det Adg(h)| = |det Adg(h)], heH,

holds. Let ¢ € C(G). Since we are dealing with measures rather than dif-
ferential forms, we have by Cor. 1.5

ch(g)( Lf(gh) dh) dg = th Lrb(g)f(gh) dg
= [ an | tgh™ ")/ @)der Adoth)ldg
H G

- | 16140 | ¢lgh™")1det Adg(hy I
G H
But the relation (8) and the last part of Corollary 1.5 shows that

[ vtany1det Adcidh = | pigh an,
H H

so that
[#@ds [ raman= [ 16)4q qu(gh) dh

Taking ¢ such that [ ¢(gh) dh = 1 on the support of f, we conclude that

J’Gf(g)dg=0 iff=0.

In view of the lemma we can therefore define a linear mapping
u: C(G/H) - R by

W(F) = Lf(g)dg it F=]

Since y(F) = 0 if F > 0, p is a positive measure on G/H; moreover,

WY = [ 14g)dg = [ f@)dg = u(1

so that u is invariant,

For the converse we shall first prove the uniqueness of the left Haar measures
on GG and H.
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The uniqueness can be proved as follows. If y and
y' are two left invariant Haar measures, define v by v(f) = p'( f) where
flg) = flg~Y), f € C(G). For g € Cc(G) consider the function s —
F(5) J g(ts) dv(t) and integrate it with respect to . Since the v-integral is
constant in s the result is

wome) = [ 16) / o(ts) du(t) du(s) = / av(t) / F()g(ts) dp(s)
- / dvt) ] F(t0)g(0) du(o) = / o(0) du(o) / FE o) av(t).

Put hio) = [ f(t"'0) du(t)/u.(f). Then the formula shows v = hu (h
independent of f). Taking o = e we deduce

| mew(f) = v(f) = ()
so p and p’ are proportional.

If u is a positive invariant measure on G/H, the mapping f-u(f)isa
positive left invariant measure on G. Owing to the uniqueness mentioned,

Lf(g) dg = u(}).

In view of the lemma this proves the uniqueness of u as well as (9). In
order to derive (8), replace f(g) by f(gh,) in (9). Owing to Corollary 1.5
the left-hand side is multiplied by |det Adg(h,)] and the right-hand side
is multiplied by |det Adg(h,)|. This finishes the proof of Theorem 1.9.

Remark. If H is compact, condition (8) is satisfied; hence in this
case G/H has a G-invariant measure.

3. Haar Measure in Canonical Coordinates

Let G be a Lie group with Lie algebra g. Select neighborhoods N, of
0 in g and N, of e in G such that the exponential mapping exp:g = G
gives a diffeomorphism of N, onto N,. Fix a Euclidean measure dX on
g and let dg denote the left-invariant form on G such that (dg), = dX.

Theorem 1.14. With dg and dX as above we have for the pullback
by exp
1 — e—ndx
12 *(dg) = det{ ——Vdx.
(12) (exp)*(dg) et< s )dx

If feC(G) has compact support contained in the canonical coordinate
neighborhood N, then

~adX
(13) f [g)dg = f f(exp X) det( ; = )dX.
Proof. Since dg is left-invariant, formula (12) is an immediate conse-
quence of Theorem 1.7, Chapter II, =~ . Then (13) follows from (2)

in §1 used on the function f o exp.
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§ 7 Continued

Now let G be a compact connected Lie group. Let dg denote the
Haar measure on G normalized by [; dg = 1, let O be a fixed positive
definite quadratic form on g invariant under Ad(G), and fix a basis
X, ..., X, of g orthonormal with respect to Q. Let w,, ..., w, be the left
invariant 1-forms on G given by w,(X;) = 8, andputf = w; A * A w,.
Then 8 is left invariant and also right invariant because det Ad(g) = 1
by the compactness of G. Also each n-form w on G can be written
w = f8 where f € C*(G) is unique, so we can define

[w=1{ fe)de. (16)
G G
Lemma 7.6. Let w be an (n — 1)-form on G. Then
[ dw=0.
Y6

This is a special case of Stokes’s theorem and can be proved quickly
as follows. We have dw = hf where h € C°(G). By (16) and the bi-
invariance of dg and #, we have, since d commutes with mappings and
integration with respect to another variable,

J‘de = fngfGR(x)*L(y)*(dw') dx dy

- fad(faxoR(x)*L(y)*wdxdy) =0,

the last equality following from Lemma 7.1.

Next we recall the * operator which maps %(G) onto itself, %,(G) onto
U, ,(G) (0 < p < n). Let oy, ..., 0, be the basis of the dual space g*,
dual to (X;),%(e) the Grassmann algebra of g = G,, and % : U(e) — A(e)
the mapping determined by linearity and the condition

*(og, A o A a,-,) = to5, A Aoy, (17)

where {iy, ..., i, f1, -+ fn—p} i @ permutation of {1, ..., n}, the sign being

+ or — depending on whether the permutation is even or odd. We shall
use the following simple fact from linear algebra (for proofs, see e.g.
Flanders [1], Chapter 2): :

(i) If (X,) is replaced by another orthonormal basis (X;) where
X; = T, gyX; with det (g;) = 1, then the definition of * does not

change.
(i) If i, < -+ < iy, then

oy, A Aoy, A *(og, A .o /\ a,’) =03 A .. A\ Op.
(iii) **o = (—l)".‘"'”)a if o € Wy(e).

From (i) we have since det Ad(g) = 1, Ad(g)* = *xAd(g) (g € G).
Thus we can define * : %(g) — %(g) as the map L(g~")* * L(g)* or as
the map R(g-!)* * R(g)*. Finally, the mapping * : WG) — YG) is
defined by the condition _

(*w), = *(w,), weUAG), g€ G.

Then % commutes with L(x)* and R(y)* for all x, y€ G.
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Next we define the linear operator 8 : %(G) — %(G) which maps
p-forms into (p — 1)-forms according to the formula

8w = (—1)*?+* )l & d x o, ‘w € U (G).
We then introduce an inner product ¢ , > on %(G) by

{w,> =0 if weUy(G), 1eY(G) (p #9)
(w, 7> = f @ A *n if w,ne%(G)
G

and the requirement of bilinearity. This inner product is strictly positive
definite; in fact we can write

w = 2 a,l.__,-’w,-l A . /\ U)l-’
i1<.. <y

and then

o A *w = ( E afl_._,’) 6
i

RN
so the statement follows. Moreover d and 8 are adjoint operators, that is,

{dw, 7 = {w, 817>' w,n€ ‘K(G) (18) :

It suffices to verify this when w € %,,_,(G), n € ¥,(G). But then
dlw A\ *1) =dw A ¥4 (=1)"tw Adxny =dw \ xn— w A *8n,

since ** = (—1)?™=P) on %,(G). Integrating this over G and using
Lemma 7.6, we derive (18). We consider now the operator 4 =
—d8 — 8d on %(G) which maps each %,(G) into itself. A form w satis-
fying dw = 0 is called a harmonic form.

Lemma 7.7. A4 form w on G is harmonic if and only if dw = 0 and
dw = 0.
In fact,

- —{dw, w) = 8w, bw) + (dw, dw)

so the result follows.

Theorem 7.8. (Hodge) The harmonic forms on a compact connected
Lie group G are precisely the bi-invariant forms.

"A bi-invariant form w satisfies dw = 0 (Lemma 7.1); and since x
commutes with left and right translations, 8w = 0. Conversely, suppose
dw = 0, so by Lemma 7.7, dw = 8w = 0. Let X € g and let X denote
the left invariant vector field on G such that X, = X. By Exercise B.6,
Chapter I we have §(X)w = i(X) dw + di(X)w = di(X)w. Then

B(R)w, 6K )wy = BO(X)w, (X )wd = 0,

since 6(X)w is harmonic. Hence §(X)w = 0, so w is right invariant
(Exercise B.3, Chapter I). Left invariance follows in the same way.
Q.E.D.
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§ 6. Real Forms

Let V be a vector space over R of finite dimension. A complex structure
on V is an R-linear endomorphism [ of ¥ such that J2 = — I, where J
is the identity mapping of V. A vector space ¥ over R with a complex
structure | can be turned into a vector space ¥ over C by putting

(a+d)X =aX +b]X,
XeV, abeR

In fact, J* = — I implies «(fX) = («f) X for o, B€ C and X € V.
We have clearly dim¢ ¥ = 4 dim, V' and consequently ¥ must be
even-dimensional. We call V' the complex vector space associated to V.
Note that ¥ and ¥ agree set theoretically.

On the other hand, if E is a vector space over C we can consider E
as a vector space E® over R. The multiplication by 7 on E then becomes
a complex structure J on E® and it is clear that E = (EF)".
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A Lie algebra » over R is said to have a complex structure [ if J is
a complex structure on the vector space » and in addition

(X, JY] = JIX, Y], for X, Y € v. (1)

Condition (1) means (ad X)o J = Joad X for all X €v, or equi-
valently, ad (JX) = J o ad X for all X € v. It follows from (1) that

X, JY] = — [X, Y].

_ The complex vector space b becomes a Lie algebra over C with the
bracket operation inherited from ». In fact

[(@ + #) X, (c + id) Y] = [aX + b]X, c¥Y + dJ¥]

= ac[X, Y] + b J[X, Y] + ad][X, Y] — bd[X, V]
SO

[(a + ib) X, (¢ + id) Y] = (a + ib) (c + id) [X, ¥].

On the other hand, suppose e is a Lie algebra over C. The vector space
¢® has a complex structure | given by multiplication by 7 on ¢. With the
bracket operation inherited from e, ¢® becomes a Lie algebra over R
with the complex structure J.

Now suppose W is an arbitrary finite-dimensional vector space over R.
The product W x W is again a vector space over R and the endo-
morphism J: (X, Y)— (— Y, X) is a complex structure on W x W.
'The complex vector space (W X W)~ is called the complexification of
W and will be denoted W€ We have of course dimg W€ = dim; W.
The elements of W< are the pairs (X, Y) where X, Y € W and since
(X,Y) = (X, 0) + (Y, 0) we write X + 7Y instead of (X, Y). Then
since

(@+b])(X,Y) = a(X, Y) + b(— ¥, X) = (aX — bY, a¥ + bX)

we have
(@ + ib) (X +iY) = aX — bY + i(aY + bX).

On the other hand, each finite-dimensional vector space E over C
is isomorphic to W€ for a suitable vector space W over R; in fact,
if (Z;) is any basis of E, one can take W as the set of all vectors of the
form %, a,Z; a; € R.

Let [, be a Lie algebra over R; owing to the conventions above, the
complex vector space 1 = (I,)¢ consists of all symbols X -+ iV, where
X, Y e 1, We define the bracket operation in 1 by

[X +1Y,Z+:T] = [X, Z] = [V, T} +i([Y, Z] + [X, T]),
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and this bracket operation is bilinear over C. It is clear that [ = ()€
isa Lie algebra over C; it s called the complexification of the Lie algebra ;.
The Lie algebra I® is a Lie algebra over R with a complex structure .J
derived from multiplication by 7 on L

Lemma 64. Let K,, K, and K® denote the Killing forms of the Lie
algebras 1y, 1, and 1*. Then

KX, Y) = K(X, ¥) for X, Y €1,
KR(X,Y) =2Re(K(X,Y)) forX,YeIR (Re = real part)-

The first relation is obvious. For the second, suppose X; (1 < 7 < n)
is any basis of 1; let B + iC denote the matrix of ad X ad Y with respect
to this basis, B and C being real. Then X, ..., X,, JX;, ..., JX, is a
basis of I® and since the linear transformation ad X ad Y of ¥ commutes
with ], it has the matrix expression

5
C B
and the second relation above follows.

As a consequence of Lemma 6.1 we note that the algebras I, I, and
I® are all semisimple if and only if one of them is.

Definition. Let g be a Lie algebra over C. A real form of g is a sub-
algebra g, of the real Lie algebra g® such that

g® = go + Jgo (direct sum of vector spaces).

In this case, each Z € g can be uniquely written

Z =X +1Y, X, Yeq,

Thus g is isomorphic to the complexification of g,, The mapping o of
g onto itself given by ¢: X + iV — X — 1Y (X, Y € g,) is called the
conjugation of g with respect to gq. The mapping o has the properties

o(o(X)) = X, o(X + Y) = o(X) + o(Y),
o(eX) = ao(X),  ofX,Y]=[oX, 0],

for X, Y €g, « € C. Thus o is not an automorphism of g, but it is an
automorphism of the real algebra g®. On the other hand, let o be a
mapping of g onto itself with the properties above. Then the set g, of
fixed points of o is a real form of g and o is the conjugation of g with
respect to go. In fact, Jg, is the eigenspace of o for the eigenvalue — 1
and consequently g® = g, + Jg,. If B is the Killing form on g X g, it
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is easy to see from Lemma 6.1 that B(cX, oY) is the complex conjugate
of B(X, Y). Another useful remark in this connection is the following:
Let g, and g, be two real forms of g and o; and o, the corresponding
conjugations. Then o, leaves g, invariant if and only if o, and &, com-
mute; in this case we have the direct decompositions

G =g NG +gN (Z.QQ),
8o = 8; M Gy + go M (10y)-

Lemma 6.2. Suppose g is a semisimple Lie algebra over C, g, a real
form of g, and o the conjugation of g with respect to g, Let ad denote the
adjoint representation of o® and Int (¢®) the adjoint group of o*. If G,
denotes the analytic subgroup of Int (%) whose Lie algebra is ad (g,), then
G, is a closed subgroup of Int (g®) and analytically isomorphic to Int (g,).

Proof. Every automorphism s of g® gives rise to an automorphism
§ of Int (g) satisfying §(e*X) = ¢4 %) (X € g®). In particular there
exists an automorphism & of Int (g®) such that (d¢), (ad X) = ad (o - X) for
X € gR. Since ad is an isomorphism, this proves that ad(g,) is the set
of fixed points of (d&),; thus G, is the identity component of the set
of fixed points of 6. Now, let ad, denote the adjoint representation of g,
and for each endomorphism A of g® leaving g, invariant, let 4, denote
its restriction to g,. Then if X € g, we have (ad X), = ad, X and the
mapping 4 — A, maps G, onto Int (g,). This mapping is an isom.orphi.sm
of G, onto Int (g,). In fact, suppose A € G, such that 4, is the identity.
Since 4 commutes with the complex structure J, it follows that 4 is
the identity. Finally since the isomorphism is regular at the identity
it is an analytic isomorphism.

The following theorem is of fundamental importance in the theory
of semisimple Lie algebras and symmetric spaces.

Theorem 6.3. Every semisimple Lie algebra g over C has a real form
which is compact.

The existence of a compact real form was already established by Cartan in
1914 as a biproduct of his classification of real simple Lie algebras. Later
when global Lie groups had come to the fore Cartan suggested (without
success) the following method for proving the existence of a compact real
form. Let J be the set of all bases (e1,...,e,) of g such that B(Z,2) =
- 312 Z =31 ze; and let cf} be the corresponding structure constants.
Let f denote the function on F defined by

fler.ien) = Jek]?.

Then it is not hard to prove that u = > 1 Re; is a compact real form of g
if and only if f has a minimum which is reached for Ci-‘"j real. A proof of the
existence of u along these lines was accomplished by Richardson (Compact
real forms of a complex semisimple Lie algebra, J. Differential Geometry 2
(1968), 411-420). In one of the exercises we shall see an important applica-
tion of Theorem 6.3 in representation theory.
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The Classical Groups and Their Cartan Involutions
1. Some Matrix Groups and Their Lie Algebras

In order to describe the real and complex classical groups, we adopt
the following (mostly standard) notation. Let (x,, ..., x,,) and (2y, ..., 2,)
be variable points in R™ and C™, respectively. A matrix 4 = (a;),<;.j<n
operates on C" by the rule

2:11 a.nl a;m Z:H
As before, E;; denotes the matrix (3,;8,,)1<q.p<n- Lhe transpose and
conjugate of a matrix A are denoted by ‘4 and A, respectively; 4 is
called skew symmetric if 4 + ‘4 = 0, Hermitian if ‘4 = 4, skew
Hermitian if t4 + 4 = 0.
If I, denotes the unit matrix of order n, we put

o= (8 D m= (5 %)
/~I, 0 0 0
0 I, 0 0
K=V 0 0 -1, 0
0 0 o0 I

q

The multiplicative group of complex numbers of modulus 1 will be
denoted by T.

GL(n, C), (GL(n, R)): The group of complex (real) 7 x n matrices of
determinant # 0.

SL(n, C), (SL(n, R)): The group of complex (real) » x n matrices of
determmant l.

U(p. q): The group of matrices g in GL(p + ¢, C) which leave invariant
the Hermitian form

=28 = e = Bpfy + R By e 2o e, ‘gly 8 =1,
We put U(n) = U(0, n) = U(n, 0) and SU(p, ¢) = U(p, 9)NSL(p + ¢, C),
SU(n) = Uln) N SL(n, C). Moreover, let S(U, x U,) denote the set
of matrices

5 )

0 &/

where g, € U(p), g, € U(g) and det g, detg, = L.
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SU*(2n): The group of matrices in SL(2n, C) which commute with the
transformation s of C** given by

(1 -or Zns Znits +oer Zon) = (Zngas woor Bzny — F1y ooy — Zn)-

SO(n, C): The group of matrices g in SL(»n, C) which leave invariant the
quadratic form

2442 ie, fgg =1,

SO(p, 9): The group of matrices g in SL(p + ¢, R) which leave invariant
the quadratic form

2 2 2 2 : t —
—x; — — X3 + Xy + ...+ Xotar L€, ng.ag = Ixm

We put SO(n) = SO0, n) = SO(n, 0).
SO*(2n): The group of matrices in SO(2n, C) which leave invariant the
skew Hermitian form

= 21 Zp1 F Znafi — Z28nse T Znsa¥e — o — InTpn + Fondn.

Thus g € SO*(2n) <> gJn = Jn 88 = Ion.
Sp(n, C): The group of matrices g in GL(2n, C) which leave invariant the

exterior form
2‘1 /\ zn+1 + ‘22 /\ zﬂ+2 + + Zn /\ z2m i'e" tg]ﬂg = jn'

Sp(n, R): The group of matrices g in GL(2n, R) which leave invariant the
exterior form

*1 /\ Xn+1 _l_ Xg /\ *nio + + Xn /\ Xony i.C., Lg]ng = ]n'

Sp(p, ¢)¢ The group of matrices g in Sp(p + ¢, C) which leave invariant
the Hermitian form

tZKn.aZ—) e, 2K, f=K,,

We ‘put Sp(n) = Sp(0, n) = Sp(n, 0). It is clear that Sp(n) =

Sp(n, C) N U(2n). '
The groups listed above are all topological Lie subgroups of a general
linear group. The Lie algebra of the general linear group GL(n, C) can
(as in Chapter II, §1) be identified with the Lie algebra gi(n, C) of all
complex n X n matrices, the bracket operation being [4, B] = AB—BA.
The Lie algebra for each of the groups above is then canonically
identified with a subalgebra of gi(z, C), considered as a real Lie algebra.
These Lie algebras will be denoted by the corresponding small German
letters, sl(n, R), su(p, q), etc.
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Now, if G'is a Lie group with Lie algebra g, then the Lie algebra b
of a topological Lie subgroup H of G is given by

h={Xeg:exptXeHforteR} (1)

Using this fact (Chapter II, §2) we can describe the Lie algebras of the
groups above more explicitly. Since the computation is fairly similar
for all the groups we shall give the details only in the cases SU*(Zn)
and Sp(n, C). Case SO(p, ¢) was done in Chapter V, §2.

gl(n, C), (gi(n, R)) : {all n X n complex (real) matrices},

sl(n, C), (si(n, R)) : {all » X n complex (real) matrices of trace 0},

o . ( Zy Zz) Z,, Z4 skew Hermitian of order p and q,§
29): 2,  Zy/ | respectively, Z, arbitrary '

A Z,) Z,, Z, skew Hermitian, of order p and g, {
(‘Z2 Z,/ | respectively, Tr 2, + Tr Z; = 0, Z, arbitrary}’

Z, Zz) Z,, Zy n X n complex matricesg
(—Z’2 Z)|TrZ,+Tr2, =0 ’

so(n, C) : {all n X n skew symmetric complex matrices},

su(p, q) :

su*(2n) :

( . g X Xz) All X real, X, X, skew symmet'ric of order;
so(2:9) : (‘X2 X,/ | p and ¢, respectively, X, arbitrary ’

Z, Zy|Z;, Z, n X ncomplex matrices

* . 1 L2\ | 41 L2 ,
s0™(2m) : :(——Z2 Zl) Z, skew, Z, Hermitian ;’
. 412y Z,\ | Z, complex n X n matrices,

sp(n, C) : 3(23 ——‘Zl) Z, and Z5 symmetric ;’

- Xy X\ 1 Xy, X, Xyrealn X on matrices,;
sp(n, R) : g(X3 —‘Xl) X,, X; symmetric ’

Zn Zp 2y Zy\ | Zi; complex matrix; Zy; and Z;, of
an(pa) : ‘gm Ezz "Z“ Zy, | |orderp, Z,and Z,, p ¥ g matrices, {

2y 2y 2y —2Zy, || 2, and Z,, are skew Hermitian,
1214 —Zy—'Z1y  Zy) |Z,3 and Z,, are symmetric

Proof for SU*(2n). By the definition of this group, we have g € SU*(2n)
if and only if gy = ¢g and detg = 1. This shows that 4 € su*(2n) if
and only if 4y = ¢4 and Tr 4 = 0. Writing 4 in the form :

a=(g 2)
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where A, are n X n complex matrices we see that if U and V are n x 1
matrices, then

LAy D) (AT — A0
a(y) = (2 (o) = (4r Z o)

1 2 1,0 _V
va(y) =4 (o L ) = (2o T 4y

It follows that 4, = —A4,, 4, = 4, as desired.
Proof for Sp(n, C). Writing symbolically
2(2) A Zpay e+ 2 A Fgn) = (31, -0 Z2n) A Ja'(215 o0 Zon)
it is clear that g € Sp(n, C) if and only if
2Jng = Ju

Using this for g = exp tZ (t € R), we find since 4 fexp ZAt =
exp(AZA1), Yexp Z) = exp 'Z,

exp t(J;1 ‘Z],) = exp(—1Z) . (t€R),

so Z € sp(n, C) if an only if

Writing Z in the form -
_ (L 2
z=(2 7)

where Z, is a complex n X n matrix, condition (2) is equivalent to

T4 Z, =0, Zy =2y Zy = ‘Z,

2. Connectivity Properties

Having described the Lie algebras, we shall now discuss the con-
nectivity of the groups defined.

Lemma 2.1. Let = denote topological isomorphism, and ~ a homeo-
morphism. We then have

(a) SO(2n) N Sp(n) ~ U(n).

(b) Sp(p, ) N U(2p + 29) ~ Sp(p) > Sp(9)-
(c) Sp(n, R) " U(2n) ~ U(n).
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(d) SO*(2n) N U(2n) ~ U(n).
(e) SU(p, )N U(p + 9) = S(Up X Uy) ~ SU(p) X T x SU(g).
() SU*(2n) n U(2n) = Sp(n).

Proof. (a) Each g € Sp(n) has determinant 1 so g € SO(2n) N Sp(n)
is equivalent to ‘gg = I,,, 'gJ.g = J,, ‘g8 = I,,. Writing

4 B
&= (c D)
these last relations amount tog real, 4 = D, B = —C, A'B — B'A =0,

A'A + B'B=1,. But the last two formulas express simply 4 + iB e U(n).
For part (b), let

V= {g € GL(ZP +24,C): thp.ag = Kﬂ.q}'
Then

gelURp+29)NV = ‘gf =1l ‘8K, .8 = Ky0

But the last two relations are equivalent to

Xn O X3 0 X X
{0 Xm0 X, ( L X, )EU(zﬁ)
g = where 3
Xy O Xn O X X24) € U(29).
0 X42 0 X44 X42 4

By definition

Sp(p,q) = Sp(p+ 9. C)NV
so

Sp(p, ) N U2p + 29) = Sp(p + 4. )N U2p + 29) N V.

Thus, g in (3) belongs to Sp(p, ¢) N U(2p + 2q) if and only if g]p+qg =
Jp+q OF equivalently

Xll X13 _
(X:u Xas) e U(2p) N Sp(p, C) = Sp(p)
and

(& ) euea n s ©) = o)

This proves (b). For (c) we only have to note that

Sp(n, R) N U(2n) = Sp(n) N sé(zn),

(11



which by (a) is isomorphic to U(n). Part (d) is also easy; in fact, g € SO*(2n)
by definition if and only iflgg = I,, and g J,.5 = J,-
Thus

SO*(21) N U(2n) = SO(21) A Sp(n, C) = SO(21) N Sp(n) ~ Ul(n).
Part (e). We have

geSUp YN UG+ < g=(5 )

0 g/
where g, € U(p), g; € U(q) and det g, detg, = 1. Such a matrix can be

written
detg, 0 0 O

0 1

. . 0
G- & . 6" )

0 10 ,

0 0 detg, ’

where y, € SU(p), y, € SU(g). We have therefore a mapping
& —> (v, detgy, ')’2)

of SU(p, ) N U(p + q) into SU(p) x T x SU(g). This mapping is
not in general a homomorphism but it is continuous, one-to-one and
onto; hence SU(p, g)N U(p + q) is homeomorphic to SU(p) X T X SU(q).
Finally, g€ SU*(2n) if and only if §J, = J,g and detg = 1. Hence
g€ SU*(2n) N U(2n) if and only if gJ, .= J.g, ‘g¢ = L,,, detg = ].
However, these conditions are equivalent to ¢J,g = J,, 22 = I,,
or g € Sp(n). This finishes the proof of the lemma.
The following lemma is well known, see, e.g., ChevalleyfLie Groups I, «

Lemma 2.2.

(a) The groups GL(n, C), SL(n, C), SL(n, R), SO(n, C), SO(n), SU(n),
U(n), Sp(n, C), Sp(n) are all connected. _

(b) The group GL(n, R) has two connec-ted components.

In order to determine the connectmty of the remaining groups we
nced another lemma. -

Definition. Let G be a subgroup of the general linear group GL(n, C).
Let z,i(0) (1 <4, j < n) denote the matrix elements of an arbitrary
o€ GL(n, C), and let xn(a) and y;;(o) be the real and imaginary part of

z;i(o). The group G is called a pseudoalgebraic subgroup of GL(n, C)

12



if there exists a set of polynomials Py in 2#? arguments such that 0 € G
if and only if Pg(... x44(o), y44(0), ...) = 0O for all Py,

A pseudoalgebraic subgroup of GL(n, C) is a closed subgroup, hence

a topological Lie subgroup.

Lemma 2.3.. Let G be a pseudoalgebraic subgroup of GL(n, C) such
that the condition g € G implies ‘7 € G. Then there exists an integer d > 0
such that G is homeomorphic to the topological product of G N U(n) and RE.

Proof. We first remark that if an exponential polynomial QO(t) =
27 ¢t (b;e R, ¢;€ C) vanishes whenever ¢ is an integer then
O(t) = O for all € R. Let b(n) denote the vector space of all Hermitian
n X n matrices. Then exp maps b(n) homeomorphically onto the
space P(n) of all positive definite Hermitian n X n matrices (see
Chevalley Theory of Lie Groups, Chapter I). Let H € §(n). We shall prove

If exp He G N P(n), then exp tH € G N P(n) for 1€ R. @)

There exists a matrix u € U(n) such that «Hu! is a diagonal matrix.
Since the group uGu~! is pseudoalgebraic as well as G, we may assume
that H in (4) is a diagonal matrix. Let Ay, ..., &, be the (real) diagonal
elements of H. The condition exp H € G N P(n) means that the numbers
eM, ..., et~ satisfy a certain set of algebraic equations. Since exp kH €
G N P(n) for each integer k, the numbers ek™, ..., e¥*» also satisfy these -
algebraic equations and by the remark above the same is the case if &
is any real number. This proves (4).

Each geGL(n, C) can be decomposed uniquely g = uwp where
u € U(n), p € P(n). Here u and p depend continuously on g. If g€ G,
then ‘gg = p*e GNP(n)so by (4) pe GNP(n) and ue Gn U(n).
The mapping g — (%, p) is a one-to-one mapping of G onto the product
(G N U(n)) x (G n P(n)) and since G carries the relative topology of
GL(n, C), this mapping is a homeomorphism.

The Lie algebra gl(n, C) is a direct sum

gl(n, C) = u(n) + b(n).

Since the. Lie algebra ¢ of G is invariant under the involutive auto-
morphism X — —!X of gi(n, C) we have

g = g Nu(n) + g N bn).

It is obvious that ‘exp(s N b(n)) C G N P(n). On the other hand, each
p € G P(n) can be written uniquely p = exp H where H eb(n); by
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(4), Hep(n) ng, so exp induces a homeomorphism of g N §(n) onto
G n P(n). This proves the lemma.

Lemma 2.4.

(a) The groups SU(p, q), SU*(2n), SO*(2n), Sp(n, R), and Sp(p, q) are
all connected.
(b) The group SO(p, q) (0 < p < p + q) has two connected components.

Proof. All these groups are pseudoalgebraic subgroups of the
corresponding general linear group and have the property that
g € G = '3 € G. Part (a) is therefore an immediate consequence of
Lemma 2.3 and Lemma 2.1. For (b) we consider the intersection
SO(p, q) N U(p + q) = SO(p, g9) N SO(p + q). This consists of all
matrices of the form

G 2
0 B/

where 4 and B are orthogonal matrices of order p and ¢ respectively
satisfying det 4 det B = 1. It follows again from Lemma 2.3 that SO(p, q)
has two components. :

3. The Involutive Automorphisms of the Classical Compact Lie Algebras

Let u be a compact simple Lie algebra, 6 an involutive automorphism
of u; let u = t; + p, be the decomposition of u into eigenspaces of 8
and let g, = ¥, + p, (where p, = #p,). Then gy is a real form of the
complexification g = u¢. We list below the “classical’ u, that is, su(n),
so(n), and sp(n) and for each give various 6; later these will be shown to
exhaust all possibilities for 8 up to conjugacy. Then g, runs through all
noncompact real forms of g up to isomorphism. The simply connected
Riemannian globally symmetric spaces corresponding to (u, §) and g,
are also listed (for u classical). As earlier, by, and b, denote maximal
abelian subspaces of p, and p,, respectively.

Type Al u = su(n); (X) = X.
Here t, = so(n) and p, consists of all symmetric purely imaginary
n X n matrices of trace 0. Thus g, = {, 4+ py = si(n, R). The corre-
sponding simply connected symmetric spaces are
SL(n, R)/SO(n), SU(n)/SO(n) (n>1).

The diagonal matrices in p, form a maximal abelian subspace. Hence
the rank is n — 1. Since g = a,_;, the algebra g, is a normal real form
of g.

14



Type All u = su(2n); (X)) = J,XJ;
Here t, = sp(n) and

=z _2)

~2, = so(n, C);.

Hence Qo = {, + p, = su*(2n). The corresponding simply connected
symmetric spaces are

SU*(2n)/Sp(n), SU(2n)/Sp(n) (n>1).

The diagonal matrices in p, form a maximal abelian subspace of p,.
Hence the rank is n — 1.

Type Alll u = su(p + q); KX) = I, ;XTI ..
Here

)| Aeup) Bentay
Tr(A 4+ B)=10

=i

Z p X q complex matrixz.

a = g(_zz o)

The decomposition
5
0 B

a-Yaayn oy oo, o 0 0
= 2 SR G + !
S(TeB)I,) T \0 B -2 (Te B,

shows that ¥, is isomorphic to the product
su(p) X ¢; X su(g),

where ¢, is the center of ;. Also gy = fy -+ py = su(j}, g). The corre-
sponding simply connected symmetrié spaces are

SU(p, q)'S(U, x Uy), SU(p+iS(U, x U) (p=lg=21p209).
A maximal abelian subspace of p, is given By

= Y REipi— Epri). 0

_ '"Consequently, the rank is q. The spaces are Hermitian symmetric. For
‘g = 1, these spaces are the so-called Hermztzan hyperbolic space and the
complex projective space.
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Type BD | u = s0(p + q); 0 X) = I, [ XI, , (p = q).
Here

L= g(aq g) ‘ Aeso(p), B € so(q)i,

A (W a

As shown in Chapter V, §2, the mapping
~ Y
tX B

Xrealp x ¢ mat_rixg.

(—z'fX' ‘};)

is an isomorphism of g, = ¥, + p, onto so(p, q). The simply connected
symmetric spaces associated with so(p, ¢) and (u, ) are

SOu(p.9)ISO(p) x SO@). 502+ a)is0(2) x 50@) (47 11> )

Here SO( p, g) denotes the identity component of SO( p: g). The compact
space is the manifold of oriented p-planes of (p + g¢)-space, which is
known (see, e.g., Steenrod [1], P 134) to be simply connected. A maximal
abelian subspace of p, is again given by (5), so the rank is ¢. If p+gq
is even then g, is a normal real form of g if and only if p = ¢. If p + g is
odd then g, is a normal real form of g if and only if p = ¢ + 1.

For g = 1, the spaces are the real hyperbolic space and the sphere.
These are the simply connected Riemannian manifolds of constant
sectional curvature 0 and dimension 3. Those -of dimension 3
are SL(2, C) SU(2) and SU(2), 1.e., a, for n = 1.

If ¢ = 2, then f; has nonzero center and the spaces are Hermitian
symmetric.

Type D Il u = so(2n); 6(X) = J,XJ;1

Here f, = so(2n) N sp(n) which by Lemma 2.1 is isomorphic te

u(n). Moreover,
X X
P = ((Xz - ,X-l)

X, Ay e so(n)(.

Hence g, = ¥, + py = s0*(2n). The symmetric spaces are
SO*(2n){U(n), SO(2n): U(n) (n > 2).

Here the imbedding of U(r) into SO(2n), (and SO*(2n)), is given by
" the mapping '
- A Bz

A+¢B-—->%__B At

©
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where 4 + iB € U(n), A, B real. The spaces are Hermitian symmetric
since 1, has nonzero center. In view of Theorem 4.6, Chapter VIII,
they are simply connected. A maximal abelian subspace of p, is spanned
by the matrices

(Em - Em) - (En+1 n+2 7 Lint2 n+1)» (Ezs - 32) - (En+2 a3 T En+3 n+2)’

Consequently, the rank is [r/2].

Type C1 u = sp(n); 8(X) = X (=J.XJ3).
Here t, = sp(n) N so(2n) which is isomorphic to u(n).
_{Za Zz). Z, € u(n), purely imaginary
Px = g(zz -2z, i imagi

Hence g, = §, + po = sp(n, R). The correspondmg simply connected
symmetric spaces are

e

Sp(n, R)[U(n), Sp(n)|U(m) (n=1).

Here the imbedding of U(n) into Sp(n) (and Sp(n, R)) is given by (6).
The diagonal matrices in p, form a maximal abelian subspace. Thus the
spaces have rank n and g, is a normal real form of g. The spaces are
Hermitian symmetric. :

Type C'll u = sp(p + ¢q); #(X) = Kp,qXKp_q

Here

X, 0 X3 0 . :
0 " X.. 0 2 X X11 € u(p), Xys € u(q)

t, = > 2z # 1| X3 p X p symmetric :

0 —X3 0 X, 0 - e U

0.1?’-_)2,24 0 %, X,, ¢ X ¢ symmetric
0_ Yl2 O Yv_l‘l

C —%Y, 0 Yy, O Yy, and Y,  arbitrary

Pr = 0 —¥, 0 ¥,/ |complexp x ¢ matrices{"

—t¥4 0 =Yy, O

It is clear that t, is isomorphic to the direct product sp(p) X sp(g).
Moreover, g, = 1, + py = sp(p, ). The corresponding simply con-
nected symmetric spaces are

Sp(p, 9)/Sp(p) X Sp(q), Sp(p + 9)/Sp(p) x Sp(g) (p >’q =1).

17



Here the imbedding of Sp(p) x Sp(g) into Sp(p + ¢) (and Sp(p, q)) is
given by the mapping

4, 0 B, 0

A, By (A, B, 0 A, 0 B,
((cl Dl)’(c2 DJ)'* c, 0 D, 0
0 C, 0 D

A maximal abelian subspace of p, is obtained by taking ¥;, = 0 and
letting Y}, run through the space RE,, + REy, + - + RE,,. Conse-
quently, the rank is g. For ¢ = 1, the spaces are the so-called guaternian
hyperbolic spaces and the quaternian projective spaces.

This will be shown to exhaust all involutive automorphisms of the
compact classical simple Lie algebras. The restriction on the indices is
made in order that the algebras should be simple, the spaces of dimension
>0, and the condition p > ¢ is required in order to avoid repetition
within the same class.
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