
CHAPTER I

ELEMENTARY DIFFERENTIAL GEOMETRY

§1-§3. When a Euclidean space is stripped of its vector space structure and
only its differentiable structure retained, there are many ways of piecing together
domains of it in a smooth manner, thereby obtaining a so-called differentiable
manifold. Local concepts like a differentiable function and a tangent vector can
still be given a meaning whereby the manifold can be viewed "tangentially," that
is, through its family of tangent spaces as a curve in the plane is, roughly
speaking, determined by its family of tangents. This viewpoint leads to the
study of tensor fields, which are important tools in local and global differential
geometry. They form an algebra (M), the mixed tensor algebra over the
manifold M. The alternate covariant tensor fields (the differential forms) form
a submodule 9t(M) of (M) which inherits a 'multiplication from (M), the
exterior multiplication. The resulting algebra is called the Grassmann algebra
of M. Through the work of E. Cartan the Grassmann algebra with the exterior
differentiation d has become an indispensable tool for dealing with submanifolds,
these being analytically described by the zeros of differential forms. Moreover,
the pair ((M), d) determines the cohomology of Al via de Rham's theorem,
which however will not be dealt with here.

§4-§8. The concept of an affine connection was first defined by Levi-Civita
for Riemannian manifolds, generalizing significantly the notion of parallelism for
Euclidean spaces. On a manifold with a countable basis an affine connection always
exists (see the exercises following this chapter). Given an affine connection on
a manifold M there is to each curve y(t) in M associated an isomorphism between
any two tangent spaces M,(,,) and My(t,). Thus, an affine connection makes it
possible to relate tangent spaces at distant points of the manifold. If the tangent
vectors of the curve y(t) all correspond under these isomorphisms we have the
analog of a straight line, the so-called geodesic. The theory of affine connections
mainly amounts to a study of the mappings Exp,: M, - M under which straight
lines (or segments of them) through the origin in the tangent space M, correspond
to geodesics through p in M. Each mapping Exp, is a diffeomorphism of a neigh-
borhood of 0 in M, into M, giving the so-called normal coordinates at p.
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§1. Manifolds

Let R"n and Rn denote two Euclidean spaces of m and n dimensions,
respectively. Let O and O' be open subsets, 0 C Rm , O' C RI and
suppose p is a mapping of 0 into 0'. The mapping q is called differen-
tiable if the coordinates y1 ('(p)) of p(p) are differentiable (that is, inde-
finitely differentiable) functions of the coordinates xi(p), p e 0. The
mapping is called analytic if for each point p E 0 there exists a neigh-
borhood U of p and n power series Pi (I j < n) in m variables such
that y(q(q)) = P,(x1(q) - x,(p), ..., x,,(q) - xm(p)) (1 < j < n) for
q e U. A differentiable mapping p: O -, O' is called a diffeomorphism of
O onto O' if (0) = O', p is one-to-one, and the inverse mapping T-

is differentiable. In the case when n = 1 it is customary to replace the
term "mapping" by the term "function."

An analytic function on RMwhich vanishes on an open set is identically
0. For differentiable functions the situation is completely different. In
fact, if A and B are disjoint subsets of Rm , A compact and B closed,
then there exists a differentiable function 'p which is identically I on A
and identically 0 on B. The standard procedure for constructing such
a function p is as follows:

Let 0 < a < b and consider the function f on R defined by

()exp t ir)-if a < x < b,f(.)== -6 x-a-
0(tr) = otherwise.

Then f is differentiable and the same holds for the function

F(x) = JIf(t) dt/Jf f(t) dt,

which has value I for x • a and 0 for x > b. The function , on Rm

given by

;,(x, ... Xm)= F(x + + ,,)

is differentiable and has values I for x -- ... + x4, • a and 0 for
x} + ... + x2 > b. Let S and S' be two concentric spheres in Rm,
S' lying inside S. Starting from 0 we can by means of a linear trans-
formation of Ra" construct a differentiable function on Rm with value I
in the interior of S' and value 0 outside S. Turning now to the sets A
and B we can, owing to the compactness of A, find finitely many spheres
Si (I i n), such that the corresponding open balls Bi (I i < n),
form a covering of A (that is, A c Unll Bj) and such that the closed
balls B, (I i < n) do not intersect B. Each sphere Si can be shrunk
to a concentric sphere Si such that the corresponding open balls BI
still form a covering of A. Let i be a differentiable function on Rm

which is identically I on Bi and identically 0 in the complement of B i.
Then the function

9= I-( - (l -0)2)... - )
is a differentiable function on Rm which is identically I on A and iden-
tically 0 on B.

Let M be a topological space. We assume that M satisfies the Hausdorff
separation axiom which states that any two different points in M can be
separated by disjoint open sets. An open chart on M is a pair (U, Ap)
where U is an open subset of M and p is a homeomorphism of U onto
an open subset of Rm.



Definition. Let M be a Hausdorff space. A &dfferentiablestructure
on M of dimension m is a collection of open charts (U,, 50).cA on M
where p,0(U.) is an open subset of Rm such that the following conditions
are satisfied:

(M) M= U U.
reA

(M2) For each pair , B e A the mapping 50 o 5li is a differentiable
mapping of 5(U nr U) onto p(U. n Us).

(M3 ) The collection (U,, 4o,).rA is a maximal family of open charts
for which (Ml) and (M2) hold.

A differentiable manifold (or C manifold or simply manifold) of
dimension m is a Hausdorff space with a differentiable structure of
dimension m. If M is a manifold, a local chart on M (or a local coordinate
system on M) is by definition a pair (U., 50) where a E A. If p E U,,
and p,(p) = (x,(p), ..., x,(p)), the set U, is called a coordinate neighbor-
hood of p and the numbers x(p) are called local coordinates of p. The
mapping 5: q -- (x,(q), ..., xm(q)), q E U., is often denoted {xX, ..., x,}.

Remark 1. Condition (M3) will often be cumbersome to check in
specific instances. It is therefore important to note that the condition
(M3) is not essential in the definition of a manifold. In fact, if only
(M1) and (M2) are satisfied, the family (U,, 5J)aA can be extended in a
unique way to a larger family M1of open charts such that (M1), (M 2),
and (M3) are all fulfilled. This is easily seen by defining 9t as the set
of all open charts (V, p) on M satisfying: () 0(V) is an open set in Rm;
(2) for each a E A, 50 o i5-1 is a diffeomorphism of p(V n U,) onto

r(vn U).
Remark 2. If we let Rm mean a single point for m = 0, the preceding

definition applies. The manifolds of dimension 0 are then the discrete
topological spaces.

Remark 3. A manifold is connected if and only if it is pathwise
connected. The proof is left to the reader.

An analytic structure of dimension m is defined in a similar fashion.
In (M2 ) we just replace "differentiable" by "analytic." In this case M
is called an analytic manifold.

In order to define a complex manifold of dimension m we replace Rm
in the definition of differentiable manifold by the m-dimensional complex
space Cm. The condition (M.) is replaced by the condition that the m
coordinates of 9 o g7;'(p) should be holomorphic functions of the
coordinates of p. Here a function f(z, ..., z,,) of m complex\variables
is called holomorphic if at each point (z,, ..., z ° ) there exists power
series

X a,,1... (21 - Z) n l .. (m - ZOr) m,

which converges absolutely to f(zl, ..., z,,) in a neighborhood of the
point.

The manifolds dealt with in the later chapters of this book (mostly
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Lie groups and their coset spaces) are analytic manifolds. From
Remark I it is clear that we can always regard an analytic manifold as
a differentiable manifold. It is often convenient to do so because, as
pointed out before for Rm, the class of differentiable functions is much
richer than the class of analytic functions.

Let f be a real-valued function on a C- manifold M. The functionf
is called differentiable at a point p e M if there exists a local chart
(U., ),, with p E U, such that the composite function fo g; is a
differentiable function on (U,). The function f is called differentiable
if it is differentiable at each point p. E M. If M is analytic, the functionf
is said to be analytic at p E M if there exists a local chart (U,, ) with
p E U, such that .fo pa;1 is an analytic function on the set (U).

Let M be a differentiable manifold and let denote the set of differential
functions on M.

We shall often write C(M) instead of and will sometimes denote
by C(p) the set of functions on M which are differentiable at p. The
set C(M) is an algebra over R, the operations being

(Af)(p) = Af(p),

(f + g)(P)= f(p) + g(P),
(fg)(P) = f(P)g(P)

for AE R, p M, f, g E C(M).

Lemma 1.2. Let C be a compact subset of a manifold M and let V
bean open subset of M containing C. Then there exists a function b E C(M)
which is identically 1 on C, identically 0 outside V.

This lemma has already been established in the case M = R. We
shall now show that the general case presents no additional difficulties.

Let (U., ) be a local chart on M and S a compact subset of U,.
There exists a differentiable function f on pq(U.) such that f is
identically 1 on p,(S) and has compact support contained in ,,(Ur).
The function F on M given by

F() = f(q(q)) if q E U,
Fq -ootherwise

is a differentiable function on M which is identically I on S and iden-
tically 0 outside U,. Since C is compact and V open, there exist finitely
many coordinate neighborhoods U, ..., U, and compact sets S, ..., S
such that

C C U S, S c U

(U UV,) C V.

As shown previously, there exists a function F C(M) which is
identically I on Si and identically 0 outside U. The function

= - ( - ) (I -F2)... (- F.,)

belongs to C(M), is identically on C and identically 0 outside V.
Let M be a C manifold and (U., 9P).EA a collection satisfying (M1),

(M2 ), and (M3 ). If U is an open subset of M, U can be given a differen-
tiable structure by means of the open charts (Vn, )r,,A where V =
U n U and ib is the restriction of to V,. With this structure, U is
called an open submanifold of M. In particular, since M is locally con-
nected, each connected component of M is an open submanifold of M.



Let M and N be two manifolds of dimension m and n, respectively.
Let (U., P').eA and (V#, /')eBbe collectionsof open charts on M and N,
respectively, such that the conditions (ML), (M 2), and (Ms) are satisfied.
For a e A, P E B, let qp x Ol denote the mapping (p, q) - ((p),¢(q))
of the product set U, x V into R" +n. Then the collection (U, x V,
T x P)aEA.PEBof open charts on the product space M x N satisfies
(Ml) and (M2) so by Remark I, M x N can be turned into a manifold
the product of M and N.

An immediate consequence of Lemma 1.2 is the following fact which
will often be used: Let V be an open submanifold of M, f a function
in C-(V), and p a point in V. Then there exists a function f E C°(M)
and an open neighborhoodN, p N C V such that f and f agree on N.

1. Vector Fields and 1-Forms

Let A be an algebra over a field K. A derivation of A is a mapping
D: A -*> A such that

(i) D(of+ fig)= Df+ Dg for o, Pe K, f, g e A;
(ii) D(fg)= f(Dg) + (Df)g for f,g A.
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Definition. A vector field X on a C- manifold is a derivation of the
algebra C~(M).

Let ' (or D(M)) denote the set of all vector fields on M. Iff E C-(M)
and X, Y E Z'(M), then fX and X + Y denote the vector fields

fX: g -- f(Xg), g E C°(M),

X + Y:g - Xg + Yg, gE C(M).

This turns l(M) into a module over the ring = C=(M). If X,
Y E 3)1(M), then XY - YX is also a derivation of C-(M) and is denoted
by the bracket [X, Y]. As is customary we shall often write (X) Y =
[X, Y]. The operator (X) is called the Lie derivative with respect to X.
The bracket satisfies the Jacobi identity [X, [Y, Z]] + [Y, [Z, X]] +
[Z, [X, Y]] = 0 or, otherwise written (X) ([Y, Z]) = [O(X) Y, Z] +

[Y, (X) Z].
It is immediate from (ii) that iff is constant and X E 1, then Xf = 0.

Suppose now that a function g E C°(M) vanishes on an open subset
V C M. Let p be an arbitrary point in V. According to Lemma 1.2
there exists a function f C*(M) such that f(p) = 0, and f = 1
outside V. Then g = fg so

Xg = f(Xg) + g(Xf),

which shows that Xg vanishes at p. Since p was arbitrary, Xg = 0
on V. We can now define Xf on V for every function f E C-(V). If
p V, select f E C-(M) such that f and f coincide in a neighborhood
of p and put (Xf)(p) = (Yf) (p). The considerationabove shows that
this is a valid definition, that is, independent of the choice of f. This
shows that a vector field on a manifold induces a vector field on any
open submanifold.

On the other hand, let Z be a vector field on an open submanifold
V c M and p a point in V. Then there exists a vector field 2 on M
and an open neighborhood N, p E N C V such that Z and Z induce
the same vector field on N. In fact, let C be any compact neighborhood
of p contained in V and let N be the interior of C. Choose VsE C-(M)
of compact support contained in V such that b = I on C. For any
g E C-(M), let gv denote its restriction to V and define Zg by

Z(g) (q) O(q) (Zgv) (q) for q E V,

Then g -- Zg is the desired vector field on M.
Now, let (U, A) be a local chart on M, X a vector field on U, and let

p be an arbitrary point in U. We put 4o(q)= (x,(q), ..., x,,(q)) (q U),
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and f* = f o a-' for f e Ck(M). Let V be an open subset of U such
that q)(V) is an open ball in Rm with center (p) = (a,, ..., am). If
(x,, ..., X,,,) e 9(V), we have

f*(XI .... x,.)

= f*(al ... a,) + f*(al + t(x - a), ..., a,,,+ t(x,,,- am))di

=f*(a ..., a,) + (xj- a,) f(al + t(xl-al) ...., am+t(xm-am))dt.
j- 0

(Here f7 denotes the partial derivative of f* with respect to the jth
argument.) Transferring this relation back to M we obtain

f(q) =f(p)+ (x(q)- x,(p))g(q) (qE ), (1)
i-i

where g, E C°(V) (1 ~ i < m), and

It follows that g

(Xf) (p) = ( (Xx) (p) for p E U. t2)

The mapping f -- (Of*/xi) o p (f E C'( U)) is a vector field on U and
is denoted a/ax. We write aflaxy instead of /axt(f). Now, by (2)

inma
X= (Xx,) ax, on U. (3)

Thus, al/ax (I < i < m) is a basis of the module l(U).
For p e M and X e Zx, let X, denote the linear mapping X,,:

f - (Xf) (p) of C(p) into R. The set Xp: X E Zl(M)) is called the
tangent space to M at p; it will be denoted by Zl(p) or M, and its elements
are called the tangent vectors to M at p. Relation (2) shows that M, is
a vector space over R spanned by the m linearly independent vectors

e f --( f*) , f C(M).
This tangent vector et will often be denoted by (/ax i)p. A linear mapping
L: C*(p) - R is a tangent vector to M at p if and only if the condition
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L(fg) = f(p) L(g) + g(p) L(f) is satisfied for all f, g E C'(p). In fact,
the necessity of the condition is obvious and the sufficiency is a simple
consequence of (I). Thus, a vector field X on M can be identified with
a collection X,,(p E M) of tangent vectors to M with the property that
for each f E C°(M) the function p -- X f is differentiable.

Suppose the manifold M is analytic. The vector field X on M is
then called analytic at p if Xf is analytic at p whenever f is analytic at p.

Remark. Let V be a finite-dimensional vector space over R. If
XI, ..., X is any basis of V, the mapping 1- xiXi -+ (x1, ..., x) is an
open chart valid on the entire V. The resulting differentiable structure
is independent of the choice of basis. If X E V, the tangent space Vx
is identified with V itself by the formula

(Yf)(X) = d f(X tY) 1_, f Coo(V),dtX+ -
which to each Y E V assigns a tangent vector to V at X.

§ 3. Mappings

1. The Interpretation of the Jacobian

Let M and N be C' manifolds and 0 a mapping of M into N. Let
p E M. The mapping 0 is called differentiableat p if g o 0 E C(p) for
each g e C((p)). The mapping 0 is called differentiable if it is differen-
tiable at each p E M. Similarly analytic nappings are defined. Let
0: q - (xl(q), ..., x,,(q)) be a system of coordinates on a neighborhood
U of p E M and jb':r --. (y,(r), ..., y,(r)) a system of coordinates on a
neighborhood U' of O(p) in N. Assume ¢(U) C U'. The mapping
i' c o 0-'1 of O(U) into 0b'(U') is given by a system of n functions

Y!= T(.1, ., xM) (1 < j S n), (1)

which we call the expression of 0 in coordinates. The mapping 0 is
differentiable at p if and only if the functions pi have partial derivatives
of all orders in some fixed neighborhood of (xl(p), ..., x(p)).

The mapping 0 is called a diffeomorphism of M onto N if 0 is a
one-to-one differentiable mapping of M onto N and 0-1 is differen-
tiable. If in addition M, N, 0, and 0-' are analytic, 0 is called an
analytic diffeomorphism.

If 0 is differentiable at p E M and A E M,, then the linear mapping
B: C°(O(p)) -- R given by B(g) = A(g o 0) for g E C*°((p)) is a
tangent vector to N at O(p). The mapping A -- B of M, into N,(,) is
denoted d,, (or just 0,) and is calledthe differentialof 0 at p. We have
seen that the vectors

ef Of(/* (I < i < m), f* = f o 0-1,

(1<j ( n), g*= go(b')-

form a basis of Mp and N,,,,, respectively. Then
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d.(ei)g= e,(o ) = (go 0)*)
But

o 0)*(X, ...I X.) = g9*(y1 .... Y.),

where yj = j(x, ..., x,) (I < j < n). Hence

dM)(ev) =- [rt ) (2)

This shows that if' we use the bases es (1 < i < m), es(1 < j < n) to
express the linear transformation dcp in matrix form, then the matrix
we obtain is just the Jacobian of the system (1). From a standard theorem
on the Jacobian (the inverse function theorem), we can conclude:

Proposition 3.1. If dM, is an isomorphism of M v onto N,(p), then
there exist open submanifoldsU C M and V C N such that p e U and
a is a diffeomorphism of U onto V.

Definition.

Let M and N be differentiable (or analytic) manifolds.
(a) A mapping P: M -- N is called regular at p e M if · is differen-

tiable (analytic) at p e M and dp is a one-to-one mapping of M,
into N,,p,.

(b) M is called a submanifold of N if (1) M C N (set theoretically);
(2) the identity mapping I of M into N is regular at each point of M.

For example, the sphere x + x + x2 = I is a submanifold of Ra

and a topological subspace as well. However, a submanifold M of a
manifold N is not necessarily a topological subspace of N. For example,
let N be a torus and let M be a curve on N without double points,
dense in N (Chapter II, §2). Proposition 3.1 shows that a submanifold
M of a manifold N is an open submanifold of N if and only if dim M
= dim N.

Proposition 3.2. Let M be a submanifoldof a manifold N and let
p e M. Then thereexists a coordinatesystem {x, ..., x} valid on an open
neighborhoodV of p in N such that x(p) = ... = x,(p) = 0 and such
that the set

U = {q E V: xj(q) = for m + 1 <j < n}

together with the restrictions of (x, ..., x,,) to U form a local chart on M
containing p.

Proof. Let {, ...,Ym} and {z1 ..., z,} be coordinate systems valid
on open neighborhoods of p in M and N, respectively, such that
yi(p) = zj(p) = 0, (1 i < m, I <j < n). The expression of the
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identity mapping I: M - N is (near p) given by a system of functions
z = Yj(Y,-, Yn), 1 j < n. The Jacobian matrix (aSpj/ayi)of this
system has rank m at p since I is regular at p. Without loss of generality
we may assume that the square matrix (apS/ayi)xicjn*mhas determinant
# 0 at p. In a neighborhood of (0, ..., 0) we have therefore y =
i(zl,..., z), 1 i < m, where each Hi is a differentiable function.

If we now put
X =zi 1i am,

xj = zi - P(A 1(Z 1,..-, ,), ... ,,m(Zl,...z, )), m+ 1 j < n,
it is clear that

det\ yaxi : dt( axi orAYIHiMa)k 1<6.kSn
Therefore {x,, ..., xn} gives the desired coordinate system.

2. Transformation of Vector Fields

Let M and N be C ° manifolds and P a differentiable mapping of M
into N. Let X and Y be vector fields on M and N, respectively; X and
Y are called qi-related if

dO,(X,) = Y(,,) for all p E M. (3)

It is easy to see that (3) is equivalent to

(Yf) o = X(fo P) forallf E C'(N). (4)

It is convenient to write d · X = Y or X = Y instead of (3).

Proposition 3.3.

(i) Suppose Xi and Yi are >-related, (i = 1, 2). Then

[X1, X 2] and [Y1, Y2] are -prelated.

(ii) Suppose a is a diffeomorphism of M onto itself and put f' = f o - 1

for f e Cw(M).Thenif X E '(M),
(fX)0 = fX0, (Xf)' = X'f*.

Proof. From (4) we have (Yl(Y 2f)) o = X 1(Y 2 f o ) =
Xl(X 2(f o 0)), so (i) follows. The last relation in (ii) is also an immediate
consequence of (4). As to the first one, we have for g E C'(M)

((fX)0 g) oa = (fX) (gon) = f((X g) o ),
so

(fX)0g =f(X"g).
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Remark. Since X"f = (Xf*-')) it is natural to make the following
definition. Let · be a diffeomorphism of M onto M and A a mapping
of C-(M) into itself. The mapping A' is defined by Af = (Af-')*
for f e CD°(M).We also write [Af] (p) for the value of the function Af
at p E M. If 5 and W are two diffeomorphisms of M, then f"' = (f')
and A"r = (A")'.

Let M be a differentiable manifold, S a submanifold. Let m = dim M,
s = dim S. A curve in S is of course a curve in M, but a curve in M
contained in S is not necessarily a curve in S, because it may not even
be continuous. However, we have:

Lemma* 3.4 Let p be a differentiable mapping of a manifold V into
the manifold M such that (V) is containedin the submanifoldS. If the
mapping p : V -- S is continuous it is also differentiable.

Let p E V. In view of Prop. 3.2, there exists a coordinate system
{xl, ..., x,} valid on an open neighborhood N of p(p) in M such that
the set

Ns = {r E N: xj(r) = Ofor s <j < m}

together with the restrictions of (xl, ..., x,) to N s form a local chart
on S containing p(p). By the continuity of there exists a local chart
(W, b) around p such that (W) C Ns . The coordinates x(ip(q))
(I <j < m) depend differentiably on the coordinates of q W. In
particular, this holds for the coordinates x(q(q)) (1 < j < s) so the
mapping p: V -S is differentiable.

As an immediate consequence of this lemma we have the following
statement: Suppose that V and S are submanifolds of M and V C S.
If S has the relative topology of M, then V is a submanifold of S.

§4. Affine Connections

Definition. An affine connection on a manifold M is a rule V which
assigns to each X E 1(M) a linear mapping Vx of the vector space
D'(M) into itself satisfying the following two conditions:

(V1) Vx+,y = fVx +gVy;

(V2) Vx(.fY) =fVx(Y) + (XYf)Y
for f, g E CO°(M),X, Y E Zl(M). The operator Vx is called covariant
differentiation with respect to X. For a motivation see Exercises.

Lemma 4.1. Suppose M has the aine connection X -- Vx and let
U be an open submanifold of M. Let X, Y E Vl(M). If X or Y vanishes
identically on U, then so does Vx(Y).

Proof. Suppose Y vanishes on U. Let p E U and g C-(M). To
prove that (Vx(Y) g) (p) = 0, we select f E C'(M) such that f(p) = 0
and f = I outside U (Lemma 1.2). Then fY = Y and

Vx(Y)g = Vx(fY)g = (Xf) (Yg)+f(Vx(Y)g)

which vanishes at p. The statement about X follows similarly.
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An affine connection V on M induces an affine connection Vu on
an arbitrary open submanifold U of M. In fact, let X, Y be two vector
fields on U. For each p e U there exist vector fields X', Y' on M which
agree with X and Y in an open neighborhood V of p. We then put
(( Vu)x(Y)), = ( Vx,(Y'))Q for q E V. By Lemma 4.1, the right-hand
side of this equation is independent of the choice of X', Y'. It follows
immediately that the rule Vu: X -- (u)x (X E l)(U)) is an affine
connection on U.

In particular, suppose U is a coordinate neighborhood where a

coordinate system :q - (xl(q), ..., xm(q))is valid. For simplicity, we
write Vi instead of (Vu)al,. We define the functions. rFk on U by

Vi j~~k@-Xy~ ) =zr Xk *(I)

For simplicity of notation we write also t'j k for the function rk o -1,
If {YI, ... , Ym} is another coordinate system valid on U, we get another
set of functions r_',Y by

Using the axioms V1 and V we find easily

,I- exx, axj AYXI 9y,
;'= ~ ay' axy- kr + Y yl (2)

.Jrk a Y. 8 axik j~ xOy-

On the other hand, suppose there is given a covering of a manifold M
by open coordinate neighborhoods U and in each neighborhood a
system of functions rjk such that (2) holds whenever two of these
neighborhoods overlap. Then we can define V7i by (1) and thus we
get an affine connection Vu in each coordinate neighborhood U. We
finally define an affine connection on M as follows: Let X, Y E )'(M)
and p M. If U is a coordinate neighborhood containing p, let

(*x(y)), = (( u)x,(Y))P

if X1 and Y1 are the vector fields on U induced by X and Y, respectively.
Then is an affine connection on M which on each coordinate neigh-
borhood U induces the connection Vu.

Lemma 4.2. Let X, Y E l'(M). If X vanishesat a point p in M,
then so does Vx(Y),

Let {x1, ..., xm} be a coordinate system valid on an open neighborhood
U of p. On the set U we have X = lifi(a/axi) where f E C(U) and

fr(p) = 0, (1 < i < m). Using Lemma 4.1 we find (Vx(Y)), =
if, (p) ( (Y)), = 0.

Remark. Thus if v E Mv, V,(Y) is a well-defined vector in M,.

Definition. Suppose V is an affine connection on M and that q is
a diffeomorphism of M. A new affine connection V' can be defined on
M by

VX(Y) = (Vxo(Y°))-', X, YE aI(M).

That 7' is indeed an affine connection on M is best seen from Prop. 3.3.
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The affine connection V is called invariant under · if V' = V. In
this case is called an aine transformation of M. Similarly one can
define an affine transformation of one manifold onto another.

§ 5. Parallelism

Let M be a Co manifold. A curve in M is a regular mapping of an
open interval I C R into M. The restriction of a curve to a closed sub-
interval is called a curve segment. The curve segment is called finite if
the interval is finite.

Let y: t - y(t) (t E I) be a curve in M. Differentiation with respect
to the parameter will often be denoted by a dot (). In particular, (t)
stands for the tangent vector dy(d/dt)t. Suppose now that to each t E I

is associated a vector Y(t) E My,). Assuming Y(t) to vary differentiably
with t, we shall now define what it means for the family Y(t) to be
parallel with respect to y. Let J be a compact subinterval of I such that
the finite curve segment yj: t - y(t) (t E J) has no double points and
such that y(J) is contained in a coordinate neighborhood U. Owing to
the regularity of y each point of I is contained in such an interval J
with nonempty interior. Let {x1, ..., x,, be a coordinate system on U.

Lemma 5.1. Let t -t y(t) (t E I) be a curve in a manifold M. Let to E I
and y a smoothfunction on a neighborhoodof to in I. Then 3 open interval
Ito aroundto in I and a function G E e(M) such that

G(y(t)) = g(t) t E It.

Proof:
Let {xl,..., Xm} be a coordinate system on a neighborhood of -y(to)in

M. There exists an index i such that t -- xi(y(t)) has a nonzero derivative
at t = to. Thus 3 smooth function rliof 1-variablesmooth in a neighborhood
of xi(y(to)) in R such that t = l/i(Zi(Y(t))) for fallt in a neighborhood of to.
The function

q - g(ri(xji(q)))

is defined and smooth in a neighborhood of y(to) in M. In a smaller neigh-
borhood it coincideswith a function G E eC°(M). But then

G(y(t)) = g(r/i(xi('y(t)))) = g(t)

for t in an interval around to.
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We put X(t) = (t) (t E I). Using Lemma 5.1 it is easy to see that
there exist vector fields X, Y E Z1(M) such that (Y(t) being as before)

Xyt X( ) ,,, = Y(tj (t E"1o . '

Given an affine connection V on M, the family Y(t) (t E J) is said to be
parallel with respect to y, (or parallel along y,) if

Vx(Y)ym = 0 for all t EcTt (1)

To show that this definition is independent of the choice of X and Y,
we express (1) in the coordinates {x, ..., Xm}. There exist functions
X i, Y j (I i, j < m) on U such that

= Xi gkY' y=~·~-DYj 8 on U.

For simplicity we put x(t) = x(y(t)), Xi(t) = Xi(y(t)), and Yi(t) =
Yi(y(t)) (t ej.)(1 i < m). Then Xi(t) = xi(t) and since

Vx(Y)= VX~i ayk +( XYj r,'k) onU
k ax XY'F axk

we obtain

dyk + rjk dx, Y = (t EJ). (2)

This equation involves X and Y only through their values on the curve.
Consequently, condition (I) for parallelism is independent of the choice
of X and Y. It is now obvious how to define parallelism with respect
to any finite curve segment y and finally with respect to the entire
curve y.

Definition. Let y: t - y(t) (t E I) be a curve in M. The curve y
is called a geodesic if the family of tangent vectors (t) is parallel with
respect to y. A geodesic y is called maximal if it is not a proper restriction
of any geodesic.

Suppose y is a finite geodesic segment without double points con-



tained in a coordinate neighborhood U where the coordinates {xl, ..., xm}
are valid. Then (2) implies

d2Xk + rk dX, dX = 0 (t E ). (3)
dt dt dt

If we change the parameter on the geodesic and put t = f(s),
(f'(s) #- 0), then we get a new curve s -* yj(f(s)). This curve is a geodesic
if and only iff is a linear function, as (3) shows.

Proposition 5.2. Let p, q be two points in M and y a curve segment
from p to q. The parallelism with respect to y induces an isomorphism
of Mp onto Me.

Proof. Without loss of generality we may assume that y has no
double points and lies in a coordinate neighborhood U. Let {x,, ..., x}
be a system of coordinates on U. Suppose the curve segment y is given
by the mapping t --* y(t) (a t < b) such that y(a) = p, y(b) = q.
As before we put xi(t) = x(y(t)) (a t < b) (1 i m).

Consider the system (2). From the theory of systems of ordinary,
linear differential equations of first order we can conclude:

There exist m functions pi(t, l, ... ym) (1 i < m) defined and
differentiablet for a t < b, - < y < X such that

(i) For each m-tuple (yl, ..., ym), the functions Yi(t) = y,(t,l, ..., m)
satisfy the system (2).

(ii) (a, y .... y) =-yi (1 i m).

The functions pi are uniquely determined by these properties.
The properties (i) and (ii) show that the family of vectors Y(t) =

Yt YI(t) (/lax) (a t < b) is parallel with respect to y and that
Y(a) = Y~iyi(alaX)p~. The mapping Y(a) - Y(b) is a linear mapping
of M,. into M, since the functions qi are linear in the variables y,, ... , Ym.
This mapping is one-to-one owing to the uniqueness of the functions Pi.
Consequently, it is an isomorphism.

Proposition 5.3. Let M be a differentiable manifold with an a ine
connection.Let p be any point in M and let X 0 in M.. Then there
exists a uniquemaximalgeodesict -+ y(t) in M suchthat

7(o)= p, (0) = X. (4)

t A function on a closed interval I is called differentiable on I if it is extendable
to a differentiable function on some open interval containing I.
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Proof. Let : q -+ (x(q), ..., xm(q)) be a system of coordinates on
a neighborhood U of p such that p(U) is a cube {(xl, ..., Xm): I xi <I c}
and (p) = O.Then X can be written X = Xi (a/axt)p where o5 E R.
We consider the system of differential equations

dx
d=; (1X < i < km), (5)

~dtX rsk(x,.... ,x) zfz~ (I ~ k6 m, (5')

with the initial conditions

(Xl .... ,m,.... ZM)e-O = (0 ... O all ... , a").

Let c, K satisfyO < c1 < c, 0 < K < . In the interval I xi I < cl,
I zi < K (I i m), the right-hand sides of the foregoing equations
satisfy a Lipschitz condition.

From the existence and uniqueness theorem (see, e.g., Miller and
Murray, p. 42) for a system of ordinary differential equations we
conclude:

There exists 'a constant b > 0 and differentiable functions x(t),
zi(t) (1 i < m) in the interval I t I b such that

(i) dx(t) = z(t) (1 i m), t I < bl,dt

dzdt I r,,k(,(t), ..., x(t)) a(t ) (t) (1 k m),dt jid-

ItI <b,;

(iii) ] x,(t) < , zi(t) I < K (I i m), It < bl;

(iv) x(t), zi(t) (1 i < m) is the only set of functions satisfying
the conditions (i), (ii), and (iii).

This shows that there exists a geodesic t -- y(t) in M satisfying (4)
and that two such geodesics coincide in some interval around t = 0.
Moreover, we can conclude from (iv) that if two geodesics t -- yl(t)
(t E II), t - y2(t) (t EI2) coincide in some open interval, then they
coincide for all t E l n I2. Proposition 5.3 now follows immediately.

Definition. The geodesic with the, properties in Prop. 5.3 will be
denoted Yx. If X = 0, we put yx(t) = p for all t E R.

KSAiller and F.J.Murray, ExistenceTheorems for Ordinary
Differential Equations, New York Univ. Press, 1954
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§ 6. The Exponential Mapping

Suppose again M is a C * manifold with an affine connection. Let
p E M. We use the notation from the proof of Prop. 5.3. We shall now
study the solutions of (5) and (5') and their dependence on the initial
values. From the existence and uniqueness theorem (see, e.g., Miller
and Murray ' p. 64) for the system (5), (5'), we can conclude:

There exists a constant b (O < b < c) and differentiable functions
pi0(t' 1, *--s , C1,,, m) for t I 2b, I si b, I ~j I b(l i,j m)
such that:

(i) For each fixed set (l, .. , , ,..., 5,) the functions

xi(t) = ,,(t, el.... , C... I C.)

z,(t)=[ -](t ,, ..., eml CIO.... C), I < i m,M, [ 2b,

satisfy (5) and (5') and I xi(t) I < c, Iz(t) I < K.

(ii) ((t), ... X(t), Zi(t), ..., Zm(t))t0 = (1, '", Cm, CI ...., CM).

(iii) The functions (piare uniquely determined by the above properties.

Theorem 6.1. Let M be a manifold with an affine connection. Let p
be any point in M. Then there exists an open neighborhood N o of 0 in M,
and an open neighborhoodNp of p in M such that the mapping X -- Vx(l)
is a diffeomorphism of N o onto N,.

Proof. Using the notation above, we put

(t, C,, C...ta) = ~o.(t, ..° , .....C.g)

for I i 6 m, I t I < 2b, 1 <i1 b. Then

I,(o, C1...ns) = ,s

[ t ] (t s;,... rm) = si

Since yX(st) = ,x(t), the uniqueness (iii) implies

(I)oi,(sr,5C,, ... C.= 0#t S,, ·· S.))



The map X -- yx(b) has coordinate expression

· : (b ,, ,.(v-m), . lm (b¢, ¢-vm))

and we calculate its J.acobianat (0, . . ., 0).

: lim q)i(b,O,..., hb,...,O) - bi(b,O.... ,0)
Oaj] (o,...,o.. .

Using (1) and the relation 0 = ·'i(b, 0,..., 0) = '#i(, ... , b,...,O0) this limit
is

lim ib (hb, 0., b,... O) - bi(,., b,... O)
h.0o hb

at ) (O,...,b,...O) bij .

Thus the Jacobian at (0,.. 0) equals bm. Since yx(b) = YbX(1)the theorem
follows.

Definition. The mapping X - yx(l) described in Theorem 6.1 is
called the Exponential mapping at p and will be denoted by Exp (or
Exp,).

Definition. Let M be a manifold with an affine connection and p
a point in M. An open neighborhood N o of the origin in Mp is said to
be normal if: (1) the mapping Exp is a diffeomorphism of No onto an
open neighborhood N of p in M; (2) if X E N, and 0 t 1, then
tX e No.

The last condition means that N is "star-shaped." A neighborhood
Np of p in M is called a normal neighborhood of p if Np = Exp N o
where N o is a normal neighborhood of 0 in M. Assuming this to be
the case, and letting X, ..., X denote some basis of M, the inverse
mappingt

Exp, (alX 1 + ... + amXm) - (a,, ..., am)

of N, into R is called a system of normal coordinates at p.

§ 7. Covariant Differentiation

In § 5, parallelism was defined by means of the covariant differentia-
tion Vx. Theorem 7.1 below shows that it is also possible to go the
other way and describe the covariant derivative by means of parallel
translation. This makes it possible to define the covariant derivative of
other objects.
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Definition. Let X be a vector field on a manifold M. A curve s -)- p(s)
(s E I) is called an integral curve of X if

O(s) = Xc,), s el. (1)

Assuming 0 e I, let p = (0) and let {x1, ..., x,,} be a system of
coordinates valid in a neighborhood U of p. There exist functions

X i e CO(U) such that X = Xi alaxi on U. For simplicity let x(s)
= x((p(s)) and write Xi instead of (Xi)* (§2, No. 1). Then (1) is
equivalent to

ds( = XI(X(s) ..., Xm(S)) (I < i < m). (2)

Therefore if X, - 0 there exists an integral curve of X through p.

Theorem 7.1. Let M be a manifold with an affine connection. Let
p M and let X, Y be two vector fields on M. Assume X, j O. Let
s -- p(s)be an integral curve of X through p = (0) and Tr theparallel
translation from p to qp(t)with respect to the curve p. Then

1
(Vx(Y)), = lim (r;'Y, Y.)-v Y).

Proof. We shall use the notation introduced above. Consider a fixed
s > 0 and the family ZVM (O t < s) which is parallel with respect
to the curve 4psuch that Z,(0ol _ 7 Y(8)., We can write

and have the relations

Zk(t)+ r ,((t)Z(t) = (O< t < s)

Z(s) = yk() (1 < k < m).

By the mean value theorem

Zk(s) = Zk(O) + SZk(t*)

for a suitable number t* between 0 and s. Hence the kth component
of (l/s) (,1 Y(s, - Yp)is

(Zk() - Y(0O)) = {Zk(s) - sZ*(t*) - yk(O)}
5 $

= X r,k(,(t*)) .*(t*)ZI(t*) + (yk(s) - Yk(O)).

As s -- 0 this expression has the limit

ds + r1k ddf yj.

Let this last expression be denoted by Ak. It was shown earlier that

Thisproves Athetheorem

This proves the theorem.

A3


