
55 

1.25. The Quantum Group Uq (sl2). Let us consider the Lie algebra 
sl2. Recall that there is a basis h, e, f ∈ sl2 such that [h, e] = 2e, [h, f] = 
−2f, [e, f] = h. This motivates the following definition. 

Definition 1.25.1. Let q ∈ k, q =� ±1. The quantum group U (sl2) is q

generated by elements E, F and an invertible element K with defining 
relations 

KEK−1 = q 2E, KFK−1 = q−2F, [E, F] = 
K − K−1 

. 
q − q−1 

Theorem 1.25.2. There exists a unique Hopf algebra structure on 
Uq (sl2), given by 

• Δ(K) = K ⊗ K (thus K is a grouplike element); 
• Δ(E) = E ⊗ K + 1 ⊗ E; 
• Δ(F) = F ⊗ 1 + K−1 ⊗ F (thus E, F are skew-primitive ele­
ments). 

Exercise 1.25.3. Prove Theorem 1.25.2. 

Remark 1.25.4. Heuristically, K = qh, and thus 

K − K−1 

lim = h. 
q 1→ q − q−1 

So in the limit q 1, the relations of Uq (sl2) degenerate into the →
relations of U(sl2), and thus Uq (sl2) should be viewed as a Hopf algebra 
deformation of the enveloping algebra U(sl2). In fact, one can make 
this heuristic idea into a precise statement, see e.g. [K]. 

If q is a root of unity, one can also define a finite dimensional version 
of Uq (sl2). Namely, assume that the order of q is an odd number �. Let 
uq (sl2) be the quotient of Uq (sl2) by the additional relations 

E� = F� = K� − 1 = 0. 

Then it is easy to show that uq (sl2) is a Hopf algebra (with the co­
product inherited from Uq (sl2)). This Hopf algebra is called the small 
quantum group attached to sl2. 

1.26. The quantum group Uq (g). The example of the previous sub­
section can be generalized to the case of any simple Lie algebra. Namely, 
let g be a simple Lie algebra of rank r, and let A = (aij ) be its Cartan 
matrix. Recall that there exist unique relatively prime positive integers 
di, i = 1, . . . r such that diaij = dj aji. Let q ∈ k, q =� ±1. 
Definition 1.26.1. • The q-analog of n is 

nq − q−n 

[n]q = . 
q − q−1 



� 
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•	The q-analog of the factorial is 
n

[n]q ! = 
� 

[l]q =
(q − q−1) · · · (qn − q−n) 

. 
(q − q−1)n 

l=1 

Definition 1.26.2. The quantum group Uq(g) is generated by elements 
Ei, Fi and invertible elements Ki, with defining relations 

KiKj = Kj Ki, KiEj Ki
−1 = q aij Ej , KiFj Ki

−1 = q−aij Fj , 

Kdi − K−di 

[Ei, Fj ] = δij
i i , and the q-Serre relations: 
qdi − q−di 

1−aij

(1.26.1) 
� 

[l]q ![1

(

−
−
a

1)

ij

l 

− l]q ! 
Ei 
1−aij −lEj Ei

l = 0, i =� j 
l=0 i i 

and 

(1.26.2) 
1−aij

[l]q ![1

(

−
−
a

1)

ij

l 

− l]q ! 
Fi 
1−aij −lFj F

l
i = 0, i =� j. 

l=0 i i 

More generally, the same definition can be made for any symmetriz­
able Kac-Moody algebra g. 

Theorem 1.26.3. (see e.g. [CP]) There exists a unique Hopf algebra 
structure on Uq (g), given by 

•	Δ(Ki) = Ki ⊗ Ki; 
•	Δ(Ei) = Ei ⊗ Ki + 1 ⊗ Ei;

Δ(Fi) = Fi ⊗ 1 + Ki

−1 ⊗ Fi.
• 

Remark 1.26.4. Similarly to the case of sl2, in the limit q 1, these →
relations degenerate into the relations for U(g), so Uq(g) should be 
viewed as a Hopf algebra deformation of the enveloping algebra U(g). 

1.27. Categorical meaning of skew-primitive elements. We have 
seen that many interesting Hopf algebras contain nontrivial skew-primitive 
elements. In fact, the notion of a skew-primitive element has a cate­
gorical meaning. Namely, we have the following proposition. 

Proposition 1.27.1. Let g, h be grouplike elements of a coalgebra 
C, and Primh,g(C) be the space of skew-primitive elements of type 
h, g. Then the space Primh,g(H)/k(h − g) is naturally isomorphic to 
Ext1(g, h), where g, h are regarded as 1-dimensional right C-comodules. 

Proof. Let V be a 2-dimensional H-comodule, such that we have an 
exact sequence 

0 h V g 0.→ → → → 
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Then V has a basis v0, v1 such that


π(v0) = v0 ⊗ h, π(v1) = v1 ⊗ x + v0 ⊗ g.


The condition that this is a comodule yields that x is a skew-primitive 
element of type (h, g). So any extension defines a skew-primitive el­
ement and vice versa. Also, we can change the basis by v0 v0,→ 
v1 v1 + λv0, which modifies x by adding a trivial skew-primitive →
element. This implies the result. � 

Example 1.27.2. The category C of finite dimensional comodules over 
uq (sl2) is an example of a finite tensor category in which there are 
objects V such that V ∗∗ is not isomorphic to V . Namely, in this 
category, the functor V �→ V ∗∗ is defined by the squared antipode 
S2 , which is conjugation by K: S2(x) = KxK−1 . Now, we have 
Ext1(K, 1) = Y = �E, F K�, a 2-dimensional space. The set of iso­
morphism classes of nontrivial extensions of K by 1 is therefore the 
projective line PY . The operator of conjugation by K acts on Y with 
eigenvalues q2, q−2, hence nontrivially on PY . Thus for a generic ex­
tension V , the object V ∗∗ is not isomorphic to V . 
However, note that some power of the functor ∗∗ on C is isomorphic 

(in fact, monoidally) to the identity functor (namely, this power is the 
order of q). We will later show that this property holds in any finite 
tensor category. 
Note also that in the category C, V ∗∗ ∼= V if V is simple. This clearly 

has to be the case in any tensor category where all simple objects 
are invertible. We will also show (see Proposition 1.41.1 below) that 
this is the case in any semisimple tensor category. An example of a 
tensor category in which V ∗∗ is not always isomorphic to V even for 
simple V is the category of finite dimensional representations of the 
the Yangian H = Y (g) of a simple complex Lie algebra g, see [CP, 
12.1]. Namely, for any finite dimensional representation V of H and 
any complex number z one can define the shifted representation V (z) 
(such that V (0) = V ). Then V ∗∗ ∼ V (2h∨), where h∨ is the dual = 
Coxeter number of g, see [CP, p.384]. If V is a non-trivial irreducible 
finite dimensional representation then V (z) = V for z = 0. Thus, ∼

= V . Moreover, we see that the functor ∗∗ has infinite order even 
when restricted to simple objects of C. 

However, the representation category of the Yangian is infinite, and 
the answer to the following question is unknown to us. 

V ∗∗ ∼�

Question 1.27.3. Does there exist a finite tensor category, in which 
there is a simple object V such that V ∗∗ is not isomorphic to V ? (The 
answer is unknown to the authors). 
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Theorem 1.27.4. Assume that k has characteristic 0. Let C be a finite 
ring category over k with simple object 1. Then Ext1(1, 1) = 0. 

Proof. Assume the contrary, and suppose that V is a nontrivial exten­
sion of 1 by itself. Let P be the projective cover of 1. Then Hom(P, V ) 
is a 2-dimensional space, with a filtration induced by the filtration on 
V , and both quotients naturally isomorphic to E := Hom(P, 1). Let 
v0, v1 be a basis of Hom(P, V ) compatible to the filtration, i.e. v0 spans 
the 1-dimensional subspace defined by the filtration. Let A = End(P ) 
(this is a finite dimensional algebra). Let ε : A k be the character →
defined by the (right) action of A on E. Then the matrix of a ∈ A in 
the basis v0, v1 has the form 

ε(a) χ1(a)(1.27.1) [a]1 = 
0 ε(a) 

where χ1 ∈ A∗ is nonzero. Since a → [a]1 is a homomorphism, χ1 is a 
derivation: χ1(xy) = χ1(x)ε(y) + ε(x)χ1(y). 
Now consider the representation V ⊗ V . Using the exactness of 

tensor products, we see that the space Hom(P, V ⊗V ) is 4-dimensional, 
and has a 3-step filtration, with successive quotients E, E ⊕ E, E, and 
basis v00; v01, v10; v11, consistent with this filtration. The matrix of 
a ∈ End(P ) in this basis is ⎞⎛ 

(1.27.2) [a]2 = 
⎜⎜⎝


ε(a) χ1(a) χ1(a) χ2(a) 
0 ε(a) 0 χ1(a) 
0 0 ε(a) χ1(a) 
0 0 0 ε(a) 

⎟⎟⎠


Since a [a]2 is a homomorphism, we find → 

χ2(ab) = ε(a)χ2(b) + χ2(a)ε(b) + 2χ1(a)χ1(b). 

We can now proceed further (i.e. consider V ⊗V ⊗V etc.) and define for 
every positive n, a linear function χn ∈ A∗ which satisfies the equation 

n

χn(ab) = 
j

χj (a)χn−j (b), 
j=0 

n


where χ0 ε.� 
by φs(a) = χm(a)s

=


m≥0 
pairwise distinct homomorphisms. 

Thus for any s ∈ k, we can define φs : A k((t))→
mtm/m!, and we find that φs is a family of 

finite dimensional algebra. We are done.

This is a contradiction, as A is a 

Corollary 1.27.5. If a finite ring category C over a field of charac­
teristic zero has a unique simple object 1, then C is equivalent to the 
category Vec. 
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Corollary 1.27.6. A finite dimensional bialgebra H over a field of 
characteristic zero cannot contain nonzero primitive elements. 

Proof. Apply Theorem 1.27.4 to the category H − comod and use 
Proposition 1.27.1. � 

Remark 1.27.7. Here is a “linear algebra” proof of this corollary. Let 
x be a nonzero primitive element of H. Then we have a family of 
grouplike elements estx ∈ H((t)), s ∈ k, i.e., an infinite collection of 
characters of H∗((t)), which is impossible, as H is finite dimensional. 

Corollary 1.27.8. If H is a finite dimensional commutative Hopf 
algebra over an algebraically closed field k of characteristic 0, then 
H = Fun(G, k) for a unique finite group G. 

Proof. Let G = Spec(H) (a finite group scheme), and x ∈ T1G = 
(m/m2)∗ where m is the kernel of the counit. Then x is a linear function 
on m. Extend it to H by setting x(1) = 0. Then x s a derivation: 

x(fg) = x(f)g(1) + f(1)x(g). 

This implies that x is a primitive element in H∗. So by Corollary 
1.27.6, x = 0. this implies that G is reduced at the point 1. By using 
translations, we see that G is reduced at all other points. So G is a 
finite group, and we are done. � 

Remark 1.27.9. Theorem 1.27.4 and all its corollaries fail in char­
acteristic p > 0. A counterexample is provided by the Hopf algebra 
k[x]/(xp), where x is a primitive element. 

1.28. Pointed tensor categories and pointed Hopf algebras. 

Definition 1.28.1. A coalgebra C is pointed if its category of right co­
modules is pointed, i.e., if any simple right C-comodule is 1-dimensional. 

Remark 1.28.2. A finite dimensional coalgebra C is pointed if and 
only if the algebra C∗ is basic, i.e., the quotient C∗/Rad(C∗) of C∗ by 
its radical is commutative. In this case, simple C-comodules are points 
of Specm(H∗/Rad(H∗)), which justifies the term “pointed”. 

Definition 1.28.3. A tensor category C is pointed if every simple 
object of C is invertible. 

Thus, the category of right comodules over a Hopf algebra H is 
pointed if and only if H is pointed. 

Example 1.28.4. The category Vecω is a pointed category. If G isG 
a p-group and k has characteristic p, then Repk(G) is pointed. Any 
cocommutative Hopf algebra, the Taft and Nichols Hopf algebras, as 
well as the quantum groups Uq (g) are pointed Hopf algebras. 
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1.29. The coradical filtration. Let C be a locally finite abelian cat­
egory. 

Any object X ∈ C has a canonical filtration 

(1.29.1) 0 = X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn = X 

such that Xi+1/Xi is the socle (i.e., the maximal semisimple subobject) 
of X/Xi (in other words, Xi+1/Xi is the sum of all simple subobjects 
of X/Xi). This filtration is called the socle filtration, or the coradical 
filtration of X. It is easy to show by induction that the coradical 
filtration is a filtration of X of the smallest possible length, such that 
the successive quotients are semisimple. The length of the coradical 
filtration of X is called the Loewy length of X, and denoted Lw(X). 
Then we have a filtration of the category C by Loewy length of objects: 
C0 ⊂ C1 ⊂ ..., where Ci denotes the full subcategory of objects of C of 
Loewy length ≤ i + 1. Clearly, the Loewy length of any subquotient of 
an object X does not exceed the Loewy length of X, so the categories 
Ci are closed under taking subquotients. 

Definition 1.29.1. The filtration of C by Ci is called the coradical 
filtration of C. 
If C is endowed with an exact faithful functor F : C → Vec then we 

can define the coalgebra C = Coend(F ) and its subcoalgebras Ci = 
Coend(F |Ci ), and we have Ci ⊂ Ci+1 and C = ∪iCi (alternatively, we 
can say that Ci is spanned by matrix elements of C-comodules F (X), 
X ∈ Ci). Thus we have defined an increasing filtration by subcoalgebras 
of any coalgebra C. This filtration is called the coradical filtration, and 
the term C0 is called the coradical of C. 

The “linear algebra” definition of the coradical filtration is as fol­
lows. One says that a coalgebra is simple if it does not have nontrivial 
subcoalgebras, i.e. if it is finite dimensional, and its dual is a simple 
(i.e., matrix) algebra. Then C0 is the sum of all simple subcoalgebras 
of C. The coalgebras Cn+1 for n ≥ 1 are then defined inductively to 
be the spaces of those x ∈ C for which 

Δ(x) ∈ Cn ⊗ C + C ⊗ C0. 

Exercise 1.29.2. (i) Suppose that C is a finite dimensional coalgebra, 
and I is the Jacobson radical of C∗. Show that Cn

⊥ = In+1 . This 
justifies the term “coradical filtration”. 
(ii) Show that the coproduct respects the coradical filtration, i.e. 

Δ(Cn) ⊂ i
n 
=0 Ci ⊗ Cn−i. 

(iii) Show that C0 is the direct sum of simple subcoalgebras of C. 
In particular, grouplike elements of any coalgebra C are linearly inde­
pendent. 
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Hint. Simple subcoalgebras of C correspond to finite dimensional 
irrreducible representations of C∗. 

Denote by gr(C) the associated graded coalgebra of a coalgebra C 
with respect to the coradical filtration. Then gr(C) is a Z+-graded 
coalgebra. It is easy to see from Exercise 1.29.2(i) that the coradical 

¯filtration of gr(C) is induced by its grading. A graded coalgebra C 
with this property is said to be coradically graded, and a coalgebra C 

¯such that gr(C) = C is called a lifting of C. 

Definition 1.29.3. A coalgebra C is said to be cosemisimple if C is a 
direct sum of simple subcoalgebras. 

Clearly, C is cosemisimple if and only if C − comod is a semisimple 
category. 

Proposition 1.29.4. (i) A category C is semisimple if and only if 
C0 = C1. 

(ii) A coalgebra C is cosemisimple if and only if C0 = C1. 

Proof. (ii) is a special case of (i), and (i) is clear, since the condition 
means that Ext1(X, Y ) = 0 for any simple X, Y , which implies (by 
the long exact sequence of cohomology) that Ext1(X, Y ) = 0 for all 
X, Y ∈ C. � 

Corollary 1.29.5. (The Taft-Wilson theorem) If C is a pointed coal­
gebra, then C0 is spanned by (linearly independent) grouplike elements 
g, and C1/C0 = ⊕h,gPrimh,g(C)/k(h − g). In particular, any non­
cosemisimple pointed coalgebra contains nontrivial skew-primitive ele­
ments. 

Proof. The first statement is clear (the linear independence follows from 
Exercise 1.29.2(iii). Also, it is clear that any skew-primitive element 
is contained in C1. Now, if x ∈ C1, then x is a matrix element of a 
C-comodule of Loewy length ≤ 2, so it is a sum of matrix elements 2­
dimensional comodules, i.e. of grouplike and skew-primitive elements. 

It remains to show that the sum Primh,g(C)/k(h − g) ⊂ C/C0h,g 
is direct. For this, it suffices to consider the case when C is finite 
dimensional. Passing to the dual algebra A = C∗, we see that the 
statement is equivalent to the claim that I/I2 (where I is the radical 
of A) is isomorphic (in a natural way) to ⊕g,hExt1(g, h)∗. 

Let pg be a complete system of orthogonal idempotents in A/I2, such 
that h(pg) = δhg. Define a pairing I/I2 × Ext1(g, h) → k which sends 
a ⊗ α to the upper right entry of the 2-by-2 matrix by which a acts 
in the extension of g by h defined by α. It is easy to see that this 
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pairing descends to a pairing B : ph(I/I2)pg × Ext1(g, h) → k. If the 
extension α is nontrivial, the upper right entry cannot be zero, so B is 
right-nondegenerate. Similarly, if a belongs to the left kernel of B, then 
a acts by zero in any A-module of Loewy length 2, so a = 0. Thus, B 
is left-nondegenerate. This implies the required isomorphism. � 

Proposition 1.29.6. If C, D are coalgebras, and f : C D is a→
coalgebra homomorphism such that f |C1 is injective, then f is injective. 

Proof. One may assume that C and D are finite dimensional. Then 
the statement can be translated into the following statement about 
finite dimensional algebras: if A, B are finite dimensional algebras and 
f : A B is an algebra homomorphism which descends to a surjective →
homomorphism A B/Rad(B)2, then f is surjective. →

To prove this statement, let b ∈ B. Let I = Rad(B). We prove by 
induction in n that there exists a ∈ A such that b − f(a) ∈ In . The 
base of induction is clear, so we only need to do the step of induction. 
So assume b ∈ In . We may assume that b = b1...bn, bi ∈ I, and let 
ai ∈ A be such that f(ai) = bi modulo I2 . Let a = a1...an. Then 
b − f(a) ∈ In+1, as desired. � 

Corollary 1.29.7. If H is a Hopf algebra over a field of characteristic 
zero, then the natural map ξ : U(Prim(H)) H is injective. → 

Proof. By Proposition 1.29.6, it suffices to check the injectivity of ξ in 
degree 1 of the coradical filtration. Thus, it is enough to check that 
ξ is injective on primitive elements of U(Prim(H)). But by Exercise 
1.24.4, all of them lie in Prim(H), as desired. � 

1.30. Chevalley’s theorem. 

Theorem 1.30.1. (Chevalley) Let k be a field of characteristic zero. 
Then the tensor product of two simple finite dimensional representa­
tions of any group or Lie algebra over k is semisimple. 

Proof. Let V be a finite dimensional vector space over a field k (of any 
characteristic), and G ⊂ GL(V ) be a Zariski closed subgroup. 

Lemma 1.30.2. If V is a completely reducible representation of G, 
then G is reductive. 

Proof. Let V be a nonzero rational representation of an affine algebraic 
group G. Let U be the unipotent radical of G. Let V U ⊂ V be the space 
of invariants. Since U is unipotent, V U = 0. So if � V is irreducible, then 
V U = V , i.e., U acts trivially. Thus, U acts trivially on any completely 
reducible representation of G. So if V is completely reducible and 
G ⊂ GL(V ), then G is reductive. � 

http:a1...an
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Now let G be any group, and V, W be two finite dimensional irre­
ducible representations of G. Let GV , GW be the Zariski closures of 
the images of G in GL(V ) and GL(W ), respectively. Then by Lemma 
1.30.2 GV , GW are reductive. Let GVW be the Zariski closure of the 
image of G in GV × GW . Let U be the unipotent radical of GVW . Let 
pV : GVW GV , pW : GVW GW be the projections. Since pV is→ →
surjective, pV (U) is a normal unipotent subgroup of GV , so pV (U) = 1. 
Similarly, pW (U) = 1. So U = 1, and GVW is reductive. 

Let G�
VW be the closure of the image of G in GL(V ⊗ W ). Then 

G�
VW is a quotient of GVW , so it is also reductive. Since chark = 0, 

this implies that the representation V ⊗ W is completely reducible as 
a representation of G�

VW , hence of G. 
This proves Chevalley’s theorem for groups. The proof for Lie alge­

bras is similar. � 

1.31. Chevalley property. 

Definition 1.31.1. A tensor category C is said to have Chevalley prop­
erty if the category C0 of semisimple objects of C is a tensor subcategory. 

Thus, Chevalley theorem says that the category of finite dimensional 
representations of any group or Lie algebra over a field of characteristic 
zero has Chevalley property. 

Proposition 1.31.2. A pointed tensor category has Chevalley prop­
erty. 

Proof. Obvious. � 

Proposition 1.31.3. In a tensor category with Chevalley property, 

(1.31.1) Lw(X ⊗ Y ) ≤ Lw(X) + Lw(Y ) − 1. 

Thus Ci ⊗ Cj ⊂ Ci+j . 

Proof. Let X(i), 0 ≤ i ≤ m, Y (j), 0 ≤ j ≤ n, be the successive 
quotients of the coradical filtrations of X, Y . Then Z := X ⊗ Y has 
a filtration with successive quotients Z(r) = ⊕i+j=rX(i) ⊗ Y (j), 0 ≤ 
r m + n. Because of the Chevalley property, these quotients are ≤
semisimple. This implies the statement. � 

Remark 1.31.4. It is clear that the converse to Proposition 1.31.3 
holds as well: equation (1.31.3) (for simple X and Y ) implies the 
Chevalley property. 

Corollary 1.31.5. In a pointed Hopf algebra H, the coradical filtration 
is a Hopf algebra filtration, i.e. HiHj ⊂ Hi+j and S(Hi) = Hi, so gr(H) 
is a Hopf algebra. 
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In this situation, the Hopf algebra H is said to be a lifting of the 
coradically graded Hopf algebra gr(H). 

Example 1.31.6. The Taft algebra and the Nichols algebras are corad­
ically graded. The associated graded Hopf algebra of Uq (g) is the Hopf 
algebra defined by the same relations as Uq (g), except that the commu­
tation relation between Ei and Fj is replaced with the condition that Ei 
and Fj commute (for all i, j). The same applies to the small quantum 
group uq (sl2). 

Exercise 1.31.7. Let k be a field of characteristic p, and G a finite 
group. Show that the category Repk(G) has Chevalley property if and 
only if G has a normal p-Sylow subgroup. 
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