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1.37. Quantum traces. Let C be a rigid monoidal category, V be an 
object in C, and a ∈ Hom(V, V ∗∗). Define the left quantum trace 

(1.37.1) TrL (a) := evV ∗ ◦ (a ⊗ IdV ∗ ) ◦ coevV ∈ End(1).V 

Similarly, if a ∈ Hom(V, ∗∗V ) then we can define the right quantum 
trace 

(1.37.2) TrR (a) := ev∗∗V ◦ (Id∗V ⊗ a) ◦ coev∗V ∈ End(1).V 

In a tensor category over k, TrL(a) and TrR(a) can be regarded as 
elements of k. 

When no confusion is possible, we will denote TrLV by TrV . 
The following proposition shows that usual linear algebra formulas 

hold for the quantum trace. 

Proposition 1.37.1. If a ∈ Hom(V, V ∗∗), b ∈ Hom(W, W ∗∗) then 
(1) TrV

L (a) = TrV
R 

∗ (a∗); 
(2) TrV

L 
⊕W (a ⊕ b) = TrL W (b) (in additive categories); V (a) + TrL 

(3) TrV
L 
⊗W (a ⊗ b) = TrL (a)TrL (b);V W 

(4) If c ∈ Hom(V, V ) then TrL (ac) = TrL (c∗∗a), TrR (ac) = TrR(∗∗ca).V V V V 

Similar equalities to (2),(3) also hold for right quantum traces. 

Exercise 1.37.2. Prove Proposition 1.37.1. 

If C is a multitensor category, it is useful to generalize Proposi­
tion 1.37.1(2) as follows. 

Proposition 1.37.3. If a Hom(V, V ∗∗) and W V such that ∈ ⊂ 
a(W ) ⊂ W ∗∗ then TrL = TrL 

V/W (a). That is, Tr is addi-V (a) W (a) + TrL 

tive on exact sequences. The same statement holds for right quantum 
traces. 

Exercise 1.37.4. Prove Proposition 1.37.3. 

1.38. Pivotal categories and dimensions. 

Definition 1.38.1. Let C be a rigid monoidal category. A pivotal 
structure on C is an isomorphism of monoidal functors a : Id 

∼
?∗∗.−→

That is, a pivotal structure is a collection of morphisms aX : X 
∼−→

X∗∗ natural in X and satisfying aX⊗Y = aX ⊗ aY for all objects X, Y 
in C. 

Definition 1.38.2. A rigid monoidal category C equipped with a piv­
otal structure is said to be pivotal. 

Exercise 1.38.3. (1) If a is a pivotal structure then aV ∗ = (aV )
∗−1 . 

Hence, aV ∗∗ = a∗∗ 
V . 
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(2) Let	 C = Rep(H), where H is a finite dimensional Hopf alge­
bra. Show that pivotal structures on C bijectively correspond 
to group-like elements of H such that gxg−1 = S2(x) for all 
x ∈ H. 

Let a be a pivotal structure on a rigid monoidal category C. 

Definition 1.38.4. The dimension of an object X with respect to a 
is dima(X) := Tr(aX ) ∈ End(1). 

Thus, in a tensor category over k, dimensions are elements of k. Also, 
it follows from Exercise 1.38.3 that dima(V ) = dima(V ∗∗). 

Proposition 1.38.5. If C is a tensor category, then the function X �→
dima(X) is a character of the Grothendieck ring Gr(C). 

Proof. Proposition 1.37.3 implies that dima is additive on exact se­
quences, which means that it gives rise to a well-defined linear map 
from Gr(C) to k. The fact that this map is a character follows from the 
obvious fact that dima(1) = 1 and Proposition 1.37.1(3). � 

Corollary 1.38.6. Dimensions of objects in a pivotal finite tensor cat­
egory are algebraic integers in k. 12 

Proof. This follows from the fact that a character of any ring that is 
finitely generated as a Z-module takes values in algebraic integers. � 

1.39. Spherical categories. 

Definition 1.39.1. A pivotal structure a on a tensor category C is 
spherical if dima(V ) = dima(V ∗) for any object V in C. A tensor 
category is spherical if it is equipped with a spherical structure. 

Since dima is additive on exact sequences, it suffices to require the 
property dima(V ) = dima(V ∗) only for simple objects V . 

Theorem 1.39.2. Let C be a spherical category and V be an object of 
Then for any x ∈ Hom(V, V ) one has TrL (aV x) = TrR (xa−1).C.	 V V V 

Proof. We first note that TrR (a−1) = dima(X
∗) for any object X by X	 X 

Proposition 1.37.1(1) and Exercise 1.38.3(1). Now let us prove the 
proposition in the special case when V is semisimple. Thus V = ⊕i Yi ⊗
Vi, where Vi are vector spaces and Yi are simple objects. Then x = 

12If k has positive characteristic, by an algebraic integer in k we mean an element 
of a finite subfield of k. 
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⊕i xi ⊗IdVi with xi ∈ Endk(Yi) and a = ⊕ IdYi ⊗aVi (by the functoriality 
of a). Hence 

TrLV (ax) = Tr(xi) dim(Vi), 

TrRV (xa
−1) = Tr(xi) dim(Vi 

∗). 

This implies the result for a semisimple V . 
Consider now the general case. Then V has the coradical filtration 

(1.39.1) 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = V 

(such that Vi+1/Vi is a maximal semisimple subobject in V/Vi). This 
filtration is preserved by x and by a (i.e., a : Vi Vi 

∗∗). Since traces →
are additive on exact sequences by Proposition 1.37.3, this implies that 
the general case of the required statement follows from the semisimple 
case. � 

Exercise 1.39.3. (i) Let Aut⊗(IdC) be the group of isomorphism classes 
of monoidal automorphisms of a monoidal category C. Show that the 
set of isomorphism classes of pivotal structures on C is a torsor over 
Aut⊗(IdC), and the set of isomorphism classes of spherical structures 
on C is a torsor over the subgroup Aut⊗(IdC)2 in Aut⊗(IdC ) of elements 
which act by ±1 on simple objects. 

1.40. Semisimple multitensor categories. In this section we will 
more closely consider semisimple multitensor categories which have 
some important additional properties compared to the general case. 

1.41. Isomorphism between V ∗∗ and V . 

Proposition 1.41.1. Let C be a semisimple multitensor category and 
let V be an object in C. = V ∗. = V ∗∗.Then ∗V ∼ Hence, V ∼

Proof. We may assume that V is simple. 
We claim that the unique simple object X such that Hom(1, V ⊗X) =�

0 is V ∗. Indeed, Hom(1, V ⊗ X) ∼ Hom(∗X, V ) which is non-zero if = 
and only if ∗X ∼ = V ∗.= V , i.e., X ∼ Similarly, the unique simple object 
X such that Hom(V ⊗ X, 1) =� 0 is ∗V . But since C is semisimple, 
dimk Hom(1, V ⊗ X) = dimk Hom(V ⊗ X, 1), which implies the result. 

Remark 1.41.2. As noted in Remark 1.27.2, the result of Proposi­
tion 1.41.1 is false for non-semisimple categories. 

Remark 1.41.3. Proposition 1.41.1 gives rise to the following ques­
tion. 
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Question 1.41.4. Does any semisimple tensor category admit a piv­
otal structure? A spherical structure? 

This is the case for all known examples. The general answer is un­
known to us at the moment of writing (even for ground fields of char­
acteristic zero). 

Proposition 1.41.5. If C is a semisimple tensor category and a : V 
∼−→

V ∗∗ for a simple object V then Tr(a) = 0. 

Proof. Tr(a) is the composition morphism of the diagram 1 V ⊗→
V ∗ 1 where both morphisms are non-zero. If the composition mor­→
phism is zero then there is a non-zero morphism (V ⊗V ∗)/1 → 1 which 
means that the [V ⊗ V ∗ : 1] ≥ 2. Since C is semisimple, this implies 
that dimk Hom(1, V ⊗ V ∗) is at least 2. Hence, dimk Hom(V, V ) ≥ 2 
which contradicts the simplicity of V . � 

Remark 1.41.6. The above result is false for non-semisimple cate­
gories. For example, let C = Repk(GLp(Fp)), the representation cat­
egory of the group GLp(Fp) over a field k of characteristic p. Let 
V be the p dimensional vector representation of GLp(Fp) (which is 
clearly irreducible). Let a : V V ∗∗ be the identity map. Then→
Tr(a) = dimk(V ) = p = 0 in k. 

1.42. Grothendieck rings of semisimple tensor categories. 

Definition 1.42.1. (i) A Z+−basis of an algebra free as a module over 
Z is a basis B = {bi} such that bibj = k cij

k bk, cij
k ∈ Z+. 

(ii) A Z+−ring is an algebra over Z with unit equipped with a fixed 
Z+−basis. 

Definition 1.42.2. (1) A Z+−ring A with basis {bi}i∈I is called a 
based ring if the following conditions hold � 

[a] There exists a subset I0 ⊂ I such that 1 = i∈I0 
bi. 

[b] Let τ : A Z be the group homomorphism defined by → � 

(1.42.1) τ(bi) = 
1 if i ∈ I0 

0 if i �∈ I0 

There exists an involution i �→ i∗ of I such that induced map 
a = i∈I aibi �→ a∗ = i∈I aibi∗ , ai ∈ Z is an anti-involution 
of ring A and such that 

1 if i = j∗ 

(1.42.2) τ(bibj ) = 
0 if i = j∗. 

(2) A unital Z+-ring is a Z+-ring A such that 1 belongs to the basis. 
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(3) A multifusion ring is a based ring of finite rank. A fusion ring 
is a unital based ring of finite rank. 

Remark 1.42.3. (1) It follows easily from definition that i, j ∈
I0, i =� j implies that b2 

i = bi, bibj = 0, i∗ = i. 
(2) It is easy to see that for a given Z+−ring A, being a (unital) 

based ring is a property, not an additional structure. 
(3) Note that any Z+-ring is assumed to have a unit, and is not 

necessarily a unital Z+-ring. 

Proposition 1.42.4. If C is a semisimple multitensor category then 
Gr(C) is a based ring. If C is semisimple tensor category then Gr(C) is 
a unital based ring. If C is a (multi)fusion category, then Gr(C) is a 
(multi)fusion ring. 

Proof. The Z+-basis in Gr(C) consists of isomorphism classes of simple 
objects of C. The set I0 consists of the classes of simple subobjects of 
1. The involution ∗ is the duality map (by Proposition 1.41.1 it does 
not matter whether to use left or right duality). This implies the first 
two statements. The last statement is clear. � 

Example 1.42.5. Let C be the category of finite dimensional repre­
sentations of the Lie algebra sl2(C). Then the simple objects of this 
category are irreducible representations Vm of dimension m + 1 for 
m = 0, 1, 2, . . . ; V0 = 1. The Grothendieck ring of C is determined by 
the well-known Clebsch-Gordon rule 

i+j

(1.42.3) Vi ⊗ Vj = Vl. 
l=|i−j|,i+j−l∈2Z 

The duality map on this ring is the identity. The same is true if C = 
Rep(Uq (sl2)) when q is not a root of unity, see [K]. 

Let C be a semisimple multitensor category with simple objects 
{Xi}i∈I . Let I0 be the subset of I such that 1 = ⊕i∈I0 Xi. Let 
Hij
l := Hom(Xl, Xi ⊗ Xj ) (if Xp ∈ Cij with p ∈ I and i, j ∈ I0, we 

will identify spaces Hp and Hp with k using the left and right unit pi ip 

morphisms). � 
We have Xi ⊗ Xj = l Hij

l ⊗ Xl. Hence, 

(Xi1 = Hj ⊗ H i4⊗ Xi2 ) ⊗ Xi3 
∼

i1i2 ji3 
⊗ Xi4 

i4 j 

Xi1 ⊗ (Xi2 ) = Hi
i
1

4 
l ⊗ H l .⊗ Xi3 

∼
i2i3 
⊗ Xi4 

i4 l 
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Thus the associativity constraint reduces to a collection of linear iso­
morphisms 

(1.42.4) Φi4 : Hj ⊗ H i4 = H i4 .i1i2i3 i1i2 ji3 
∼

i1l ⊗ Hi
l 
2i3 

j l 

The matrix blocks of these isomorphisms, 

(1.42.5) (Φi4 )jl : H
j ⊗ H i4 Hi

i
1

4 
l ⊗ H l 

i1i2i3 i1i2 ji3 
→ i2i3 

are called 6j-symbols because they depend on six indices. 

Example 1.42.6. Let C be the category of finite dimensional repre­
sentations of the Lie algebra sl2(C). Then the spaces Hij

l are 0- or 
1-dimensional. In fact, it is obvious from the Clebsch-Gordan rule that 
the map (Φi

i
4

1i2i3 
)jl is a map between nonzero (i.e., 1-dimensional) spaces 

if and only if the numbers i1, i2, i3, i4, j, l are edge lengths of a tetrahe­
dron with faces corresponding to the four H-spaces (i1i2j, ji3i4,i1li4, 
i2i3l, such that the perimeter of every face is even (this tetrahedron 
is allowed to be in the Euclidean 3-space, Euclidean plane, or hyper­
bolic 3-space, so the only conditions are the triangle inequalities on 
the faces). In this case, the 6j-symbol can be regarded as a number, 
provided we choose a basis vector in every non-zero Hij

l . Under an ap­
propriate normalization of basis vectors these numbers are the Racah 
coefficients or classical 6j-symbols. More generally, if C = Uq (sl2), 
where q is not a root of unity, then the numbers (Φi

i
4

1i2i3 
)jl are called 

q-Racah coefficients or quantum 6j-symbols [CFS]. 

Further, the evaluation and coevaluation maps define elements 

(1.42.6) αij ∈ (Hii
j 
∗ )∗ and βij ∈ Hii

j 
∗ , j ∈ I0. 

Now the axioms of a rigid monoidal category, i.e., the triangle and 
pentagon identities and the rigidity axioms translate into non-linear al­
gebraic equations with respect to the 6j-symbols (Φi

i
4

1i2i3 
)jl and vectors 

αij , βij . 

Exercise 1.42.7. Write down explicitly the relation on 6j symbols 
coming from the pentagon identity. If C = Rep(sl2(C)) this relation is 
called the Elliott-Biedenharn relation ([CFS]). 

Proposition 1.42.4 gives rise to the following general problem of cat­
egorification of based rings which is one of the main problems in the 
structure theory of tensor categories. 

Problem 1.42.8. Given a based ring R, describe (up to equivalence) 
all multitensor categories over k whose Grothendieck ring is isomorphic 
to R. 



82 

It is clear from the above explanations that this problem is equiva­
lent to finding all solutions of the system of algebraic equations coming 
from the axioms of the rigid monoidal category modulo the group of au­
tomorphisms of the spaces Hij

k (“gauge transformations”). In general, 
this problem is very difficult because the system of equations involved 
is nonlinear, contains many unknowns and is usually over-determined. 
In particular, it is not clear a priori whether for a given R this sys­
tem has at least one solution, and if it does, whether the set of these 
solutions is finite. It is therefore amazing that the theory of tensor 
categories allows one to solve the categorification problem in a number 
of nontrivial cases. This will be done in later parts of these notes; now 
we will only mention the simplest result in this direction, which follows 
from the results of Subsection 1.7. 

Let Z[G] be the group ring of a group G, with basis {g ∈ G} and 
involution g∗ = g−1 . Clearly, Z[G] is a unital based ring. 

Proposition 1.42.9. The categorifications of Z[G] are Vecω 
G, and they 

are parametrized by H3(G, k×)/Out(G). 

Remark 1.42.10. It is tempting to say that any Z+-ring R has a 
canonical categorification over any field k: one can take the skeletal 
semisimple category C = CR over k whose Grothendieck group is R, 
define the tensor product functor on C according to the multiplication 
in R, and then “define” the associativity isomorphism to be the identity 
(which appears to make sense because the category is skeletal, and 
therefore by the associativity of R one has (X ⊗Y )⊗Z = X ⊗(Y ⊗Z)). 
However, a more careful consideration shows that this approach does 
not actually work. Namely, such “associativity isomorphism” fails to 
be functorial with respect to morphisms; in other words, if g : Y Y is→
a morphism, then (IdX ⊗g)⊗IdZ is not always equal to IdX ⊗(g ⊗IdZ ). 

To demonstrate this explicitly, denote the simple objects of the cat­
egory C by Xi, i = 1, ..., r, and let Xi ⊗ Xj = ⊕kNij

l Xl. Take X = Xi, 
Y = mXj , and Z = Xl; then g is an m by m matrix over k. The alge­
bra End((X ⊗ Y ) ⊗ Z) = End(X ⊗ (Y ⊗ Z)) is equal to ⊕sMatmns (k), 
where � � 

ns = Nij
p Npl

s = Niq
s Njl

q , 
p q 

and in this algebra we have 

(IdX ⊗ g) ⊗ IdZ = ⊕pr =1IdN p ⊗ g ⊗ IdNs ,
ij pl 

IdX ⊗ (g ⊗ IdZ ) = ⊕r IdNs ,q=1 iq 
⊗ g ⊗ IdN q 

jl 

We see that these two matrices are, in general, different, which shows 
that the identity “associativity isomorphism” is not functorial. 
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1.43. Semisimplicity of multifusion rings. 

Definition 1.43.1. A ∗-algebra is an associative algebra B over C 
with an antilinear anti-involution ∗ : B B and a linear functional →
τ : B C such that τ(ab) = τ(ba), and the Hermitian form τ(ab∗) is →
positive definite. 

Obviously, any semisimple algebra B = ⊕r Mati(C) is a ∗-algebra.i=1

Namely, if pi > 0 are any positive numbers for i = 1, ..., r then one 
can define ∗ to be the usual hermitian adjoint of matrices, and set 
τ(a1, ..., ar) = i piTr(ai). Conversely, it is easy to see that any 8­
algebra structure on a finite dimensional semisimple algebra has this 
form up to an isomorphism (and the numbers pi are uniquely deter­
mined, as traces of central idempotents of B). 

It turns out that this is the most general example of a finite dimen­
sional ∗-algebra. Namely, we have 

Proposition 1.43.2. Any finite dimensional ∗-algebra B is semisim­
ple. 

Proof. If M ⊂ B is a subbimodule, and M⊥ is the orthogonal comple­
ment of M under the form τ(ab∗), then M⊥ is a subbimodule of B, 
and M ∩ M⊥ = 0 because of the positivity of the form. So we have 
B = M ⊕ M⊥. Thus B is a semisimple B-bimodule, which implies the 
proposition. � 

Corollary 1.43.3. If e is a nonzero idempotent in a finite dimensional 
∗-algebra B then τ(e) > 0. 

The following proposition is obvious. 

Proposition 1.43.4. Let A be a based ring. Then the algebra A ⊗Z C 
is canonically a ∗-algebra. 

Corollary 1.43.5. Let A be a multifusion ring. Then the algebra 
A ⊗Z C is semsimiple. 

Corollary 1.43.6. Let X be a basis element of a fusion ring A. Then 
there exists n > 0 such that τ(Xn) > 0. 

Proof. Since τ(Xn(X∗)n) > 0 for all n > 0, X is not nilpotent. Let 

r

q(x) := (x − ai)
mi 

i=0 
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be the minimal polynomial of X (ai are distinct). Assume that a0 = 0 
(we can do so since X is not nilpotent). Let 

r

g(t) = (x − ai)
mi xh(x), 

i=1 

where h is a polynomial chosen in such a way that g(a0) = 1, g(j)(a0) = 
0 for j = 1, ..., m0 − 1 (this is clearly possible). Then g(X) is an 
idempotent, so by Corollary 1.43.3, τ(g(X)) > 0. Hence there exists 
n > 0 such that τ(Xn) = 0, as desired. � � 

1.44. The Frobenius-Perron theorem. The following classical the­
orem from linear algebra [Ga, XIII.2] plays a crucial role in the theory 
of tensor categories. 

Theorem 1.44.1. Let B be a square matrix with nonnegative entries. 

(1)	B has a nonnegative real eigenvalue. The largest nonnegative 
real eigenvalue λ(B) of B dominates the absolute values of all 
other eigenvalues µ of B: |µ| ≤ λ(B) (in other words, the spec­
tral radius of B is an eigenvalue). Moreover, there is an eigen­
vector of B with nonnegative entries and eigenvalue λ(B). 

(2)	 If B has strictly positive entries then λ(B) is a simple positive 
eigenvalue, and the corresponding eigenvector can be normalized 
to have strictly positive entries. Moreover, |µ| < λ(B) for any 
other eigenvalue µ of B. 

(3)	 If B has an eigenvector v with strictly positive entries, then the 
corresponding eigenvalue is λ(B). 

Proof. Let B be an n by n matrix with nonnegative entries. Let us first 
show that B has a nonnegative eigenvalue. If B has an eigenvector v 
with nonnegative entries and eigenvalue 0, then there is nothing to 
prove. Otherwise, let Σ be the set of column vectors x ∈ Rn with 
with nonnegative entries xi and s(x) := xi equal to 1 (this is a 
simplex). Define a continuous map fB : Σ → Σ by fB(x) = 

s(
B
B
x
x) . By 

the Brouwer fixed point theorem, this map has a fixed point f . Then 
Bf = λf , where λ > 0. Thus the eigenvalue λ(B) is well defined, and 
B always has a nonnegative eigenvector f with eigenvalue λ = λ(B). 

Now assume that B has strictly positive entries. Then f must have 
strictly positive entries fi. If d is another real eigenvector of B with 
eigenvalue λ, let z be the smallest of the numbers of di/fi. Then the 
vector v = d − zf satisfies Bv = λv, has nonnegative entries and has 
one entry equal to zero. Hence v = 0 and λ is a simple eigenvalue. 
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Now let y = (y1, ..., yn) ∈ Cn be a row vector. Define the norm 
|y| := |yj|fj . Then 

|yB| = | yibij |fj ≤ |yi|bij fj = λ|y|, 
j i i,j 

and the equality holds if and only if all the complex numbers yibij 
which are nonzero have the same argument. So if yB = µy, then 
|µ| ≤ λ, and if |µ| = λ then all yi which are nonzero have the same 
argument, so we can renormalize y to have nonnegative entries. This 
implies that µ = λ. Thus, part (2) is proved. 

Now consider the general case (B has nonnegative entries). Assume 
that B has a row eigenevector y with strictly positive entries and eigen­
value µ. Then 

µyf = yBf = λyf , 

which implies µ = λ, as yf = 0. This implies (3). 
It remains to finish the proof of part (1) (i.e. to prove that λ(B) 

dominates all other eigenvalues of B). Let ΓB be the oriented graph 
whose vertices are labeled by 1, ..., n, and there is an edge from j to 
i if and only if bij > 0. Let us say that i is accessible from j if there 
is a path in ΓB leading from j to i. Let us call B irreducible if any 
vertex is accessible from any other. By conjugating B by a permutation 
matrix if necessary, we can get to a situation when i ≥ j implies that 
i is accessible from j. This means that B is a block upper triangular 
matrix, whose diagonal blocks are irreducible. So it suffices to prove 
the statement in question for irreducible B. 

But if B is irreducible, then for some N the matrix 1 + B + + BN · · · 
has strictly positive entries. So the nonnegative eigenvector f of B 
with eigenvalue λ(B) is actually strictly positive, and one can run the 
argument in the proof of part (2) with a norm bound (all that is used 
in this argument is the positivity of f). Hence, the result follows from 
(2). � 
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