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1.45. Tensor categories with finitely many simple objects. Frobenius-
Perron dimensions. Let A be a Z,-ring with Z-basis I.

Definition 1.45.1. We will say that A is transitive if for any X, Z € [
there exist Y7, Yy € I such that XY; and Y5 X involve Z with a nonzero
coefficient.

Proposition 1.45.2. IfC is a ring category with right duals then Gr(C)
s a transitive unital Z. -ring.

Proof. Recall from Theorem 1.15.8 that the unit object 1 in C is simple.
So Gr(C) is unital. This implies that for any simple objects X, Z of C,
the object X ® X* ® Z contains Z as a composition factor (as X @ X*
contains 1 as a composition factor), so one can find a simple object
Y] occurring in X* ® Z such that Z occurs in X ® Y;. Similarly, the
object Z® X*® X contains Z as a composition factor, so one can find
a simple object Y5 occurring in Z ® X* such that Z occurs in Yo ® X.
Thus Gr(C) is transitive. O

Let A be a transitive unital Z-ring of finite rank. Define the group
homomorphism FPdim : A — C as follows. For X € I, let FPdim(X) be
the maximal nonnegative eigenvalue of the matrix of left multiplication
by X. It exists by the Frobenius-Perron theorem, since this matrix has
nonnegative entries. Let us extend FPdim from the basis I to A by
additivity.

Definition 1.45.3. The function FPdim is called the Frobenius-Perron
dimension.

In particular, if C is a ring category with right duals and finitely many
simple objects, then we can talk about Frobenius-Perron dimensions of
objects of C.

Proposition 1.45.4. Let X € 1.

(1) The number o = FPdim(X) is an algebraic integer, and for any
algebraic conjugate o/ of o we have a > |/|.
(2) FPdim(X) > 1.

Proof. (1) Note that « is an eigenvalue of the integer matrix Ny of left
multiplication by X, hence « is an algebraic integer. The number o' is
a root of the characteristic polynomial of Ny, so it is also an eigenvalue
of Nx. Thus by the Frobenius-Perron theorem o > |o/|.

(2) Let 7 be the number of algebraic conjugates of «. Then o" >
N(a) where N(«) is the norm of a. This implies the statement since
N(a) > 1. O
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Proposition 1.45.5. (1) The function FPdim : A — C is a ring
homomorphism.

(2) There ezists a unique, up to scaling, element R € Ac := A®7zC
such that X R = FPdim(X)R, for all X € A. After an appro-
priate normalization this element has positive coefficients, and
satisfies FPdim(R) > 0 and RY = FPdim(Y)R, Y € A.

(3) FPdim is a unique nonzero character of A which takes non-
negative values on I.

(4) If X € A has nonnegative coefficients with respect to the basis of
A, then FPdim(X) is the largest nonnegative eigenvalue A\(Nx)
of the matrix Nx of multiplication by X.

Proof. Consider the matrix M of right multiplication by » ., X in A
in the basis I. By transitivity, this matrix has strictly positive entries,
so by the Frobenius-Perron theorem, part (2), it has a unique, up to
scaling, eigenvector R € Ac with eigenvalue A(M) (the maximal posi-
tive eigenvalue of M). Furthermore, this eigenvector can be normalized
to have strictly positive entries.

Since R is unique, it satisfies the equation X R = d(X)R for some
function d : A — C. Indeed, XR is also an eigenvector of M with
eigenvalue \(M), so it must be proportional to R. Furthermore, it
is clear that d is a character of A. Since R has positive entries,
d(X) = FPdim(X) for X € I. This implies (1). We also see that
FPdim(X) > 0 for X € I (as R has strictly positive coefficients), and
hence FPdim(R) > 0.

Now, by transitivity, R is the unique, up to scaling, solution of the
system of linear equations X R = FPdim(X)R (as the matrix N of left
multiplication by >, ;X also has positive entries). Hence, RY =
d'(Y')R for some character d’. Applying FPdim to both sides and using
that FPdim(R) > 0, we find d’ = FPdim, proving (2).

If x is another character of A taking positive values on I, then the
vector with entries x(Y), Y € I is an eigenvector of the matrix N of the
left multiplication by the element ), X. Because of transitivity of
A the matrix N has positive entries. By the Frobenius-Perron theorem
there exists a positive number A such that x(Y) = AFPdim(Y"). Since
X is a character, A\ = 1, which completes the proof.

Finally, part (4) follows from part (2) and the Frobenius-Perron the-
orem (part (3)). O

Example 1.45.6. Let C be the category of finite dimensional repre-
sentations of a quasi-Hopf algebra H, and A be its Grothendieck ring.
Then by Proposition 1.10.9, for any X,Y € C

dimHom(X ® H,Y) = dimHom(H,*X ® Y') = dim(X) dim(Y"),
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where H is the regular representation of H. Thus X ® H = dim(X)H,
so FPdim(X) = dim(X) for all X, and R = H up to scaling.

This example motivates the following definition.

Definition 1.45.7. The element R will be called a regular element of
A.

Proposition 1.45.8. Let A be as above and * : I — I be a bijection
which extends to an anti-automorphism of A. Then FPdim is invariant
under *.

Proof. Let X € I. Then the matrix of right multiplication by X* is
the transpose of the matrix of left multiplication by X modified by

the permutation *. Thus the required statement follows from Proposi-
tion 1.45.5(2). O

Corollary 1.45.9. Let C be a ring category with right duals and finitely
many simple objects, and let X be an object in C. If FPdim(X) = 1
then X is invertible.

Proof. By Exercise 1.15.10(d) it is sufficient to show that X ® X* =
1. This follows from the facts that 1 is contained in X ® X* and
FPdim(X ® X*) = FPdim(X) FPdim(X*) = 1. 0

Proposition 1.45.10. Let f : Ay — Ay be a unital homomorphism of
transitive unital Z -rings of finite rank, whose matriz in their Z, -bases
has non-negative entries. Then
(1) f preserves Frobenius-Perron dimensions.
(2) Let I, 15 be the Z,-bases of Ay, As, and suppose that for any
Y in Iy there exists X € Iy such that the coefficient of Y in
f(X) is non-zero. If R is a regular element of Ay then f(R) is
a reqular element of As.

Proof. (1) The function X +— FPdim(f(X)) is a nonzero character of
Ay with nonnegative values on the basis. By Proposition 1.45.5(3),
FPdim(f(X)) = FPdim(X) for all X in I. (2) By part (1) we have

(1.45.1) FO - X)f(Ry) = FPAim(f( > X)) f(Ri).
Xeh Xeh
But f(}_yes, X) has strictly positive coefficients in I, hence f(R;) =
B Ry for some 5 > 0. Applying FPdim to both sides, we get the result.
]

Corollary 1.45.11. Let C and D be tensor categories with finitely
many classes of simple objects. If F': C — D be a quasi-tensor functor,

then FPdimp(F(X)) = FPdim¢(X) for any X in C.
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Example 1.45.12. (Tambara-Yamagami fusion rings) Let G be a fi-
nite group, and 7Yy be an extension of the unital based ring Z[G]:

TY; == Z|G] & ZX,

where X is a new basis vector with ¢X = Xg = X, X? = deG g. This
is a fusion ring, with X* = X. It is easy to see that FPdim(g) = 1,
FPdim(X) = |G|"/2. We will see later that these rings are categorifiable
if and only if G is abelian.

Example 1.45.13. (Verlinde rings for sly). Let & be a nonnegative
integer. Define a unital Z-ring Very = Ver(sly) with basis V;, i =
0,...k (Vo = 1), with duality given by V* = V; and multiplication
given by the truncated Clebsch-Gordan rule:

min(i+j,2k—(i+7))
(1.45.2) VoV, = & V.

I=|i—j]|,i+j—1€2Z

It other words, one computes the product by the usual Clebsch-Gordan
rule, and then deletes the terms that are not defined (V; with ¢ > k) and
also their mirror images with respect to point £+ 1. We will show later
that this ring admits categorifications coming from quantum groups at
roots of unity.

Note that Very = Z, Very = Z[Zs], Very = TY7,. The latter is
called the Ising fusion ring, as it arises in the Ising model of statistical
mechanics.

A

Exercise 1.45.14. Show that FPdim(V}) = [j+1], : o> Where

Note that the Verlinde ring has a subring Ver spanned by V; with
even j. If k = 3, this ring has basis 1, X = V5 with X? = X +1, X* =
X. This ring is called the Yang-Lee fusion ring. In the Yang-Lee ring,
FPdim(X) is the golden ratio %5

Note that one can define the generalized Yang-Lee fusion rings YL,
n € Z,, with basis 1, X, multiplication X? = 1+nX and duality X* =
X. It is, however, shown in [O2] that these rings are not categorifiable
when n > 1.

Proposition 1.45.15. (Kronecker) Let B be a matriz with nonnegative
integer entries, such that A\(BBT) = X\(B)?. If \(B) < 2 then \(B) =
2cos(m/n) for some integer n > 2.

Proof. Let \(B) = q+ q~'. Then ¢ is an algebraic integer, and |q| =
1. Moreover, all conjugates of A(B)? are nonnegative (since they are
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eigenvalues of the matrix BBT, which is symmetric and nonnegative
definite), so all conjugates of A(B) are real. Thus, if ¢, is a conjugate of
q then g, +¢; ! is real with absolute value < 2 (by the Frobenius-Perron
theorem), so |¢.| = 1. By a well known result in elementary algebraic
number theory, this implies that ¢ is a root of unity: ¢ = e>™*/™ where
k and m are coprime. By the Frobenius-Perron theorem, so k = +£1,
and m is even (indeed, if m = 2p+ 1 is odd then |¢? +q¢ 7P| > |q+q ).
So q¢ = e™/™ for some integer n > 2, and we are done. O

Corollary 1.45.16. Let A be a fusion ring, and X € A a basis ele-
ment. Then if FPdim(X) < 2 then FPdim(X) = 2cos(n/n), for some
integer n > 3.

Proof. This follows from Proposition 1.45.15, since FPdim(XX*) =
FPdim(X)?. O

1.46. Deligne’s tensor product of finite abelian categories. Let
C, D be two finite abelian categories over a field k.

Definition 1.46.1. Deligne’s tensor product C XD is an abelian cat-
egory which is universal for the functor assigning to every k-linear
abelian category A the category of right exact in both variables bilin-
ear bifunctors C x D — A. That is, there is a bifunctor X : C x D —
CXD:(X,Y)— X XY which is right exact in both variables and is
such that for any right exact in both variables bifunctor F' : CxD — A
there exists a unique right exact functor F' : C XD — A satisfying
FoX=F.

Proposition 1.46.2. (¢f. [D, Proposition 5.13]) (i) The tensor product
CNX D exists and is a finite abelian category.

(1) It is unique up to a unique equivalence.

(i11) Let C, D be finite dimensional algebras and let C = C' — mod
and D =D —mod. Then CXD =C ® D — mod.

(iv) The bifunctor W is exact in both variables and satisfies
Home (X1, Y1) ® Homp(Xa, Y2) = Homegp (X7 X X5, Y] K Y3).

(v) any bilinear bifunctor F' : C x D — A exact in each variable
defines an exact functor F : CKD — A.

Proof. (sketch). (ii) follows from the universal property in the usual
way.

(i) As we know, a finite abelian category is equivalent to the category
of finite dimensional modules over an algebra. So there exist finite
dimensional algebras C, D such that C = C' — mod, D = D — mod.
Then one can define CXD = C'® D —mod, and it is easy to show that
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it satisfies the required conditions. This together with (ii) also implies
(iii).

(iv),(v) are routine. O

A similar result is valid for locally finite categories.

Deligne’s tensor product can also be applied to functors. Namely, if
F:C—C and G : D — D’ are additive right exact functors between
finite abelian categories then one can define the functor FXG : CXD —
C'XD.

Proposition 1.46.3. If C,D are multitensor categories then the cate-
gory CXD has a natural structure of a multitensor category.

Proof. Let X1 X Y], Xo XY, € CX D. Then we can set

and define the associativity isomorphism in the obvious way. This
defines a structure of a monoidal category on the subcategory of C X
D consisting of “K-decomposable” objects of the form X XY. But
any object of C X D admits a resolution by X-decomposable injective
objects. This allows us to use a standard argument with resolutions to
extend the tensor product to the entire category CX D. It is easy to see
that if C, D are rigid, then so is CXK D, which implies the statement. [J

1.47. Finite (multi)tensor categories. In this subsection we will
study general properties of finite multitensor and tensor categories.

Recall that in a finite abelian category, every simple object X has a
projective cover P(X). The object P(X) is unique up to a non-unique
isomorphism. For any Y in C one has

(1.47.1) dim Hom(P(X),Y) = [V : X].

Let K¢(C) denote the free abelian group generated by isomorphism
classes of indecomposable projective objects of a finite abelian category
C. Elements of K(C)®zC will be called virtual projective objects. We
have an obvious homomorphism 7 : Ky(C) — Gr(C). Although groups
Ky(C) and Gr(C) have the same rank, in general  is neither surjective
nor injective even after tensoring with C. The matrix C of v in the
natural basis is called the Cartan matriz of C; its entries are [P(X) : Y],
where XY are simple objects of C.

Now let C be a finite multitensor category, let I be the set of isomor-
phism classes of simple objects of C, and let ¢*, *7 denote the right and
left duals to i, respectively. Let Gr(C) be the Grothendieck ring of C,
spanned by isomorphism classes of the simple objects X;, ¢ € I. In this
ring, we have X;X; = 3, NF X}, where N}, are nonnegative integers.
Also, let P; denote the projective covers of Xj.
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Proposition 1.47.1. Let C be a finite multitensor category. Then
Ko(C) is a Gr(C)-bimodule.

Proof. This follows from the fact that the tensor product of a projective
object with any object is projective, Proposition 1.13.6. U

Let us describe this bimodule explicitly.

Proposition 1.47.2. For any object Z of C,
P, ®Z = ®;pNi;.[Z : Xj)Pe, Z® P, = ®;uNL[Z 2 X5 Py

Proof. Hom(P;, ® Z, Xy) = Hom(P;,, X} ® Z*), and the first formula
follows from Proposition 1.13.6. The second formula is analogous. [

Proposition 1.47.3. Let P be a projective object in a multitensor
category C. Then P* is also projective. Hence, any projective object in
a multitensor category is also injective.

Proof. We need to show that the functor Hom(P*,e) is exact. This
functor is isomorphic to Hom(1, P ® e). The functor P ® e is exact
and moreover, by Proposition 1.13.6, any exact sequence splits after
tensoring with P, as an exact sequence consisting of projective objects.
The Proposition is proved. 0

Proposition 1.47.3 implies that an indecomposable projective object
P has a unique simple subobject, i.e. that the socle of P is simple.

For any finite tensor category C define an element Ry € Ky(C) ®z C
by
(1.47.2) Re =Y FPdim(X;)P,.

iel

Definition 1.47.4. The virtual projective object R is called the reg-
ular object of C.

Definition 1.47.5. Let C be a finite tensor category. Then the Frobenius-
Perron dimension of C is defined by

(1.47.3) FPdim(C) := FPdim(R¢) = Z FPdim(X;) FPdim(F;).

iel
Example 1.47.6. Let H be a finite dimensional quasi-Hopf algebra.
Then FPdim(Rep(H)) = dim(H).

Proposition 1.47.7. (1) Z® Re = Re ® Z = FPdim(Z) R¢ for all
Z € Gr(C).
(2) The image of Re in Gr(C) ®z C is a reqular element.
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Proof. We have ), FPdim(X;) dim Hom(F;, Z) = FPdim(Z) for any ob-
ject Z of C. Hence,

> FPdim(X;)dimHom(P; ® Z,Y) = Y FPdim(X;)dimHom(P,Y ® Z*)

= FPdim(Y ® Z%)

= FPdim(Y) FPdim(Z*)

= FPdim(Y) FPdim(2)

= FPdim(Z) Y FPdim(X;)dim Hom(P;,Y).

Now, P(X)®Z are projective objects by Proposition 1.13.6. Hence, the
formal sums ), FPdim(X;)P,®Z = Rc®Z and FPdim(Z) >, FPdim(X;) P, =
FPdim(Z)R, are linear combinations of P;, j € I with the same coeffi-
cients. U

Remark 1.47.8. We note the following useful inequality:
(1.47.4) FPdim(C) > N FPdim(P),

where NN is the number of simple objects in C, and P is the projective
cover of the neutral object 1. Indeed, for any simple object V' the
projective object P(V) ® *V has a nontrivial homomorphism to 1, and
hence contains P. So FPdim(P(V)) FPdim(V) > FPdim(P). Adding
these inequalities over all simple V| we get the result.

1.48. Integral tensor categories.

Definition 1.48.1. A transitive unital Z-ring A of finite rank is said
to be integral if FPdim : A — Z (i.e. the Frobenius-Perron dimnensions
of elements of C are integers). A tensor category C is integral if Gr(C)
is integral.

Proposition 1.48.2. A finite tensor category C is integral if and only
if C is equivalent to the representation category of a finite dimensional
quasi-Hopf algebra.

Proof. The “if” part is clear from Example 1.45.6. To prove the “only
if” part, it is enough to construct a quasi-fiber functor on C. Define
P = @; FPdim(X;)P;, where X; are the simple objects of C, and P,
are their projective covers. Define F' = Hom(P,e). Obviously, F' is
exact and faithful, (1) = 1, and dim F(X) = FPdim(X) for all X €
C. Using Proposition 1.46.2, we continue the functors F'(e ® e) and
F(e) ® F(e) to the functors C X C — Vec. Both of these functors are
exact and take the same values on the simple objects of C X C. Thus
these functors are isomorphic and we are done. U
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Corollary 1.48.3. The assignment H — Rep(H) defines a bijection
between integral finite tensor categories C over k up to monoidal equiva-
lence, and finite dimensional quasi-Hopf algebras H over k, up to twist
equivalence and isomorphism.

1.49. Surjective quasi-tensor functors. Let C, D be abelian cate-
gories. Let F': C — D be an additive functor.

Definition 1.49.1. We will say that F' is surjective if any object of D
is a subquotient in F(X) for some X € C. '3

Exercise 1.49.2. Let A, B be coalgebras, and f : A — B a homomor-
phism. Let F' = f*: A — comod — B — comod be the corresponding
pushforward functor. Then F'is surjective if and only if f is surjective.

Now let C, D be finite tensor categories.

Theorem 1.49.3. ([EO]) Let F : C — D be a surjective quasi-tensor
functor. Then F maps projective objects to projective ones.

Proof. Let C be a finite tensor category, and X € C. Let us write
X as a direct sum of indecomposable objects (such a representation
is unique). Define the projectivity defect p(X) of X to be the sum
of Frobenius-Perron dimensions of all the non-projective summands in
this sum (this is well defined by the Krull-Schmidt theorem). It is clear
that p(X ®Y) = p(X) +p(Y). Also, it follows from Proposition 1.13.6
that p(X ®Y) < p(X)p(Y).

Let P; be the indecomposable projective objects in C. Let P, ® P; =
@kaij, and let B; be the matrix with entries Bf] Also, let B =) B;.
Obviously, B has strictly positive entries, and the Frobenius-Perron
eigenvalue of B is ), FPdim(P;).

On the other hand, let F' : C — D be a surjective quasi-tensor functor
between finite tensor categories. Let p; = p(F(P;)), and p be the vector
with entries p;. Then we get pip; > >, ijpk, so (>, pi)p > Bp.
So, either p; are all zero, or they are all positive, and the norm of
B with respect to the norm |z| = > p;|x;| is at most > p;. Since
pi < FPdim(P;), this implies p; = FPdim(P;) for all i (as the largest
eigenvalue of B is ), FPdim(F)).

Assume the second option is the case. Then F(P;) do not contain
nonzero projective objects as direct summands, and hence for any pro-
jective P € C, F(P) cannot contain a nonzero projective object as a
direct summand. However, let ) be a projective object of D. Then,

13This definition does not coincide with a usual categorical definition of surjec-
tivity of functors which requires that every object of D be isomorphic to some F(X)
for an object X in C.
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since F' is surjective, there exists an object X € C such that @) is a
subquotient of F'(X). Since any X is a quotient of a projective object,
and F is exact, we may assume that X = P is projective. So () occurs
as a subquotient in F'(P). As @ is both projective and injective, it is
actually a direct summand in F(P). Contradiction.

Thus, p; = 0 and F(P;) are projective. The theorem is proved. [

1.50. Categorical freeness. Let C, D be finite tensor categories, and
F : C — D be a quasi-tensor functor.

Theorem 1.50.1. One has
FPdim(C)
FPdim(D)

Proof. By Theorem 1.49.3, F'(Rc¢) is a virtually projective object. Thus,
F(R¢) must be proportional to Rp, since both (when written in the ba-
sis P;) are eigenvectors of a matrix with strictly positive entries with its
Frobenius-Perron eigenvalue. (For this matrix we may take the matrix
of multiplication by F'(X), where X is such that F'(X) contains as com-
position factors all simple objects of D; such exists by the surjectivity
of F'). The coefficient is obtained by computing the Frobenius-Perron
dimensions of both sides. U

Corollary 1.50.2. In the above situation, one has FPdim(C) > FPdim(D),
and FPdim(D) divides FPdim(C) in the ring of algebraic integers. In
fact,

(1.50.1) F(Re) = D.

FPdim(C
(1.50.2) FPdim(D) =Y FPdim(X;) dim Hom(F(P), 1p),

where X; runs over szmple objects of C.

Proof. The statement is obtained by computing the dimension of Hom(e, 1)
for both sides of (1.50.1). O

Suppose now that C is integral, i.e., by Proposition 1.48.2, it is the
representation category of a quasi-Hopf algebra H. In this case, R¢
is an honest (not only virtual) projective object of C, namely the free
rank 1 module over H. Theorefore, multiples of R¢ are free H-modules
of finite rank, and vice versa.

Then Theorem 1.49.3 and the fact that F'(R¢) is proportional to Rp
implies the following categorical freeness result.

Corollary 1.50.3. If C is integral, and F : C — D is a surjective

quasi-tensor functor then D is also integral, and the object F(Rc) is
free of rank FPdim(C)/ FPdim(D) (which is an integer).
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Proof. The Frobenius-Perron dimensions of simple objects of D are
coordinates of the unique eigenvector of the positive integer matrix of
multiplication by F'(Rc) with integer eigenvalue FPdim(C), normalized
so that the component of 1 is 1. Thus, all coordinates of this vector are
rational numbers, hence integers (because they are algebraic integers).
This implies that the category D is integral. The second statement is
clear from the above. 0

Corollary 1.50.4. ([Scha|; for the semisimple case see [ENO1]|) A
finite dimensional quasi-Hopf algebra is a free module over its quasi-
Hopf subalgebra.

Remark 1.50.5. In the Hopf case Corollary 1.50.3 is well known and
much used; it is due to Nichols and Zoeller [NZ].
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