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Introduction 

These are lecture notes for the course 18.769 “Tensor categories”, 
taught by P. Etingof at MIT in the spring of 2009. 

In these notes we will assume that the reader is familiar with the 
basic theory of categories and functors; a detailed discussion of this 
theory can be found in the book [ML]. We will also assume the basics 
of the theory of abelian categories (for a more detailed treatment see 
the book [F]). 

If C is a category, the notation X ∈ C will mean that X is an object 
of C, and the set of morphisms between X, Y ∈ C will be denoted by 
Hom(X, Y ). 

Throughout the notes, for simplicity we will assume that the ground 
field k is algebraically closed unless otherwise specified, even though in 
many cases this assumption will not be needed. 
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1. Monoidal categories 

1.1. The definition of a monoidal category. A good way of think­
ing about category theory (which will be especially useful throughout 
these notes) is that category theory is a refinement (or “categorifica­
tion”) of ordinary algebra. In other words, there exists a dictionary 
between these two subjects, such that usual algebraic structures are 
recovered from the corresponding categorical structures by passing to 
the set of isomorphism classes of objects. 

For example, the notion of a (small) category is a categorification of 
the notion of a set. Similarly, abelian categories are a categorification 
of abelian groups 1 (which justifies the terminology). 

This dictionary goes surprisingly far, and many important construc­
tions below will come from an attempt to enter into it a categorical 
“translation” of an algebraic notion. 

In particular, the notion of a monoidal category is the categorification 
of the notion of a monoid. 

Recall that a monoid may be defined as a set C with an associative 
multiplication operation (x, y) x y (i.e., a semigroup), with an→ · 
element 1 such that 12 = 1 and the maps 1 1 : C C are bijections. ·, · →
It is easy to show that in a semigroup, the last condition is equivalent 
to the usual unit axiom 1 x = x 1 = x.· · 

As usual in category theory, to categorify the definition of a monoid, 
we should replace the equalities in the definition of a monoid (namely, 
the associativity equation (xy)z = x(yz) and the equation 12 = 1) 
by isomorphisms satisfying some consistency properties, and the word 
“bijection” by the word “equivalence” (of categories). This leads to 
the following definition. 

Definition 1.1.1. A monoidal category is a quintuple (C, ⊗, a, 1, ι) 
where C is a category, ⊗ : C × C → C is a bifunctor called the tensor 
product bifunctor, 

→ •⊗ (• ⊗ •) is a functorial isomorphism: a : • ⊗ (• ⊗ •) −∼

(1.1.1) aX,Y,Z : (X ⊗ Y ) ⊗ Z 
∼
X ⊗ (Y ⊗ Z), X, Y, Z ∈ C −→ 

called the associativity constraint (or associativity isomorphism), 1 ∈ C 
is an object of C, and ι : 1 ⊗ 1 1 is an isomorphism, subject to the →
following two axioms. 

1To be more precise, the set of isomorphism classes of objects in a (small) abelian 
category C is a commutative monoid, but one usually extends it to a group by 
considering “virtual objects” of the form X − Y , X, Y ∈ C. 
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1. The pentagon axiom. The diagram 
(1.1.2) 

������������

((
��
W 
�� 
⊗ X) ⊗ Y )

�
⊗
��
Z 
������������� 

aW ⊗X,Y,Z aW,X,Y ⊗IdZ 

(W ⊗ X) ⊗ (Y ⊗ Z) (W ⊗ (X ⊗ Y )) ⊗ Z 

aW,X,Y ⊗Z aW,X⊗Y,Z 

W ⊗ (X ⊗ (Y ⊗ Z)) 
IdW ⊗aX,Y,Z 

W ⊗ ((X ⊗ Y ) ⊗ Z) 

is commutative for all objects W, X, Y, Z in C. 
2. The unit axiom. The functors L1 and R1 of left and right 
multiplication by 1 are equivalences C → C.

The pair (1, ι) is called the unit object of C. 2


We see that the set of isomorphism classes of objects in a small 
monoidal category indeed has a natural structure of a monoid, with 
multiplication ⊗ and unit 1. Thus, in the categorical-algebraic dic­
tionary, monoidal categories indeed correspond to monoids (which ex­
plains their name). 

Definition 1.1.2. A monoidal subcategory of a monoidal category 
(C, ⊗, a, 1, ι) is a quintuple (D, ⊗, a, 1, ι), where D ⊂ C is a subcate­
gory closed under the tensor product of objects and morphisms and 
containing 1 and ι. 

Definition 1.1.3. The opposite monoidal category Cop to C is the cate­
gory C with reversed order of tensor product and inverted associativity 
somorphism. 

Remark 1.1.4. The notion of the opposite monoidal category is not 
to be confused with the usual notion of the opposite category, which is 
the category C∨ obtained from C by reversing arrows (for any category 
C). Note that if C is monoidal, so is C∨ (in a natural way), which makes 
it even easier to confuse the two notions. 

1.2. Basic properties of unit objects in monoidal categories. 
Let (C, ⊗, a, 1, ι) be a monoidal category. Define the isomorphism lX : 
1 ⊗ X X by the formula→ 

lX = L−
1 
1((ι ⊗ Id) ◦ a−1,

1 
1,X ), 

and the isomorphism rX : X ⊗ 1 X by the formula→ 

rX = R1
−1((Id ⊗ ι) ◦ aX,1,1). 

2We note that there is no condition on the isomorphism ι, so it can be chosen 
arbitrarily. 
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This gives rise to functorial isomorphisms l : L1 IdC and r : R1→ →
IdC . These isomorphisms are called the unit constraints or unit iso­
morphisms. They provide the categorical counterpart of the unit ax­
iom 1X = X1 = X of a monoid in the same sense as the associativity 
isomorphism provides the categorical counterpart of the associativity 
equation. 

Proposition 1.2.1. The “triangle” diagram 
aX,1,Y

(1.2.1) (X ⊗ 1) ⊗ Y �� X ⊗ (1 ⊗ Y )
����������� ����������� 

rX ⊗IdY IdX ⊗lY 

X ⊗ Y 

is commutative for all X, Y ∈ C. In particular, one has r1 = l1 = ι. 

Proof. This follows by applying the pentagon axiom for the quadruple 
of objects X, 1, 1, Y . More specifically, we have the following diagram: 

(1.2.2) 

((X ⊗ 1) ⊗ 1) ⊗ Y 
aX,1,1⊗Id 

(X ⊗ (1 ⊗ 1)) ⊗ Y 
��������������� ��������������� 

rX ⊗Id⊗Id (Id⊗ι)⊗Id 

(X ⊗ 1) ⊗ Y 

aX⊗1,1,Y aX,1,Y aX,1⊗1,Y 

X ⊗ (1 ⊗ Y ) 
rX ⊗Id 

(X ⊗ 1) ⊗ (1 ⊗ Y ) 

aX,1,1⊗Y ��

Id⊗(ι⊗Id) 

Id⊗l1⊗Y X ⊗ ((1 ⊗ 1) ⊗ Y ) 
Id⊗a1,1,Y 

X ⊗ (1 ⊗ (1 ⊗ Y )) 

To prove the proposition, it suffices to establish the commutativity 
of the bottom left triangle (as any object of C is isomorphic to one of 
the form 1 ⊗ Y ). Since the outside pentagon is commutative (by the 
pentagon axiom), it suffices to establish the commutativity of the other 
parts of the pentagon. Now, the two quadrangles are commutative due 
to the functoriality of the associativity isomorphisms, the commutativ­
ity of the upper triangle is the definition of r, and the commutativity 
of the lower right triangle is the definition of l. 
The last statement is obtained by setting X = Y = 1 in (1.2.1). � 



� � ��

� � ��

� � � �

� �

� � � � ��

���������������� 

���������������� 

���������������� 

������������������ 

7 

Proposition 1.2.2. The following diagrams commute for all objects 
X, Y ∈ C: 

a1,X,Y

(1.2.3) (1 ⊗ X) ⊗ Y �� 1 ⊗ (X ⊗ Y )
����������� ����������� 

lX ⊗IdY lX⊗Y 

X ⊗ Y 

aX,Y,1 
(1.2.4) (X ⊗ Y ) ⊗ 1 �� X ⊗ (Y ⊗ 1)

����������� ����������� 

rX⊗Y IdX ⊗rY 

X ⊗ Y 

Proof. Consider the diagram 
(1.2.5) 

((X ⊗ 1) ⊗ Y ) ⊗ Z 
aX,1,Y ⊗Id 

�� (X ⊗ (1 ⊗ Y )) ⊗ Z 
(rX ⊗Id)⊗Id 

���������������� ���������������� 

�� �� (Id⊗lY )⊗Id 

(X ⊗ Y ) ⊗ Z 

aX⊗1,Y,Z aX,Y,Z aX,1⊗Y,Z 

X ⊗ (Y ⊗ Z) 
rX ⊗Id 

(X ⊗ 1) ⊗ (Y ⊗ Z) 

aX,1,Y ⊗Z ��

Id⊗(lY ⊗Id) 

Id⊗lY ⊗Z X ⊗ ((1 ⊗ Y ) ⊗ Z) 
Id⊗a1,Y,Z 

X ⊗ (1 ⊗ (Y ⊗ Z)) 

where X, Y, Z are objects in C. The outside pentagon commutes by 
the pentagon axiom (1.1.2). The functoriality of a implies the com­
mutativity of the two middle quadrangles. The triangle axiom (1.2.1) 
implies the commutativity of the upper triangle and the lower left tri­
angle. Consequently, the lower right triangle commutes as well. Setting 
X = 1 and applying the functor L−

1 
1 to the lower right triangle, we 

obtain commutativity of the triangle (1.2.3). The commutativity of the 
triangle (1.2.4) is proved similarly. � 

Proposition 1.2.3. For any object X in C one has the equalities 
l1⊗X = Id ⊗ lX and rX⊗1 = rX ⊗ Id. 
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Proof. It follows from the functoriality of l that the following diagram 
commutes 

(1.2.6) 1 ⊗ (1 ⊗ X) 
Id⊗lX 

1 ⊗ X 

lXl1⊗X 

1 ⊗ X �� X 
lX 

Since lX is an isomorphism, the first identity follows. The second iden­
tity follows similarly from the functoriality of r. � 

Proposition 1.2.4. The unit object in a monoidal category is unique 
up to a unique isomorphism. 

Proof. Let (1, ι), (1�, ι�) be two unit objects. Let (r, l), (r�, l�) be the 
corresponding unit constraints. Then we have the isomorphism η := 
l1� ◦ (r1� )−1 : 1 → 1�. 

It is easy to show using commutativity of the above triangle diagrams 
that η maps ι to ι�. It remains to show that η is the only isomorphism 
with this property. To do so, it suffices to show that if b : 1 1 is an→
isomorphism such that the diagram 

(1.2.7) 1 ⊗ 1 
b⊗b �� 1 ⊗ 1 

ι ι 

1 �� 1 
b 

is commutative, then b = Id. To see this, it suffices to note that for 
any morphism c : 1 1 the diagram→ 

(1.2.8) 1 ⊗ 1 
c⊗Id 

1 ⊗ 1 

ι ι 

1 �� 1c 

is commutative (as ι = r1), so b ⊗ b = b ⊗ Id and hence b = Id. � 

Exercise 1.2.5. Verify the assertion in the proof of Proposition 1.2.4 
that η maps ι to ι�. 

Hint. Use Propositions 1.2.1 and 1.2.2. 

The results of this subsection show that a monoidal category can be 
alternatively defined as follows: 

Definition 1.2.6. A monoidal category is a sextuple (C, ⊗, a, 1, l, r) 
satisfying the pentagon axiom (1.1.2) and the triangle axiom (1.2.1). 
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This definition is perhaps more traditional than Definition 1.1.1, but 
Definition 1.1.1 is simpler. Besides, Proposition 1.2.4 implies that for 
a triple (C, ⊗, a) satisfying a pentagon axiom (which should perhaps 
be called a “semigroup category”, as it categorifies the notion of a 
semigroup), being a monoidal category is a property and not a structure 
(similarly to how it is for semigroups and monoids). 

Furthermore, one can show that the commutativity of the triangles 
implies that in a monoidal category one can safely identify 1 ⊗ X and 
X ⊗ 1 with X using the unit isomorphisms, and assume that the unit 
isomorphism are the identities (which we will usually do from now on).3 

In a sense, all this means that in constructions with monoidal cat­
egories, unit objects and isomorphisms always “go for the ride”, and 
one need not worry about them especially seriously. For this reason, 
below we will typically take less care dealing with them than we have 
done in this subsection. 

Proposition 1.2.7. ([SR, 1.3.3.1]) The monoid End(1) of endomor­
phisms of the unit object of a monoidal category is commutative. 

Proof. The unit isomorphism ι : 1 ⊗ 1 
∼

1 induces the isomorphism −→
ψ : End(1⊗1) 

∼
End(1). It is easy to see that ψ(a⊗1) = ψ(1⊗a) = a−→

for any a ∈ End(1). Therefore, 

(1.2.9) ab = ψ((a ⊗ 1)(1 ⊗ b)) = ψ((1 ⊗ b)(a ⊗ 1)) = ba, 

for any a, b ∈ End(1). � 

1.3. First examples of monoidal categories. Monoidal categories 
are ubiquitous. You will see one whichever way you look. Here are 
some examples. 

Example 1.3.1. The category Sets of sets is a monoidal category, 
where the tensor product is the Cartesian product and the unit object 
is a one element set; the structure morphisms a, ι, l, r are obvious. The 
same holds for the subcategory of finite sets, which will be denoted 
by Sets 4 . This example can be widely generalized: one can take the 
category of sets with some structure, such as groups, topological spaces, 
etc. 

Example 1.3.2. Any additive category is monoidal, with ⊗ being the 
direct sum functor ⊕, and 1 being the zero object. 

The remaining examples will be especially important below. 

3We will return to this issue later when we discuss MacLane’s coherence theorem. 
4Here and below, the absence of a finiteness condition condition is indicated by 

the boldface font, while its presence is indicated by the Roman font. 
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Example 1.3.3. Let k be any field. The category k − Vec of all 
k−vector spaces is a monoidal category, where ⊗ = ⊗k, 1 = k, and the 
morphisms a, ι, l, r are the obvious ones. The same is true about the 
category of finite dimensional vector spaces over k, denoted by k − Vec. 
We will often drop k from the notation when no confusion is possible. 
More generally, if R is a commutative unital ring, then replacing k 

by R we can define monoidal categories R − mod of R-modules and 
R − mod of R-modules of finite type. 

Example 1.3.4. Let G be a group. The category Repk(G) of all 
representations of G over k is a monoidal category, with ⊗ being the 
tensor product of representations: if for a representation V one denotes 
by ρV the corresponding map G GL(V ), then → 

ρV ⊗W (g) := ρV (g) ⊗ ρW (g). 

The unit object in this category is the trivial representation 1 = k. A 
similar statement holds for the category Repk(G) of finite dimensional 
representations of G. Again, we will drop the subscript k when no 
confusion is possible. 

Example 1.3.5. Let G be an affine (pro)algebraic group over k. The 
categories Rep(G) of all algebraic representations of G over k is a 
monoidal category (similarly to Example 1.3.4). 

Similarly, if g is a Lie algebra over k, then the category of its repre­
sentations Rep(g) and the category of its finite dimensional represen­
tations Rep(g) are monoidal categories: the tensor product is defined 
by 

ρV ⊗W (a) = ρV (a) ⊗ IdW + IdV ⊗ ρW (a) 

(where ρY : g gl(Y ) is the homomorphism associated to a represen­→
tation Y of g), and 1 is the 1-dimensional representation with the zero 
action of g. 

Example 1.3.6. Let G be a monoid (which we will usually take to 
be a group), and let A be an abelian group (with operation written 
multiplicatively). Let CG = CG(A) be the category whose objects δg 

are labeled by elements of G (so there is only one object in each iso­
morphism class), Hom(δg1 , δg2 ) = ∅ if g1 =� g2, and Hom(δg, δg) = A, 
with the functor ⊗ defined by δg ⊗ δh = δgh, and the tensor tensor 
product of morphisms defined by a ⊗ b = ab. Then CG is a monoidal 
category with the associativity isomorphism being the identity, and 1 
being the unit element of G. This shows that in a monoidal category, 
X ⊗ Y need not be isomorphic to Y ⊗ X (indeed, it suffices to take a 
non-commutative monoid G). 
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This example has a “linear” version. Namely, let k be a field, and 
k − VecG denote the category of G-graded vector spaces over k, i.e. 
vector spaces V with a decomposition V = ⊕g∈GVg. Morphisms in this 
category are linear operators which preserve the grading. Define the 
tensor product on this category by the formula 

(V ⊗ W )g = ⊕x,y∈G:xy=gVx ⊗ Wy, 

and the unit object 1 by 11 = k and 1g = 0 for g = 1. Then, 
defining a, ι in an obvious way, we equip k − VecG with the structure 
of a monoidal category. Similarly one defines the monoidal category 
k − VecG of finite dimensional G-graded k-vector spaces. 

In the category k − VecG, we have pairwise non-isomorphic objects 
δg, g ∈ G, defined by the formula (δg)x = k if x = g and (δg)x = 
0 otherwise. For these objects, we have δg = δgh. Thus the⊗ δh 

∼
category CG(k×) is a (non-full) monoidal subcategory of k −VecG. This 
subcategory can be viewed as a “basis” of VecG (and VecG as “the linear 
span” of CG), as any object of VecG is isomorphic to a direct sum of 
objects δg with nonnegative integer multiplicities. 

When no confusion is possible, we will denote the categories k−VecG, 
k − VecG simply by VecG, VecG. 

Example 1.3.7. This is really a generalization of Example 1.3.6, which 
shows that the associativity isomorphism is not always “the obvious 
one”. 
Let G be a group, A an abelian group, and ω be a 3-cocycle of G 

with values in A. This means that ω : G × G × G A is a function →
satisfying the equation 
(1.3.1) 
ω(g1g2, g3, g4)ω(g1, g2, g3g4) = ω(g1, g2, g3)ω(g1, g2g3, g4)ω(g2, g3, g4), 

for all g1, g2, g3, g4 ∈ G. 
Let us define the monoidal category Cω = Cω (A) as follows. As a G G

category, it is the same as the category CG defined above. The bifunctor 
⊗ and the unit object (1, ι) in this category is also the same as those 
in CG. The only difference is in the new associativity isomorphism aω , 
which is not “the obvious one” (i.e., the identity) like in CG, but rather 
is defined by the formula 

(1.3.2) a ωδg ,δh,δm 
= ω(g, h, m) : (δg ⊗ δh) ⊗ δm δg ⊗ (δh ⊗ δm),→ 

where g, h, m ∈ G. 
The fact that Cω with these structures is indeed a monoidal category G 

follows from the properties of ω. Namely, the pentagon axiom (1.1.2) 
follows from equation (1.3.1), and the unit axiom is obvious. 



12 

Similarly, for a field k, one can define the category (k−)Vecω , which G

differs from VecG just by the associativity isomorphism. This is done 
by extending the associativity isomorphism of Cω by additivity to ar-G 
bitrary direct sums of objects δg. This category contains a monoidal 
subcategory Vecω of finite dimensional G-graded vector spaces with G 
associativity defined by ω. 

Remark 1.3.8. It is straightforward to verify that the unit morphisms 
l, r in Vecω are given on 1-dimensional spaces by the formulas G 

lδg = ω(1, 1, g)−1Idg, rδg = ω(g, 1, 1)Idg, 

and the triangle axiom says that ω(g, 1, h) = ω(g, 1, 1)ω(1, 1, h). Thus, 
we have lX = rX = Id if and only if 

(1.3.3) ω(g, 1, 1) = ω(1, 1, g), 

for any g ∈ G or, equivalently, 

(1.3.4) ω(g, 1, h) = 1, g, h ∈ G. 

A cocycle satisfying this condition is said to be normalized. 

Example 1.3.9. Let C be a category. Then the category End(C) of 
all functors from C to itself is a monoidal category, where ⊗ is given 
by composition of functors. The associativity isomorphism in this cat­
egory is the identity. The unit object is the identity functor, and the 
structure morphisms are obvious. If C is an abelian category, the same 
is true about the categories of additive, left exact, right exact, and 
exact endofunctors of C. 

Example 1.3.10. Let A be an associative ring with unit. Then the 
category A − bimod of bimodules over A is a monoidal category, with 
tensor product ⊗ = ⊗A, over A. The unit object in this category is 
the ring A itself (regarded as an A-bimodule). 

If A is commutative, this category has a full monoidal subcategory 
A − mod, consisting of A-modules, regarded as bimodules in which 
the left and right actions of A coincide. More generally, if X is a 
scheme, one can define the monoidal category QCoh(X) of quasico­
herent sheaves on X; if X is affine and A = OX , then QCoh(X) = 
A − mod. 
Similarly, if A is a finite dimensional algebra, we can define the 

monoidal category A−bimod of finite dimensional A-bimodules. Other 
similar examples which often arise in geometry are the category Coh(X) 
of coherent sheaves on a scheme X, its subcategory VB(X) of vector 
bundles (i.e., locally free coherent sheaves) on X, and the category 
Loc(X) of locally constant sheaves of finite dimensional k-vector spaces 
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(also called local systems) on any topological space X. All of these are 
monoidal categories in a natural way. 

Example 1.3.11. The category of tangles. 
Let Sm,n be the disjoint union of m circles R/Z and n intervals 

[0, 1]. A tangle is a piecewise smooth embedding f : Sm,n → R2 × [0, 1] 
such that the boundary maps to the boundary and the interior to the 
interior. We will abuse the terminology by also using the term “tangle” 
for the image of f . 
Let x, y, z be the Cartesian coordinates on R2 × [0, 1]. Any tangle 

has inputs (points of the image of f with z = 0) and outputs (points of 
the image of f with z = 1). For any integers p, q ≥ 0, let T�p,q be the set 
of all tangles which have p inputs and q outputs, all having a vanishing 
y-coordinate. Let Tp,q be the set of isotopy classes of elements of T�p,q; 
thus, during an isotopy, the inputs and outputs are allowed to move 
(preserving the condition y = 0), but cannot meet each other. We can 
define a canonical composition map Tp,q × Tq,r → Tp,r, induced by the 
concatenation of tangles. Namely, if s ∈ Tp,q and t ∈ Tq,r, we pick rep­
resentatives s�∈ T�p,q, �t ∈ T�q,r such that the inputs of �t coincide with the 
outputs of s�, concatenate them, perform an appropriate reparametriza­
tion, and rescale z z/2. The obtained tangle represents the desired →
composition ts. 

We will now define a monoidal category T called the category of 
tangles (see [K, T, BaKi] for more details). The objects of this cat­
egory are nonnegative integers, and the morphisms are defined by 
HomT (p, q) = Tp,q, with composition as above. The identity morphisms 
are the elements idp ∈ Tp,p represented by p vertical intervals and no 
circles (in particular, if p = 0, the identity morphism idp is the empty 
tangle). 
Now let us define the monoidal structure on the category T . The 

tensor product of objects is defined by m⊗n = m+n. However, we also 
need to define the tensor product of morphisms. This tensor product 
is induced by union of tangles. Namely, if t1 ∈ Tp1,q1 and t2 ∈ Tp2,q2 , we 
pick representatives t�1 ∈ T�p1,q1 , t�2 ∈ T�p2,q2 in such a way that any point 
of t�1 is to the left of any point of t�2 (i.e., has a smaller x-coordinate). 
Then t1 ⊗ t2 is represented by the tangle t�1 ∪ t�2. 

We leave it to the reader to check the following: 
1. The product t1 ⊗ t2 is well defined, and its definition makes ⊗ a 

bifunctor. 
2. There is an obvious associativity isomorphism for ⊗, which turns 
T into a monoidal category (with unit object being the empty tangle). 
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1.4. Monoidal functors, equivalence of monoidal categories. 
As we have explained, monoidal categories are a categorification of 
monoids. Now we pass to categorification of morphisms between monoids, 
namely monoidal functors. 

Definition 1.4.1. Let (C, ⊗, 1, a, ι) and (C �, ⊗�, 1�, a�, ι�) be two monoidal 
�categories. A monoidal functor from is a pair (F, J) where toC C

⏐⏐� 

F : C → C � is a functor, and J = {JX,Y : F (X) ⊗� F (Y ) 
∼

F (X ⊗−→
Y )|X, Y ∈ C} is a natural isomorphism, such that F (1) is isomorphic 
to 1�. and the diagram 
(1.4.1) 

a�
F (X),F (Y ),F (Z)

(F (X) ⊗� F (Y )) ⊗� F (Z) −−−−−−−−−→ F (X) ⊗� (F (Y ) ⊗� F (Z))⏐⏐�JX,Y ⊗�IdF (Z) IdF (X)⊗�JY,Z 

F (X ⊗ Y ) ⊗� F (Z) 

JX⊗Y,Z 

⏐⏐� ⏐⏐� 

F (X) ⊗� F (Y ⊗ Z) 

JX,Y ⊗Z 

F (a
X,Y,Z ) 

F ((X ⊗ Y ) ⊗ Z)
 −−−−−−→
 F (X ⊗ (Y ⊗ Z))


�⏐⏐ 

→ 

⏐⏐�

is commutative for all X, Y, Z ∈ C (“the monoidal structure axiom”). 
A monoidal functor F is said to be an equivalence of monoidal cate­

gories if it is an equivalence of ordinary categories. 

Remark 1.4.2. It is important to stress that, as seen from this defini­
tion, a monoidal functor is not just a functor between monoidal cate­
gories, but a functor with an additional structure (the isomorphism J) 
satisfying a certain equation (the monoidal structure axiom). As we 
will see later, this equation may have more than one solution, so the 
same functor can be equipped with different monoidal structures. 

It turns out that if F is a monoidal functor, then there is a canon­
ical isomorphism ϕ : 1� F (1). This isomorphism is defined by the 
commutative diagram 

l�

1� ⊗� F (1) 
F (1) 

F (1)−−−→


(1.4.2) ϕ⊗�IdF (X) F (l1 ) 

J1,1 −−−→ F (1 ⊗ 1)F (1) ⊗� F (1) 

where l, r, l�, r� are the unit isomorphisms for C, C � defined in Subsection 
1.2. 
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Proposition 1.4.3. For any monoidal functor (F, J) : C → C �, the 
diagrams 

l�

1� ⊗� F (X) 
F (X) 

F (X)�⏐⏐ 
⏐⏐�

−−−→


(1.4.3) ϕ⊗�IdF (X) 

F (1) ⊗� F (X) 

F (l
X ) 

J1,X −−−→ F (1 ⊗ X) 

and 
r�

F (X) ⊗� 1� F (X) ⏐⏐�
−−−→


(1.4.4) IdF (X)⊗�ϕ 

�⏐⏐ 

F (X) 

F (r
X ) 

JX,1 −−−→ F (X ⊗ 1)F (X) ⊗� F (1) 

are commutative for all X ∈ C. 

Exercise 1.4.4. Prove Proposition 1.4.3. 

Proposition 1.4.3 implies that a monoidal functor can be equivalently 
defined as follows. 

Definition 1.4.5. A monoidal functor C → C � is a triple (F, J, ϕ) which 
satisfies the monoidal structure axiom and Proposition 1.4.3. 

This is a more traditional definition of a monoidal functor. 

Remark 1.4.6. It can be seen from the above that for any monoidal 
functor (F, J) one can safely identify 1� with F (1) using the isomor­
phism ϕ, and assume that F (1) = 1� and ϕ = Id (similarly to how we 
have identified 1 ⊗ X and X ⊗ 1 with X and assumed that lX = rX = 
IdX ). We will usually do so from now on. Proposition 1.4.3 implies 
that with these conventions, one has 

(1.4.5) J1,X = JX,1 = IdX . 

Remark 1.4.7. It is clear that the composition of monoidal functors is 
a monoidal functor. Also, the identity functor has a natural structure 
of a monoidal functor. 

1.5. Morphisms of monoidal functors. Monoidal functors between 
two monoidal categories themselves form a category. Namely, one has 
the following notion of a morphism (or natural transformation) between 
two monoidal functors. 
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Definition 1.5.1. Let (C, ⊗, 1, a, ι) and (C �, ⊗�, 1�, a�, ι�) be two monoidal 
categories, and (F 1, J1), (F 2, J2) two monoidal functors from C to 
C �. A morphism (or a natural transformation) of monoidal functors 
η : (F 1, J1) (F 2, J2) is a natural transformation η : F 1 F 2 such → →
that η1 is an isomorphism, and the diagram 

J1 
X,Y 

F 1(X) ⊗� F 1(Y ) −−−→ F 1(X ⊗ Y )⏐⏐�⏐⏐�(1.5.1)
 ηX ⊗�ηY ηX⊗Y 

J2 
X,Y 

F 2(X) ⊗� F 2(Y ) −−−→ F 2(X ⊗ Y ) 

is commutative for all X, Y ∈ C. 

Remark 1.5.2. It is easy to show that η1 ◦ ϕ1 = ϕ2 , so if one makes 
the convention that ϕi = Id, one has η1 = Id. 

Remark 1.5.3. It is easy to show that if F : C → C � is an equivalence 
of monoidal categories, then there exists a monoidal equivalence F −1 : 
C � → C such that the functors F ◦ F −1 and F −1 ◦ F are isomorphic 
to the identity functor as monoidal functors. Thus, for any monoidal 
category C, the monoidal auto-equivalences of C up to isomorphism 
form a group with respect to composition. 

1.6. Examples of monoidal functors. Let us now give some exam­
ples of monoidal functors and natural transformations. 

Example 1.6.1. An important class of examples of monoidal functors 
is forgetful functors (e.g. functors of “forgetting the structure”, from 
the categories of groups, topological spaces, etc., to the category of 
sets). Such functors have an obvious monoidal structure. An example 
important in these notes is the forgetful functor RepG Vec from→
the representation category of a group to the category of vector spaces. 
More generally, if H ⊂ G is a subgroup, then we have a forgetful 
(or restriction) functor RepG RepH . Still more generally, if f :→
H G is a group homomorphism, then we have the pullback functor →
f ∗ : RepG → RepH . All these functors are monoidal. 

Example 1.6.2. Let f : H G be a homomorphism of groups. Then → 
any H-graded vector space is naturally G-graded (by pushforward of 
grading). Thus we have a natural monoidal functor f∗ : VecH VecG.→
If G is the trivial group, then f is just the forgetful functor VecH∗ →
Vec. 

Example 1.6.3. Let A be a k-algebra with unit, and C = A − mod 
be the category of left A-modules. Then we have a functor F : A − 
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bimod End(C) given by F (M) = M⊗A. This functor is naturally →
monoidal. A similar functor F : A − bimod End(C). can be defined →
if A is a finite dimensional k-algebra, and C = A − mod is the category 
of finite dimensional left A-modules. 

Proposition 1.6.4. The functor F : A−bimod End(C) takes values →
in the full monoidal subcategory Endre(C) of right exact endofunctors of 
C, and defines an equivalence between monoidal categories A − bimod 
and Endre(C) 

Proof. The first statement is clear, since the tensor product functor 
is right exact. To prove the second statement, let us construct the 
quasi-inverse functor F −1 . Let G ∈ Endre(C). Define F −1(G) by the 
formula F −1(G) = G(A); this is clearly an A-bimodule, since it is a 
left A-module with a commuting action EndA(A) = Aop (the opposite 
algebra). We leave it to the reader to check that the functor F −1 is 
indeed quasi-inverse to F . � 

Remark 1.6.5. A similar statement is valid without the finite dimen­
sionality assumption, if one adds the condition that the right exact 
functors must commute with inductive limits. 

Example 1.6.6. Let S be a monoid, and C = VecS , and IdC the identity 
functor of C. It is easy to see that morphisms η : IdC → IdC correspond 
to homomorphisms of monoids: η : S k (where k is equipped with →
the multiplication operation). In particular, η(s) may be 0 for some s, 
so η does not have to be an isomorphism. 

ω1.7. Monoidal functors between categories CG. Let G1, G2 be 
groups, A an abelian group, and ωi ∈ Z3(Gi, A), i = 1, 2 be 3-cocycles. 

ωiLet Ci = CGi 
, i = 1, 2 (see Example 1.3.7). 

Any monoidal functor F : C1 → C2 defines, by restriction to simple 
objects, a group homomorphism f : G1 → G2. Using the axiom (1.4.1) 
of a monoidal functor we see that a monoidal structure on F is given 
by 

(1.7.1) Jg,h = µ(g, h)Idδf (gh) 
: F (δg) ⊗ F (δh) 

∼
F (δgh), g, h ∈ G1,−→ 

where µ : G1 × G1 → A is a function such that 

ω1(g, h, l)µ(gh, l)µ(g, h) = µ(g, hl)µ(h, l)ω2(f(g), f(h), f(l)), 

for all g, h, l ∈ G1. That is, 

(1.7.2) f ∗ω2 = ω1∂2(µ), 

i.e., ω1 and f ∗ω2 are cohomologous in Z3(G1, A). 
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Conversely, given a group homomorphism f : G1 G2, a function → 
µ : G1 × G1 A satisfying (1.7.2) gives rise to a monoidal functor →
F : C1 → C2 defined by F (δg) = δf(g) with the monoidal structure 
given by formula (1.7.1). This functor is an equivalence if and only if 
f is an isomorphism. 

To summarize, monoidal functors Cω1 → Cω2 correspond to pairs G1 G2 

(f, µ), where f : G1 G2 is a group homomorphism such that ω1→
and f ∗ω2 are cohomologous, and µ is a function satisfying (1.7.2) (such 
functions are in a (non-canonical) bijection with A-valued 2-cocycles 
on G1). Let Ff,µ denote the corresponding functor. 

Let us determine natural monoidal transformations between Ff,µ and 
Ff �,µ� . Clearly, such a transformation exists if and only if f = f �, is 
always an isomorphism, and is determined by a collection of morphisms 
ηg : δf (g) → δf(g) (i.e., ηg ∈ A), satisfying the equation 

(1.7.3) µ�(g, h)(ηg ⊗ ηh) = ηghµ(g, h) 

for all g, h ∈ G1, i.e., 

(1.7.4) µ� = µ∂1(η). 

Conversely, every function η : G1 A satisfying (1.7.4) gives rise to →
a morphism of monoidal functors η : Ff,µ → Ff,µ� defined as above. 
Thus, functors Ff,µ and Ff �,µ� are isomorphic as monoidal functors if 
and only if f = f � and µ is cohomologous to µ�. 

Thus, we have obtained the following proposition. 

Proposition 1.7.1. (i) The monoidal isomorphisms Ff,µ → Ff,µ� of 
ω1 ω2monoidal functors Ff,µi : CG1 
→ CG2 

form a torsor over the group 
H1(G1, k

×) = Hom(G1, k
×) of characters of G1; 

(ii) Given f , the set of µ parametrizing isomorphism classes of Ff,µ 

is a torsor over H2(G1, k
×); 

(iii) The structures of a monoidal category on (CG, ⊗) are parametrized 
by H3(G, k×)/Out(G), where Out(G) is the group of outer automor­
phisms of G. 5 

Remark 1.7.2. The same results, including Proposition 1.7.1, are 
valid if we replace the categories Cω by their “linear spans” Vecω , and G G

require that the monoidal functors we consider are additive. To see 
this, it is enough to note that by definition, for any morphism η of 
monoidal functors, η1 �= 0, so equation (1.7.3) (with h = g−1) implies 

5Recall that the group Inn(G) of inner automorphisms of a group G acts trivially 
on H∗(G, A) (for any coefficient group A), and thus the action of the group Aut(G) 
on H∗(G, A) factors through Out(G). 
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that all ηg must be nonzero. Thus, if a morphism η : Ff,µ Ff �,µ�→
exists, then it is an isomorphism, and we must have f = f �. 

Remark 1.7.3. The above discussion implies that in the definition 
of the categories Cω and Vecω it may be assumed without loss of G G, 
generality that the cocycle ω is normalized, i.e., ω(g, 1, h) = 1, and 
thus lδg = rδg = Id (which is convenient in computations). Indeed, we 
claim that any 3-cocycle ω is cohomologous to a normalized one. To 
see this, it is enough to alter ω by dividing it by ∂2µ, where µ is any 
2-cochain such that µ(g, 1) = ω(g, 1, 1), and µ(1, h) = ω(1, 1, h)−1 . 

Example 1.7.4. Let G = Z/nZ where n > 1 is an integer, and k = C. 
Consider the cohomology of Z/nZ. 

Since H i(Z/nZ, C) = 0 for all i > 0, writing the long exact sequence 
of cohomology for the short exact sequence of coefficient groups 

0 −→ Z −→ C −→ C× = C/Z −→ 0, 

we obtain a natural isomorphism H i(Z/nZ, C×) ∼= H i+1(Z/nZ, Z). 
It is well known [Br] that the graded ring H∗(Z/nZ, Z) is (Z/nZ)[x] 

where x is a generator in degree 2. Moreover, as a module over Aut(Z/nZ) = 
(Z/nZ)×, we have H2(Z/nZ, Z) ∼ There­= H1(Z/nZ, C×) = (Z/nZ)∨. 
fore, using the graded ring structure, we find that H2m(Z/nZ, Z) ∼= 
H2m−1(Z/nZ, C×) = ((Z/nZ)∨)⊗m as an Aut(Z/nZ)-module. In par­
ticular, H3(Z/nZ, C×) = ((Z/nZ)∨)⊗2 . 

This consideration shows that if n = 2 then the categorification 
problem has 2 solutions (the cases of trivial and non-trivial cocycle), 
while if n is a prime greater than 2 then there are 3 solutions: the trivial 
cocycle, and two non-trivial cocycles corresponding (non-canonically) 
to quadratic residues and non-residues mod n. 

Let us give an explicit formula for the 3-cocycles on Z/nZ. Modulo 
coboundaries, these cocycles are given by 

si(j+k−(j+k)�) 

(1.7.5) φ(i, j, k) = ε n , 

where ε is a primitive nth root of unity, s ∈ Z/nZ, and for an integer 
m we denote by m� the remainder of division of m by n. 

Exercise 1.7.5. Show that when s runs over Z/nZ this formula defines 
cocycles representing all cohomology classes in H3(Z/nZ, C×). 

1.8. MacLane’s strictness theorem. As we have seen above, it is 
much simpler to work with monoidal categories in which the associa­
tivity and unit constrains are the identity maps. 

Definition 1.8.1. A monoidal category C is strict if for all objects 
X, Y, Z in C one has equalities (X ⊗ Y ) ⊗ Z = X ⊗ (Y ⊗ Z) and 
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X ⊗ 1 = X = 1 ⊗ X, and the associativity and unit constraints are the 
identity maps. 

Example 1.8.2. The category End(C) endofunctors of a category C is 
strict. 

Example 1.8.3. Let Sets be the category whose objects are nonnega­
tive integers, and Hom(m, n) is the set of maps from {0, ..., m − 1} to 
{0, ..., n − 1}. Define the tensor product functor on objects by m⊗n = 
mn, and for f1 : m1 → n1, f2 : m2 → n2, define f1 ⊗ f2 : m1m2 → n1n2 

by 

(f1 ⊗ f2)(m2x + y) = n2f1(x)+ f2(y), 0 ≤ x ≤ m1 − 1, 0 ≤ y ≤ m2 − 1. 

Then Sets is a strict monoidal category. Moreover, we have a natural 
inclusion Sets � Sets, which is obviously a monoidal equivalence. → 

Example 1.8.4. This is really a linear version of the previous example. 
Let k−Vec be the category whose objects are nonnegative integers, and 
Hom(m, n) is the set of matrices with m columns and n rows over some 
field k (and the composition of morphisms is the product of matrices). 
Define the tensor product functor on objects by m ⊗ n = mn, and for 
f1 : m1 n1, f2 : m2 n2, define f1 ⊗ f2 : m1m2 n1n2 to be the → → →
Kronecker product of f1 and f2. Then k − Vec is a strict monoidal 
category. Moreover, we have a natural inclusion k − Vec � k − Vec, →
which is obviously a monoidal equivalence. 

Similarly, for any group G one can define a strict monoidal category 
k − VecG, whose objects are Z+-valued functions on G with finitely 
many nonzero values, and which is monoidally equivalent to k − VecG. 
We leave this definition to the reader. 

On the other hand, some of the most important monoidal categories, 
such as Sets, Vec, VecG, Sets, Vec, VecG, should be regarded as non-
strict (at least if one defines them in the usual way). It is even more 
indisputable that the categories Vecω , Vecω for cohomologically non-G G 
trivial ω are not strict. 

However, the following remarkable theorem of MacLane implies that 
in practice, one may always assume that a monoidal category is strict. 

Theorem 1.8.5. Any monoidal category is monoidally equivalent to a 
strict monoidal category. 

Proof. The proof presented below was given in [JS]. We will establish 
an equivalence between C and the monoidal category of right C-module 
endofunctors of C, which we will discuss in more detail later. The non-
categorical algebraic counterpart of this result is of course the fact that 
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every monoid M is isomorphic to the monoid consisting of maps from 
M to itself commuting with the right multiplication. 

For a monoidal category C, let C � be the monoidal category defined 
as follows. The objects of C are pairs (F, c) where F : C → C is a 
functor and 

cX,Y : F (X) ⊗ Y 
∼
F (X ⊗ Y )−→ 

is a functorial isomorphism, such that the following diagram is com­
mutative for all objects X, Y, Z in C: 
(1.8.1) 

�����������

(
�
F 
�� 
(X) ⊗ Y ) ⊗

��
Z 
������������� 

cX,Y ⊗IdZ aF (X),Y,Z 

F (X ⊗ Y ) ⊗ Z F (X) ⊗ (Y ⊗ Z) 

cX⊗Y ,Z cX,Y ⊗Z 

F ((X ⊗ Y ) ⊗ Z) �� F (X ⊗ (Y ⊗ Z)). 
F (aX,Y,Z ) 

A morphism θ : (F 1, c1) → (F 2, c2) in C � is a natural transformation 
θ : F 1 F 2 such that the following square commutes for all objects→
X, Y in C: 

1c

(1.8.2) F 1(X) ⊗ Y 
X,Y 

F 1(X ⊗ Y ) 

θX ⊗IdY θX⊗Y 

F2(X) ⊗ Y F 2(X ⊗ Y )
2cX,Y 

Composition of morphisms is the vertical composition of natural trans­
formations. The tensor product of objects is given by (F 1, c1) ⊗
(F 2, c2) = (F 1F 2, c) where c is given by a composition 

1 2c
F2(X),Y F1(cX,Y ) 

(1.8.3) F 1F 2(X) ⊗ Y −−−−−→ F 1(F 2(X) ⊗ Y ) −−−−−→ F 1F 2(X ⊗ Y ) 

for all X, Y ∈ C, and the tensor product of morphisms is the horizontal 
composition of natural transformations. Thus C � is a strict monoidal 
category (the unit object is the identity functor). 

Consider now the functor of left multiplication L : C → C � given by 

L(X) = (X ⊗ •, aX,•, ), L(f) = f ⊗ •. •

Note that the diagram (1.8.1) for L(X) is nothing but the pentagon 
diagram (1.1.2). 

We claim that this functor L is a monoidal equivalence. 
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First of all, L essentially surjective: it is easy to check that for any 
(F, c) ∈ C �, (F, c) is isomorphic to L(F (1)). 
Let us now show that L is fully faithful. Let θ L(X) L(Y ) be a : 

(1.8.4) X X 1 Y 1 Y.−−→ ⊗ − ⊗ −→ → 

We claim that for all Z in one has θ f Id (so that θ L(f) andC ⊗= = Z Z 

L is full). Indeed, this follows from the commutativity of the diagram 

1− Id⊗ Id lr aZ ⊗X,1,Z X ZX Z (X 1) Z X Z⊗ −−−−−→ ⊗ ⊗ −−−−→ ⊗⏐⏐� 

→
morphism in C. Define f : X Y to be the composite→ 

r−1 
X θ1 rY 

(1.8.5) 
X ⏐⏐�⏐⏐� ⏐⏐�

−−−−→ X ⊗ (1 ⊗ Z) 

θ1⊗IdZf⊗IdZ θ1⊗Z θZ 

Y ⊗ Z −−−−−→ (Y ⊗ 1) ⊗ Z −−−
aY,1,Z IdY ⊗lZ 

Y ⊗ Z, 
r−1 ⊗IdZ 

Y ⊗ (1 ⊗ Z) −−−−→
Y 

where the rows are the identity morphisms by the triangle axiom (1.2.1), 
the left square commutes by the definition of f , the right square com­
mutes by naturality of θ, and the central square commutes since θ is a 
morphism in C �. 
Next, if L(f) = L(g) for some morphisms f, g in C then, in particular 

f ⊗ Id1 = g ⊗ Id1 so that f = g. Thus L is faithful. 
Finally, we define a monoidal functor structure JX,Y : L(X) L(Y ) 

∼◦ −→
L(X ⊗ Y ) on L by 

JX,Y = a−1 
• : X ⊗ (Y ⊗ •), ((IdX ⊗ aY, •) ◦ aX,Y ⊗•,•)X,Y, •,

∼
).−→ ((X ⊗ Y ) ⊗ •, aX⊗Y,•,•

The diagram (1.8.2) for the latter natural isomorphism is just the pen­
tagon diagram in C. For the functor L the hexagon diagram (1.4.1) 
in the definition of a monoidal functor also reduces to the pentagon 
diagram in C. The theorem is proved. � 

Remark 1.8.6. The nontrivial nature of MacLane’s strictness theo­
rem is demonstrated by the following instructive example, which shows 
that even though a monoidal category is always equivalent to a strict 
category, it need not be isomorphic to one. (By definition, an iso­
morphism of monoidal categories is a monoidal equivalence which is an 
isomorphism of categories). 

ωNamely, let C be the category CG. If ω is cohomologically nontrivial, 
this category is clearly not isomorphic to a strict one. However, by 
Maclane’s strictness theorem, it is equivalent to a strict category C �. 
In fact, in this example a strict category C � monoidally equivalent 

to C can be constructed quite explicitly, as follows. Let G� be another 
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group with a surjective homomorphism f : G� G such that the 3­
cocycle f ∗ω is cohomologically trivial. Such G�→always exists, e.g., a 
free group (recall that the cohomology of a free group in degrees higher 
than 1 is trivial, see [Br]). Let C � be the category whose objects δg 

are labeled by elements of G�, Hom(δg, δh) = A if g, h have the same 
image in G, and Hom(δg, δh) = ∅ otherwise. This category has an 
obvious tensor product, and a monoidal structure defined by the 3­
cocycle f ∗ω. We have an obvious monoidal functor F : C � → C defined 
by the homomorphism G� G, and it is an equivalence, even though →
not an isomorphism. However, since the cocycle f ∗ω is cohomologically 
trivial, the category C � is isomorphic to the same category with the 
trivial associativity isomorphism, which is strict. 

Remark 1.8.7. 6 A category is called skeletal if it has only one object 
in each isomorphism class. The axiom of choice implies that any cate­
gory is equivalent to a skeletal one. Also, by MacLane’s theorem, any 
monoidal category is monoidally equivalent to a strict one. However, 
Remark 1.8.6 shows that a monoidal category need not be monoidally 
equivalent to a category which is skeletal and strict at the same time. 
Indeed, as we have seen, to make a monoidal category strict, it may 
be necessary to add new objects to it (which are isomorphic, but not 
equal to already existing ones). In fact, the desire to avoid adding 
such objects is the reason why we sometimes use nontrivial associa­
tivity isomorphisms, even though MacLane’s strictness theorem tells 
us we don’t have to. This also makes precise the sense in which the 
categories Sets, Vec, VecG, are “more strict” than the category Vecω 

G 
for cohomologically nontrivial ω. Namely, the first three categories 
are monoidally equivalent to strict skeletal categories Sets, Vec, VecG, 
while the category Vecω is not monoidally equivalent to a strict skeletal G 
category. 

Exercise 1.8.8. Show that any monoidal category C is monoidally 
equivalent to a skeletal monoidal category C. Moreover, C can be chosen 
in such a way that lX , rX = IdX for all objects X ∈ C. 
Hint. Without loss of generality one can assume that 1 ⊗ X = 

X ⊗ 1 = X and lX , rX = IdX for all objects X ∈ C. Now in every 
isomorphism class i of objects of C fix a representative Xi, so that X1 = 
1, and for any two classes i, j fix an isomorphism µij : Xi ⊗ Xj → Xi j ,·
so that µi1 = µ1i = IdXi . Let C be the full subcategory of C consisting 
of the objects Xi, with tensor product defined by Xi⊗Xj = Xi j , and ·

6This remark is borrowed from the paper [Kup2]. 
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with all the structure transported using the isomorphisms µij . Then C
is the required skeletal category, monoidally equivalent to C. 
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1.9. The MacLane coherence theorem. In a monoidal category, 
one can form n-fold tensor products of any ordered sequence of objects 
X1, ..., Xn. Namely, such a product can be attached to any parenthe­
sizing of the expression X1 ⊗ ...⊗Xn, and such products are, in general, 
distinct objects of C. 
However, for n = 3, the associativity isomorphism gives a canonical 

identification of the two possible parenthesizings, (X1 ⊗ X2) ⊗ X3 and 
X1 ⊗ (X2 ⊗ X3). An easy combinatorial argument then shows that one 
can identify any two parenthesized products of X1, ..., Xn, n ≥ 3, using 
a chain of associativity isomorphisms. 

We would like to say that for this reason we can completely ignore 
parentheses in computations in any monoidal category, identifying all 
possible parenthesized products with each other. But this runs into the 
following problem: for n ≥ 4 there may be two or more different chains 
of associativity isomorphisms connecting two different parenthesizings, 
and a priori it is not clear that they provide the same identification. 
Luckily, for n = 4, this is settled by the pentagon axiom, which 

states exactly that the two possible identifications are the same. But 
what about n > 4? 

This problem is solved by the following theorem of MacLane, which 
is the first important result in the theory of monoidal categories. 

Theorem 1.9.1. (MacLane’s Coherence Theorem) [ML] Let X1, . . . , Xn ∈ 
C. Let P1, P2 be any two parenthesized products of X1, ..., Xn (in this 
order) with arbitrary insertions of unit objects 1. Let f, g : P1 P2→
be two isomorphisms, obtained by composing associativity and unit 
isomorphisms and their inverses possibly tensored with identity mor­
phisms. Then f = g. 

Proof. We derive this theorem as a corollary of the MacLane’s strictness 
Theorem 1.8.5. Let L : C → C � be a monoidal equivalence between C
and a strict monoidal category C �. Consider a diagram in C representing 
f and g and apply L to it. Over each arrow of the resulting diagram 
representing an associativity isomorphism, let us build a rectangle as 
in (1.4.1), and do similarly for the unit morphisms. This way we obtain 
a prism one of whose faces consists of identity maps (associativity and 
unit isomorphisms in C �) and whose sides are commutative. Hence, the 
other face is commutative as well, i.e., f = g. � 

As we mentioned, this implies that any two parenthesized products 
of X1, ..., Xn with insertions of unit objects are indeed canonically iso­
morphic, and thus one can safely identify all of them with each other 



26 

and ignore bracketings in calculations in a monoidal category. We will 
do so from now on, unless confusion is possible. 

1.10. Rigid monoidal categories. Let (C, ⊗, 1, a, ι) be a monoidal 
category, and let X be an object of C. In what follows, we suppress 
the unit morphisms l, r. 

Definition 1.10.1. A right dual of an object X in C is an object X∗ 

in C equipped with morphisms evX : X∗ ⊗ X → 1 and coevX : 1 →
X ⊗ X∗, called the evaluation and coevaluation morphisms, such that 
the compositions 

(1.10.1) 

X 
coevX ⊗IdX aX,X∗,X 

X ⊗ (X∗ ⊗ X) 
IdX ⊗evX −−−−−−→ (X ⊗ X∗) ⊗ X −−−−−→ −−−−−→ X, 

(1.10.2) 
a−1 

X∗ IdX∗ ⊗coevX X∗,X,X∗ evX ⊗IdX∗ 
X∗−−−−−−−→ X∗ ⊗ (X ⊗ X∗) −−−−−→ (X∗ ⊗ X) ⊗ X∗ −−−−−−→ 

are the identity morphisms. 

Definition 1.10.2. A left dual of an object X in C is an object ∗X in C
equipped with morphisms ev�X : X ⊗ ∗X → 1 and coev�X : 1 → ∗X ⊗ X 
such that the compositions 

(1.10.3) 
IdX ⊗coev� a−1 

X ⊗IdXX,∗X,X ev�XX −−−−−−→ X ⊗ (∗X ⊗ X) −−−−−→ (X ⊗ ∗X) ⊗ X −−−−−→ X, 

(1.10.4) 
X ⊗Id∗X Id∗X ⊗ev�coev� a∗X,X,∗X X∗X −−−−−−−→ (∗X ⊗ X) ⊗ ∗X −−−−−→ ∗X ⊗ (X ⊗ ∗X) −−−−−−→ X∗ 

are the identity morphisms. 

Remark 1.10.3. It is obvious that if X∗ is a right dual of an object 
X then X is a left dual of X∗ with ev�X∗ = evX and coev�X∗ = coevX , 
and vice versa. Also, in any monoidal category, 1∗ = ∗1 = 1 with the 
structure morphisms ι and ι−1 . Also note that changing the order of 
tensor product switches right duals and left duals, so to any statement 
about right duals there corresponds a symmetric statement about left 
duals. 

Proposition 1.10.4. If X ∈ C has a right (respectively, left) dual 
object, then it is unique up to a unique isomorphism. 

Proof. Let X1 
∗, X2 

∗ be two right duals to X. Denote by e1, c1, e2, c2 the 
corresponding evaluation and coevaluation morphisms. Then we have 
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a morphism α : X1 
∗ X2 

∗ defined as the composition→ 

IdX∗ a−1 
,X,X∗ e1⊗IdX∗ 

1 
⊗c2 X1 

∗ 
2 2X1 

∗ −−−−−→ X1 
∗ ⊗ (X ⊗ X2 

∗) −−−−−→ (X1 
∗ ⊗ X) ⊗ X2 

∗ −−−−−→ X2 
∗.


Similarly one defines a morphism β : X2 
∗ X1 

∗. We claim that β α
→ ◦
and α β are the identity morphisms, so α is an isomorphism. Indeed◦
consider the following diagram: 

X1 
∗ Id ⊗c1 

X1 
∗ ⊗ X ⊗ X1 

∗ 

Id 
Id ⊗c2 Id ⊗c2⊗Id 

X1 
∗ ⊗ X ⊗ X2 

∗ 
Id ⊗c1 

X1 
∗ ⊗ X ⊗ X2 

∗ ⊗ X ⊗ X1
∗ 
Id ⊗e2⊗Id 

X1 
∗ ⊗ X ⊗ X1 

∗ 

e1⊗Id e1⊗Id e1⊗Id 

X2 
∗ 

Id ⊗c1 
X2 

∗ ⊗ X ⊗ X1 
∗ 

e2⊗Id 
X1 

∗. 

Here we suppress the associativity constraints. It is clear that the three 
small squares commute. The triangle in the upper right corner com­
mutes by axiom (1.10.1) applied to X2 

∗. Hence, the perimeter of the 
diagram commutes. The composition through the top row is the iden­
tity by (1.10.2) applied to X1 

∗. The composition through the bottom 
row is β α and so β α = Id. The proof of α β = Id is completely◦ ◦ ◦
similar. 

Moreover, it is easy to check that α : X1 
∗ X2 

∗ is the only iso­→
morphism which preserves the evaluation and coevaluation morphisms. 
This proves the proposition for right duals. The proof for left duals is 
similar. � 

Exercise 1.10.5. Fill in the details in the proof of Proposition 1.10.4. 

If X, Y are objects in C which have right duals X∗, Y ∗ and f : X → Y 
is a morphism, one defines the right dual f∗ : Y ∗ X∗ of f as the→ 
composition 

a−1 

Y ∗ IdY ∗ ⊗coevX Y ∗,X,X∗ 

(1.10.5) 
−−−−−−−→ Y ∗ ⊗ (X ⊗ X∗) −−−−−→ (Y ∗ ⊗ X) ⊗ X∗ 

(IdY ∗ ⊗f)⊗IdX∗ evY ⊗IdX∗ −−−−−−−−−→ (Y ∗ ⊗ Y ) ⊗ X∗ −−−−−−→ X∗. 

Similarly, if X, Y are objects in C which have left duals ∗X, ∗Y and 
f : X Y is a morphism, one defines the left dual ∗f : ∗Y ∗X of f→ → 
as the composition 

X ⊗Id∗Ycoev� a∗X,X,∗Y 

(1.10.6) 
∗Y −−−−−−−→ (∗X ⊗ X) ⊗ ∗Y −−−−−→ ∗X ⊗ (X ⊗ ∗Y ) 

Id∗X ⊗(f⊗Id∗Y ) Id∗X ⊗ev�Y −−−−−−−−−→ ∗X ⊗ (Y ⊗ ∗Y ) −−−−−−→ ∗X. 
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Exercise 1.10.6. Let C, D be monoidal categories. Suppose 

(F, J) : C → D 

is a monoidal functor with the corresponding isomorphism ϕ : 1 →
F (1). Let X be an object in C with a right dual X∗. Prove that 
F (X∗) is a right dual of F (X) with the evaluation and coevaluation 
given by 

JX,X∗ F (evX ) 
evF (X) : F (X∗) ⊗ F (X) −−−→ F (X∗ ⊗ X) −−−−→ F (1) = 1, 

J−1 
F (coevX ) X,X∗ 

coevF (X) : 1 = F (1) −−−−−→ F (X ⊗ X∗) −−−→ F (X) ⊗ F (X∗). 

State and prove a similar result for left duals. 

Proposition 1.10.7. Let C be a monoidal category. 
(i) Let U, V, W be objects in C admitting right (respectively, left) 

duals, and let f : V W , g : U V be morphisms in C. Then→ →
(f g)∗ = g∗ f ∗ (respectively, ∗(f g) = ∗g ∗f).◦ ◦ ◦ ◦

(ii) If U, V have right (respectively, left) duals then the object V ∗ ⊗U∗ 

(respectively, ∗V ⊗ ∗U) has a natural structure of a right (respectively, 
left) dual to U ⊗ V . 

Exercise 1.10.8. Prove Proposition 1.10.7. 

Proposition 1.10.9. (i) If an object V has a right dual V ∗ then there 
are natural adjunction isomorphisms 

(1.10.7) Hom(U ⊗ V, W ) 
∼

Hom(U, W ⊗ V ∗),−→ 

(1.10.8) Hom(V ∗ ⊗ U, W ) 
∼

Hom(U, V ⊗ W ).−→ 

Thus, the functor •⊗ V ∗ is right adjoint to •⊗ V and V ⊗• is right 
adjoint to V ∗ ⊗ •. 

(ii) If an object V has a left dual ∗V then there are natural adjunction 
isomorphisms 

∼
(1.10.9) Hom(U ⊗ ∗V, W ) −→ Hom(U, W ⊗ V ), 

(1.10.10) Hom(V ⊗ U, W ) 
∼

Hom(U, ∗V ⊗ W ).−→ 

Thus, the functor •⊗ V is right adjoint to •⊗ ∗V and ∗V ⊗• is right 
adjoint to V ⊗ •). 

Proof. The isomorphism in (1.10.7) is given by 

f �→ (f ⊗ IdV ∗ ) ◦ (IdU ⊗ coevV ) 

and has the inverse 

g �→ (IdW ⊗ evV ) (g ⊗ IdV ).◦ 
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The other isomorphisms are similar, and are left to the reader as an 
exercise. 7 � 

Remark 1.10.10. Proposition 1.10.9 provides another proof of Propo­
sition 1.10.4. Namely, setting U = 1 and V = X in (1.10.8), we obtain 
a natural isomorphism Hom(X∗, W ) ∼ Hom(1, X ⊗ W ) for any right = 
dual X∗ of X. Hence, if Y1, Y2 are two such duals then there is a 
natural isomorphism Hom(Y1, W ) ∼ Hom(Y2, W ), whence there is a = 
canonical isomorphism Y1 

∼= Y2 by Yoneda’s Lemma. The proof for left 
duals is similar. 

Definition 1.10.11. A monoidal category C is called rigid if every 
object X ∈ C has a right dual object and a left dual object. 

Example 1.10.12. The category Vec of finite dimensional k-vector 
spaces is rigid: the right and left dual to a finite dimensional vector 
space V are its dual space V ∗, with the evaluation map evV : V ∗ ⊗V →
k being the contraction, and the coevaluation map coevV : k → V ⊗V ∗ 

being the usual embedding. On the other hand, the category Vec of 
all k-vector spaces is not rigid, since for infinite dimensional spaces 
there is no coevaluation maps (indeed, suppose that c : k V ⊗ Y→
is a coevaluation map, and consider the subspace V � of V spanned by 
the first component of c(1); this subspace finite dimensional, and yet 
the composition V → V ⊗ Y ⊗ V → V , which is supposed to be the 
identity map, lands in V � - a contradiction). 

Example 1.10.13. The category Rep(G) of finite dimensional 
k-representations of a group G is rigid: for a finite dimensional rep­
resentation V , the (left or right) dual representation V ∗ is the usual 
dual space (with the evaluation and coevaluation maps as in Example 
1.10.12), and with the G-action given by ρV ∗ (g) = (ρV (g)

−1)∗. Simi­
larly, the category Rep(g) of finite dimensional representations of a Lie 
algebra g is rigid, with ρV ∗ (a) = −ρV (a)

∗. 

Example 1.10.14. The category VecG is rigid if and only if the monoid 
G is a group; namely, δg 

∗ = ∗δg = δg−1 (with the obvious structure 
maps). More generally, for any group G and 3-cocycle ω ∈ Z3(G, k×), 
the category VecωG is rigid. Namely, assume for simplicity that the 
cocycle ω is normalized (as we know, we can do so without loss of 
generality). Then we can define duality as above, and normalize the 
coevaluation morphisms of δg to be the identities. The evaluation mor­
phisms will then be defined by the formula evδg = ω(g, g−1, g). 

7A convenient way to do computations in this and previous Propositions is using 
the graphical calculus (see [K, Chapter XIV]). 
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It follows from Proposition 1.10.4 that in a monoidal category C
with right (respectively, left) duals, one can define the (contravariant) 
right (respectively, left) duality functor C → C by X �→ X∗, f �→ f ∗ 

(respectively, X �→ ∗X, f �→ ∗f) for every object X and morphism f in 
C. By Proposition 1.10.7(ii), these functors are anti-monoidal, in the 
sense that they define monoidal functors C∨ → Cop; hence the functors 
X X∗∗, X ∗∗X are monoidal. Also, it follows from Proposition → →
1.10.9 that the functors of right and left duality, when they are defined, 
are fully faithful (it suffices to use (i) for U = X∗, V = Y, W = 1). 
Moreover, it follows from Remark 1.10.3 that in a rigid monoidal cat­

egory, the functors of right and left duality are mutually quasi-inverse 
monoidal equivalences of categories C∨ → Cop (so for rigid categories, 
the two notions of opposite category are the same up to equivalence). 
This implies that the functors X X∗∗, X ∗∗X are mutually → →
quasi-inverse monoidal autoequivalences. We will see later in Example 
1.27.2 that these autoequivalences may be nontrivial; in particular, it 
is possible that objects V ∗ and ∗V are not isomorphic. 

Exercise 1.10.15. Show that if C, D are rigid monoidal categories, 
F1, F2 : C → D are monoidal functors, and η : F1 → F2 is a morphism 
of monoidal functors, then η is an isomorphism.8 

Exercise 1.10.16. Let A be an algebra. Show that M ∈ A − bimod 
has a left (respectively, right) dual if and only if it is finitely generated 
projective when considered as a left (respectively, right) A-module. 
Sinilarly, if A is commutative, M ∈ A − mod has a left and right dual 
if and only if it is finitely generated projective. 

1.11. Invertible objects. Let C be a rigid monoidal category. 

Definition 1.11.1. An object X in C is invertible if evX : X∗ ⊗X → 1 
and coevX : 1 → X ⊗ X∗ are isomorphisms. 

Clearly, this notion categorifies the notion of an invertible element 
in a monoid. 

Example 1.11.2. The objects δg in Vecω are invertible. G 

Proposition 1.11.3. Let X be an invertible object in C. Then 
(i) ∗X ∼= X∗ and X∗ is invertible; 
(ii) if Y is another invertible object then X ⊗ Y is invertible. 

Proof. Dualizing coevX and evX we get isomorphisms X ⊗ ∗X = 1∼
and ∗X ⊗ X ∼ 1. = = In any rigid = Hence ∗X ∼ ∗X ⊗ X ⊗ X∗ ∼ X∗. 
category the evaluation and coevaluation morphisms for ∗X can be 

8As we have seen in Remark 1.6.6, this is false for non-rigid categories. 
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defined by ev∗X := ∗coevX and coev∗X := ∗evX , so ∗X is invertible. 
The second statement follows from the fact that evX⊗Y can be defined 
as a composition of evX and evY and similarly coevX⊗Y can be defined 
as a composition of coevY and coevX . � 

Proposition 1.11.3 implies that invertible objects of C form a monoidal 
subcategory Inv(C) of C. 

Example 1.11.4. Gr-categories. Let us classify rigid monoidal cat­
egories C where all objects are invertible and all morphisms are iso­
morphisms. We may assume that C is skeletal, i.e. there is only one 
object in each isomorphism class, and objects form a group G. Also, 
by Proposition 1.2.7, End(1) is an abelian group; let us denote it by 
A. Then for any g ∈ G we can identify End(g) with A, by sending 
f ∈ End(g) to f ⊗ Idg−1 ∈ End(1) = A. Then we have an action of G 
on A by 

a ∈ End(1) �→ g(a) := Idg ⊗ a ∈ End(g). 
Let us now consider the associativity isomorphism. It is defined by a 
function ω : G × G × G A. The pentagon relation gives →
(1.11.1)

ω(g1g2, g3, g4)ω(g1, g2, g3g4) = ω(g1, g2, g3)ω(g1, g2g3, g4)g1(ω(g2, g3, g4)),


for all g1, g2, g3, g4 ∈ G, which means that ω is a 3-cocycle of G with 
coefficients in the (generally, nontrivial) G-module A. We see that any 
such 3-cocycle defines a rigid monoidal category, which we will call 
Cω (A). The analysis of monoidal equivalences between such categories G

is similar to the case when A is a trivial G-module, and yields that 
for a given group G and G-module A, equivalence classes of Cω areG 
parametrized by H3(G, A)/Out(G). 

Categories of the form Cω (A) are called Gr-categories, and were stud-G

ied in [Si]. 

1.12. Tensor and multitensor categories. Now we will start con­
sidering monoidal structures on abelian categories. For the sake of 
brevity, we will not recall the basic theory of abelian categories; let us 
just recall the Freyd-Mitchell theorem stating that abelian categories 
can be characterized as full subcategories of categories of left modules 
over rings, which are closed under taking direct sums, as well as ker­
nels, cokernels, and images of morphisms. This allows one to visualize 
the main concepts of the theory of abelian categories in terms of the 
classical theory of modules over rings. 
Recall that an abelian category C is said to be k-linear (or defined 

over k) if for any X, Y in C, Hom(X, Y ) is a k-vector space, and com­
position of morphisms is bilinear. 
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Definition 1.12.1. A k-linear abelian category is said to be locally 
finite if it is essentially small9, and the following two conditions are 
satisfied: 

(i) for any two objects X, Y in C, the space Hom(X, Y ) is finite 
dimensional; 
(ii) every object in C has finite length. 

Almost all abelain categories we will consider will be locally finite. 

Proposition 1.12.2. In a locally finite abelian category C, Hom(X, Y ) = 
0 if X, Y are simple and non-isomorphic, and Hom(X, X) = k for any 
simple object X. 

Proof. Recall Schur’s lemma: if X, Y are simple objects of an abelian 
category, and f ∈ Hom(X, Y ), then f = 0 or f is an isomorphism. This 
implies that Hom(X, Y ) = 0 if X, Y are simple and non-isomorphic, 
and Hom(X, X) is a division algebra; since k is algebraically closed, 
condition (i) implies that Hom(X, X) = k for any simple object X ∈ 
C. � 

Also, the Jordan-Hölder and Krull-Schmidt theorems hold in any 
locally finite abelian category C. 

Definition 1.12.3. Let C be a locally finite k-linear abelian rigid 
monoidal category. We will call C a multitensor category over k if 
the bifunctor ⊗ is bilinear on morphisms. If in addition End(1) ∼ k= 
then we will call C a tensor category. 
A multifusion category is a semisimple multitensor category with 

finitely many isomorphism simple objects. A fusion category is a semisim­
ple tensor category with finitely many isomorphism simple objects. 

Example 1.12.4. The categories Vec of finite dimensional k-vector 
spaces, Rep(G) of finite dimensional k-representations of a group G 
(or algebraic representations of an affine algebraic group G), Rep(g) 
of finite dimensional representations of a Lie algebra g, and Vecω ofG 
G-graded finite dimensional k-vector spaces with associativity defined 
by a 3-cocycle ω are tensor categories. If G is a finite group, Rep(G) 
is a fusion category. In particular, Vec is a fusion category. 

Example 1.12.5. Let A be a finite dimensional semisimple algebra 
over k. Let A−bimod be the category of finite dimensional A-bimodules 
with bimodule tensor product over A, i.e., 

(M, N) �→ M ⊗A N. 

9Recall that a category is called essentially small if its isomorphism classes of 
objects form a set. 
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Then C is a multitensor category with the unit object 1 = A, the left 
dual defined by M �→ Hom(AM, AA), and the right dual defined by 
M �→ Hom(MA, AA).

10 The category C is tensor if and only if A is 
simple, in which case it is equivalent to k − Vec. More generally, if 
A has n matrix blocks, the category C can be alternatively described 
as the category whose objects are n-by-n matrices of vector spaces, 
V = (Vij ), and the tensor product is matrix multiplication: 

(V ⊗ W )il = ⊕jn 
=1Vij ⊗ Wjl. 

This category will be denoted by Mn(Vec). It is a multifusion category. 
In a similar way, one can define the multitensor category Mn(C) of 

n-by-n matrices of objects of a given multitensor category C. If C is a 
multifusion category, so is Mn(C). 

10Note that if A is a finite dimensional non-semisimple algebra then the category 
of finite dimensional A-bimodules is not rigid, since the duality functors defined as 
above do not satisfy rigidity axioms (cf. Exercise 1.10.16). 
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1.13. Exactness of the tensor product. 

Proposition 1.13.1. (see [BaKi, 2.1.8]) Let C be a multitensor cate­
gory. Then the bifunctor ⊗ : C × C → C is exact in both factors (i.e., 
biexact). 

Proof. The proposition follows from the fact that by Proposition 1.10.9, 
the functors V ⊗ and ⊗V have left and right adjoint functors (the 
functors of tensoring with the corresponding duals), and any functor 
between abelian categories which has a left and a right adjoint functor 
is exact. � 

Remark 1.13.2. The proof of Proposition 1.13.1 shows that the bi­
additivity of the functor ⊗ holds automatically in any rigid monoidal 
abelian category. However, this is not the case for bilinearity of ⊗, 
and thus condition of bilinearity of tensor product in the definition of 
a multitensor category is not redundant. 

This may be illustrated by the following example. Let C be the 
category of finite dimensional C-bimodules in which the left and right 
actions of R coincide. This category is C-linear abelian; namely, it is 
semisimple with two simple objects C+ = 1 and C−, both equal to 
C as a real vector space, with bimodule structures (a, b)z = azb and 
(a, b)z = azb, respectively. It is also also rigid monoidal, with ⊗ being 
the tensor product of bimodules. But the tensor product functor is not 
C-bilinear on morphisms (it is only R-bilinear). 
Definition 1.13.3. A multiring category over k is a locally finite k-
linear abelian monoidal category C with biexact tensor product. If in 
addition End(1) = k, we will call C a ring category. 

Thus, the difference between this definition and the definition of a 
(multi)tensor category is that we don’t require the existence of duals, 
but instead require the biexactness of the tensor product. Note that 
Proposition 1.13.1 implies that any multitensor category is a multiring 
category, and any tensor category is a ring category. 

Corollary 1.13.4. For any pair of morphisms f1, f2 in a multiring 
category C one has Im(f1 ⊗ f2) = Im(f1) ⊗ Im(f2). 

Proof. Let I1, I2 be the images of f1, f2. Then the morphisms fi : Xi →
Yi, i = 1, 2, have decompositions Xi → Ii → Yi, where the sequences 

Xi → Ii → 0, 0 → Ii → Yi 

are exact. Tensoring the sequence X1 → I1 → 0 with I2, by Proposition 
1.13.1, we get the exact sequence 

X1 ⊗ I2 → I1 ⊗ I2 → 0 
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Tenosring X1 with the sequence X2 I2 0, we get the exact se­→ → 
quence 

X1 ⊗ X2 → X1 ⊗ I2 → 0. 

Combining these, we get an exact sequence 

X1 ⊗ X2 → I1 ⊗ I2 → 0. 

Arguing similarly, we show that the sequence 

0 I1 ⊗ I2 → Y1 ⊗ Y2→ 

is exact. This implies the statement. � 

Proposition 1.13.5. If C is a multiring category with right duals, then 
the right dualization functor is exact. The same applies to left duals. 

Proof. Let 0 X Y Z 0 be an exact sequence. We need to → → → →
show that the sequence 0 Z∗ Y ∗ X∗ 0 is exact. Let T be → → → →
any object of C, and consider the sequence 

0 Hom(T, Z∗) Hom(T, Y ∗) Hom(T,X∗).→ → → 

By Proposition 1.10.9, it can be written as 

0 Hom(T ⊗ Z, 1) Hom(T ⊗ Y, 1) Hom(T ⊗ X, 1),→ → → 

which is exact, since the sequence 

T ⊗ X T ⊗ Y T ⊗ Z 0→ → → 

is exact, by the exactness of the functor T ⊗. This implies that the 
sequence 0 Z∗ Y ∗ X∗ is exact. → → →
Similarly, consider the sequence


0 Hom(X∗, T ) Hom(Y ∗, T ) Hom(Z∗, T ).
→ → → 

By Proposition 1.10.9, it can be written as 

0 Hom(1, X ⊗ T ) Hom(1, Y ⊗ T ) Hom(1, Z ⊗ T ),→ → → 

which is exact since the sequence 

0 X ⊗ T Y ⊗ T Z ⊗ T→ → → 

is exact, by the exactness of the functor ⊗T . This implies that the 
sequence Z∗ Y ∗ X∗ 0 is exact. �→ → → 

Proposition 1.13.6. Let P be a projective object in a multiring cate­
gory C. If X ∈ C has a right dual, then the object P ⊗ X is projective. 
Similarly, if X ∈ C has a left dual, then the object X ⊗ P is projective. 
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Proof. In the first case by Proposition 1.10.9 we have Hom(P ⊗X, Y ) = 
Hom(P, Y ⊗X∗), which is an exact functor of Y , since the functors ⊗X∗ 

and Hom(P, ) are exact. So P ⊗ X is projective. The second case is •
similar. � 

Corollary 1.13.7. If C multiring category with right duals, then 1 ∈ C 
is a projective object if and only if C is semisimple. 

Proof. If 1 is projective then for any X ∈ C, X ∼= 1 ⊗ X is projective. 
This implies that C is semisimple. The converse is obvious. � 

1.14. Quasi-tensor and tensor functors. 

Definition 1.14.1. Let C, D be multiring categories over k, and F : 
C → D be an exact and faithful functor. 

(i) F is said to be a quasi-tensor functor if it is equipped with a 
functorial isomorphism J : F ( ) ⊗ F ( ) F (• ⊗ •), and F (1) = 1.• • →
(ii) A quasi-tensor functor (F, J) is said to be a tensor functor if J 

is a monoidal structure (i.e., satisfies the monoidal structure axiom). 

Example 1.14.2. The functors of Examples 1.6.1,1.6.2 and Subsection 
1.7 (for the categories Vecω 

G) are tensor functors. The identity functor 
Vecω1 V ecω2 for non-cohomologous 3-cocycles ω1, ω2 is not a tensor G G→
functor, but it can be made quasi-tensor by any choice of J . 

1.15. Semisimplicity of the unit object. 

Theorem 1.15.1. In any multiring category, End(1) is a semisimple 
algebra, so it is isomorphic to a direct sum of finitely many copies of 
k. 

Proof. By Proposition 1.2.7, End(1) is a commutative algebra, so it is 
sufficient to show that for any a ∈ End(1) such that a2 = 0 we have 
a = 0. Let J = Im(a). Then by Corollary 1.13.4 J ⊗ J = Im(a ⊗ a) = 
Im(a2 ⊗ 1) = 0. 

Now let K = Ker(a). Then by Corollary 1.13.4, K ⊗ J is the image 
of 1 ⊗ a on K ⊗ 1. But since K ⊗ 1 is a subobject of 1 ⊗ 1, this is the 
same as the image of a ⊗ 1 on K ⊗ 1, which is zero. So K ⊗ J = 0. 
Now tensoring the exact sequence 0 K 1 J 0 with J ,→ → → →

and applying Proposition 1.13.1, we get that J = 0, so a = 0. � 

Let {pi}i∈I be the primitive idempotents of the algebra End(1). Let 
1i be the image of pi. Then we have 1 = ⊕i∈I 1i. 

Corollary 1.15.2. In any multiring category C the unit object 1 is 
isomorphic to a direct sum of pairwise non-isomorphic indecomposable 
objects: 1 ∼= ⊕i 1i. 
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Exercise 1.15.3. One has 1i ⊗ 1j = 0 for i =� j. There are canonical 
isomorphisms 1i ⊗ 1i ∼ = 1i∗.= 1i, and 1i ∼

Let Cij := 1i ⊗ C ⊗ 1j . 

Definition 1.15.4. The subcategories Cij will be called the component 
subcategories of C. 

Proposition 1.15.5. Let C be a multiring category. 
(1)	 C = ⊕i,j∈I Cij . Thus every indecomposable object of C belongs 

to some Cij . 
(2)	The tensor product maps Cij × Ckl to Cil, and it is zero unless 

j = k. 
(3)	The categories Cii are ring categories with unit objects 1i (which 

are tensor categories if C is rigid). 
(3)	The functors of left and right duals, if they are defined, map Cij 

to Cji. 

Exercise 1.15.6. Prove Proposition 1.15.5. 

Proposition 1.15.5 motivates the terms “multiring category” and 
“multitensor category”, as such a category gives us multiple ring cate­
gories, respectively tensor categories Cii. 

Remark 1.15.7. Thus, a multiring category may be considered as a 
2-category with objects being elements of I, 1-morphisms from j to i 
forming the category Cij , and 2-morphisms being 1-morphisms in C. 

Theorem 1.15.8. (i) In a ring category with right duals, the unit 
object 1 is simple. 

(ii) In a multiring category with right duals, the unit object 1 is 
semisimple, and is a direct sum of pairwise non-isomorphic simple ob­
jects 1i. 

Proof. Clearly, (i) implies (ii) (by applying (i) to the component cate­
gories Cii). So it is enough to prove (i). 

Let X be a simple subobject of 1 (it exists, since 1 has finite length). 
Let 

(1.15.1) 0 −→ X −→ 1 −→ Y −→ 0 

be the corresponding exact sequence. By Proposition 1.13.5, the right 
dualization functor is exact, so we get an exact sequence 

(1.15.2) 0 −→ Y ∗ −→ 1 −→ X∗ −→ 0. 

Tensoring this sequence with X on the left, we obtain 

(1.15.3) 0 −→ X ⊗ Y ∗ −→ X −→ X ⊗ X∗ −→ 0, 
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Since X is simple and X ⊗X∗ = 0 (because the coevaluation morphism �
is nonzero) we obtain that X ⊗ X∗ = X. So we have a surjective ∼
composition morphism 1 → X ⊗ X∗ → X. From this and (1.15.1) we 
have a nonzero composition morphism 1 � X � 1. Since End(1) = k, 
this morphism is a nonzero scalar, whence X = 

→
1. � 

Corollary 1.15.9. In a ring category with right duals, the evaluation 
morphisms are surjective and the coevaluation morphisms are injective. 

Exercise 1.15.10. Let C be a multiring category with right duals. and 
X ∈ Cij and Y ∈ Cjk be nonzero. 

(a) Show that X ⊗ Y = 0. �
(b) Deduce that length(X ⊗ Y ) ≥ length(X)length(Y ). 
(c) Show that if C is a ring category with right duals then an in­

vertible object in C is simple. 
(d) Let	X be an object in a multiring category with right duals 

such that X ⊗ X∗ ∼ Show that X is invertible. = 1. 

Example 1.15.11. An example of a ring category where the unit ob­
ject is not simple is the category C of finite dimensional representations 
of the quiver of type A2. Such representations are triples (V, W, A), 
where V, W are finite dimensional vector spaces, and A : V W is a →
linear operator. The tensor product on such triples is defined by the 
formula 

(V, W, A) ⊗ (V �,W �, A�) = (V ⊗ V �,W ⊗ W �, A ⊗ A�), 

with obvious associativity isomorphisms, and the unit object (k, k, Id). 
Of course, this category has neither right nor left duals. 

1.16. Grothendieck rings. Let C be a locally finite abelian category 
over k. If X and Y are objects in C such that Y is simple then we denote 
by [X : Y ] the multiplicity of Y in the Jordan-Hölder composition series 
of X. 
Recall that the Grothendieck group Gr(C) is the free abelian group 

generated by isomorphism classes Xi, i ∈ I of simple objects in C, 
and that to every object X in C we can canonically associate its class 
[X] ∈ Gr(C) given by the formula [X] = [X : Xi]Xi. It is obvious i 
that if 

0 −→ X −→ Y −→ Z −→ 0 

then [Y ] = [X] + [Z]. When no confusion is possible, we will write X 
instead of [X]. 
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Now let C be a multiring category. The tensor product on C induces 
a natural multiplication on Gr(C) defined by the formula 

XiXj := [Xi ⊗ Xj ] = [Xi ⊗ Xj : Xk]Xk. 
k∈I 

Lemma 1.16.1. The above multiplication on Gr(C) is associative. 

Proof. Since the tensor product functor is exact, 

[(Xi ⊗ Xj ) ⊗ Xp : Xl] = [Xi ⊗ Xj : Xk][Xk ⊗ Xp : Xl]. 
k 

On the other hand, 

[Xi ⊗ (Xj ⊗ Xp) : Xl] = [Xj ⊗ Xp : Xk][Xi ⊗ Xk : Xl]. 
k 

Thus the associativity of the multiplication follows from the isomor­
phism (Xi ⊗ Xj ) ⊗ Xp 

∼= Xi ⊗ (Xj ⊗ Xp). � 

Thus Gr(C) is an associative ring with the unit 1. It is called the 
Grothendieck ring of C. 
The following proposition is obvious. 

Proposition 1.16.2. Let C and D be multiring categories and F : C → 
D be a quasi-tensor functor. Then F defines a homomorphism of unital 
rings [F ] : Gr(C) Gr(D).→ 

Thus, we see that (multi)ring categories categorify rings (which jus­
tifies the terminology), while quasi-tensor (in particular, tensor) func­
tors between them categorify unital ring homomorphisms. Note that 
Proposition 1.15.5 may be regarded as a categorical analog of the Peirce 
decomposition in classical algebra. 

1.17. Groupoids. The most basic examples of multitensor categories 
arise from finite groupoids. Recall that a groupoid is a small category 
where all morphisms are isomorphisms. Thus a groupoid G entails a set 
X of objects of G and a set G of morphisms of G, the source and target 
maps s, t : G X, the composition map µ : G ×X G G (where the → →
fibered product is defined using s in the first factor and using t in the 
second factor), the unit morphism map u : X G, and the inversion → 
map i : G G satisfying certain natural axioms, see e.g. [Ren] for →
more details. 

Here are some examples of groupoids. 

(1) Any group G is a groupoid G with a single object whose set of 
morphisms to itself is G. 
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(2) Let X be a set and let G = X × X. Then the product groupoid 
G(X) := (X, G) is a groupoid in which s is the first projection, 
t is the second projection, u is the diagonal map, and i is the 
permutation of factors. In this groupoid for any x, y ∈ X there 
is a unique morphism from x to y. 

(3) A more interesting example is the transformation groupoid T (G, X) 
arising from the action of a group G on a set X. The set 
of objects of T (G, X) is X, and arrows correspond to triples 
(g, x, y) where y = gx with an obvious composition law. In 
other words, the set of morphisms is G × X and s(g, x) = 
x, t(g, x) = gx, u(x) = (1, x), i(g, x) = (g−1, gx). 

Let G = (X, G, µ, s, t, u, i) be a finite groupoid (i.e., G is finite) and let 
C(G) be the category of finite dimensional vector spaces graded by the 
set G of morphisms of G, i.e., vector spaces of the form V = ⊕g∈G Vg. 
Introduce a tensor product on C(G) by the formula 

(1.17.1) (V ⊗ W )g = Vg1 ⊗ Wg2 . 
(g1,g2):g1g2=g 

Then C(G) is a multitensor category. The unit object is 1 = ⊕x∈X 1x, 
where 1x is a 1-dimensional vector space which sits in degree idx in G. 
The left and right duals are defined by (V ∗)g = (∗V )g = Vg−1 . 

We invite the reader to check that the component subcategories 
C(G)xy are the categories of vector spaces graded by Mor(y, x). 

We see that C(G) is a tensor category if and only if G is a group, 
which is the case of VecG already considered in Example 1.3.6. Note 
also that if X = {1, ..., n} then C(G(X)) is naturally equivalent to 
Mn(Vec). 

Exercise 1.17.1. Let Ci be isomorphism classes of objects in a finite 
groupoid G, ni = |Ci|, xi ∈ Ci be representatives of Ci, and Gi = 
Aut(xi) be the corresponding automorphism groups. Show that C(G) 
is (non-canonically) monoidally equivalent to ⊕iMni (VecGi ). 

Remark 1.17.2. The finite length condition in Definition 1.12.3 is 
not superfluous: there exists a rigid monoidal k-linear abelian category 
with bilinear tensor product which contains objects of infinite length. 
An example of such a category is the category C of Jacobi matrices of 
finite dimensional vector spaces. Namely, the objects of C are semi-
infinite matrices V = {Vij }ij∈Z+ of finite dimensional vector spaces Vij 
with finitely many non-zero diagonals, and morphisms are matrices of 
linear maps. The tensor product in this category is defined by the 
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formula 

(1.17.2)	 (V ⊗ W )il = Vij ⊗ Wjl, 
j 

and the unit object 1 is defined by the condition 1ij = kδij . The left 
and right duality functors coincide and are given by the formula 

(1.17.3)	 (V ∗)ij = (Vji)
∗. 

The evaluation map is the direct sum of the canonical maps Vij 
∗ ⊗Vij →

1jj , and the coevaluation map is a direct sum of the canonical maps 
1ii → Vij ⊗ Vij 

∗. 
Note that the category C is a subcategory of the category C � of G(Z+)­

graded vector spaces with finite dimensional homogeneous components. 
Note also that the category C � is not closed under the tensor product 
defined by (1.17.2) but the category C is. 
Exercise 1.17.3. (1) Show that if X is a finite set then the group 

of invertible objects of the category C(G(X)) is isomorphic to 
Aut(X). 

(2) Let C be the category of Jacobi matrices of vector spaces from 
Example 1.17.2. Show that the statement Exercise 1.15.10(d) 
fails for C. Thus the finite length condition is important in 
Exercise 1.15.10. 

1.18. Finite abelian categories and exact faithful functors. 

Definition 1.18.1. A k-linear abelian category C is said to be finite if 
it is equivalent to the category A − mod of finite dimensional modules 
over a finite dimensional k-algebra A. 

Of course, the algebra A is not canonically attached to the category 
C; rather, C determines the Morita equivalence class of A. For this 
reason, it is often better to use the following “intrinsic” definition, 
which is well known to be equivalent to Definition 1.18.1: 

Definition 1.18.2. A k-linear abelian category C is finite if 
(i) C has finite dimensional spaces of morphisms; 
(ii) every object of C has finite length; 
(iii) C has enough projectives, i.e., every simple object of C has a 

projective cover; and 
(iv) there are finitely many isomorphism classes of simple objects. 

Note that the first two conditions are the requirement that C be 
locally finite. 

Indeed, it is clear that if A is a finite dimensional algebra then A −
mod clearly satisfies (i)-(iv), and conversely, if C satisfies (i)-(iv), then 
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one can take A = End(P )op, where P is a projective generator of C (e.g., 
P = ⊕in 

=1Pi, where Pi are projective covers of all the simple objects 
Xi). 

A projective generator P of C represents a functor F = FP : C → Vec 
from C to the category of finite dimensional k-vector spaces, given by 
the formula F (X) = Hom(P, X). The condition that P is projective 
translates into the exactness property of F , and the condition that 
P is a generator (i.e., covers any simple object) translates into the 
property that F is faithful (does not kill nonzero objects or morphisms). 
Moreover, the algebra A = End(P )op can be alternatively defined as 
End(F ), the algebra of functorial endomorphisms of F . Conversely, 
it is well known (and easy to show) that any exact faithful functor 
F : C → Vec is represented by a unique (up to a unique isomorphism) 
projective generator P . 
Now let C be a finite k-linear abelian category, and F1, F2 : C → Vec 

be two exact faithful functors. Define the functor F1 ⊗F2 : C×C → Vec 
by (F1 ⊗ F2)(X, Y ) := F1(X) ⊗ F2(Y ). 

Proposition 1.18.3. There is a canonical algebra isomorphism αF1,F2 : 
End(F1) ⊗ End(F2) ∼= End(F1 ⊗ F2) given by 

αF1,F2 (η1 ⊗ η2)|F1(X)⊗F2(Y ) := η1|F1(X) ⊗ η2|F2(Y ), 

where ηi ∈ End(Fi), i = 1, 2. 

Exercise 1.18.4. Prove Proposition 1.18.3. 

1.19. Fiber functors. Let C be a k-linear abelian monoidal category. 

Definition 1.19.1. A quasi-fiber functor on is an exact faithfulC
functor F : C → Vec from C to the category of finite dimensional 
k-vector spaces, such that F (1) = k, equipped with an isomorphism 
J : F ( ) ⊗ F ( ) F (• ⊗ •). If in addition J is a monoidal structure • • →
(i.e. satisfies the monoidal structure axiom), one says that F is a fiber 
functor. 

Example 1.19.2. The forgetful functors VecG → Vec, Rep(G) Vec 
are naturally fiber functors, while the forgetful functor Vecω 

→ 
Vec G →

is quasi-fiber, for any choice of the isomorphism J (we have seen that 
if ω is cohomologically nontrivial, then Vecω does not admit a fiber G 
functor). Also, the functor Loc(X) Vec on the category of local →
systems on a connected topological space X which attaches to a local 
system E its fiber Ex at a point x ∈ X is a fiber functor, which justifies 
the terminology. (Note that if X is Hausdorff, then this functor can be 
identified with the abovementioned forgetful functor Rep(π1(X, x)) →
Vec). 



� 

43 

Exercise 1.19.3. Show that if an abelian monoidal category C admits 
a quasi-fiber functor, then it is a ring category, in which the object 1 
is simple. So if in addition C is rigid, then it is a tensor category. 

1.20. Coalgebras. 

Definition 1.20.1. A coalgebra (with counit) over a field k is a k-vector 
space C together with a comultiplicaton (or coproduct) Δ : C C ⊗C→
and counit ε : C k such that →

(i) Δ is coassociative, i.e., 

(Δ ⊗ Id) Δ = (Id ⊗ Δ) Δ◦ ◦ 
as maps C C⊗3;→

(ii) one has

(ε ⊗ Id) Δ = (Id ⊗ ε) Δ = Id
◦ ◦ 

as maps C C (the “counit axiom”). → 

Definition 1.20.2. A left comodule over a coalgebra C is a vector 
space M together with a linear map π : M C ⊗ M (called the →
coaction map), such that for any m ∈ M , one has 

(Δ ⊗ Id)(π(m)) = (Id ⊗ π)(π(m)), (ε ⊗ Id)(π(m)) = m. 

Similarly, a right comodule over C is a vector space M together with 
a linear map π : M M ⊗ C, such that for any m ∈ M , one has → 

(π ⊗ Id)(π(m)) = (Id ⊗ Δ)(π(m)), (Id ⊗ ε)(π(m)) = m. 

For example, C is a left and right comodule with π = Δ, and so is 
k, with π = ε. 

Exercise 1.20.3. (i) Show that if C is a coalgebra then C∗ is an 
algebra, and if A is a finite dimensional algebra then A∗ is a coalgebra. 

(ii) Show that for any coalgebra C, any (left or right) C-comodule 
M is a (respectively, right or left) C∗-module, and the converse is true 
if C is finite dimensional. 

Exercise 1.20.4. (i) Show that any coalgebra C is a sum of finite 
dimensional subcoalgebras. 

Hint. Let c ∈ C, and let 

(Δ ⊗ Id) ◦ Δ(c) = (Id ⊗ Δ) ◦ Δ(c) = c 1 
i ⊗ c 2 

i ⊗ c 3 
i . 

i 

Show that span(c2 
i ) is a subcoalgebra of C containing c. 

(ii) Show that any C-comodule is a sum of finite dimensional subco­
modules. 
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1.21. Bialgebras. Let C be a finite monoidal category, and (F, J) : 
C → Vec be a fiber functor. Consider the algebra H := End(F ). This 
algebra has two additional structures: the comultiplication Δ : H →
H ⊗ H and the counit ε : H k. Namely, the comultiplication is →
defined by the formula 

Δ(a) = α−1 Δ(a)),F,F 

where �Δ(a) ∈ End(F ⊗ F ) is given by �
X,Y aX⊗Y JX,Y ,Δ(a)X,Y = J−1 

and the counit is defined by the formula 

ε(a) = a1 ∈ k. 

Theorem 1.21.1. (i) The algebra H is a coalgebra with comultiplica­
tion Δ and counit ε. 

(ii) The maps Δ and ε are unital algebra homomorphisms. 

Proof. The coassociativity of Δ follows form axiom (1.4.1) of a monoidal 
functor. The counit axiom follows from (1.4.3) and (1.4.4). Finally, ob­
serve that for all η, ν ∈ End(F ) the images under αF,F of both Δ(η)Δ(ν) 
and Δ(ην) have components J−1 (ην)X⊗Y JX,Y ; hence, Δ is an algebra X,Y 

homomorphism (which is obviously unital). The fact that ε is a unital 
algebra homomorphism is clear. � 

Definition 1.21.2. An algebra H equipped with a comultiplication Δ 
and a counit ε satisfying properties (i),(ii) of Theorem 1.21.1 is called 
a bialgebra. 

Thus, Theorem 1.21.1 claims that the algebra H = End(F ) has a 
natural structure of a bialgebra. 

Now let H be any bialgebra (not necessarily finite dimensional). 
Then the category Rep(H) of representations (i.e., left modules) of 
H and its subcategory Rep(H) of finite dimensional representations 
of H are naturally monoidal categories (and the same applies to right 
modules). Indeed, one can define the tensor product of two H-modules 
X, Y to be the usual tensor product of vector spaces X ⊗ Y , with the 
action of H defined by the formula 

ρX⊗Y (a) = (ρX ⊗ ρY )(Δ(a)), a ∈ H 

(where ρX : H End(X), ρY : H End(Y )), the associativity iso­→ →
morphism to be the obvious one, and the unit object to be the 1­
dimensional space k with the action of H given by the counit, a ε(a).→
Moreover, the forgetful functor Forget : Rep(H) Vec is a fiber func­→ 
tor. 
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Thus we see that one has the following theorem. 

Theorem 1.21.3. The assignments (C, F ) �→ H = End(F ), H �→
(Rep(H), Forget) are mutually inverse bijections between 

1) finite abelian k-linear monoidal categories C with a fiber functor 
F , up to monoidal equivalence and isomorphism of monoidal functors; 

2) finite dimensional bialgebras H over k up to isomorphism. 

Proof. Straightforward from the above. � 

Theorem 1.21.3 is called the reconstruction theorem for finite dimen­
sional bialgebras (as it reconstructs the bialgebra H from the category 
of its modules using a fiber functor). 

Exercise 1.21.4. Show that the axioms of a bialgebra are self-dual 
in the following sense: if H is a finite dimensional bialgebra with 
multiplication µ : H ⊗ H H, unit i : k H, comultiplication → →
Δ : H → H ⊗ H and counit ε : H → k, then H∗ is also a bialgebra, 
with the multiplication Δ∗, unit ε∗, comultiplication µ∗, and counit i∗. 

Exercise 1.21.5. (i) Let G be a finite monoid, and C = VecG. Let 
F : C → Vec be the forgetful functor. Show that H = End(F ) is the 
bialgebra Fun(G, k) of k-valued functions on G, with comultiplication 
Δ(f)(x, y) = f(xy) (where we identify H ⊗ H with Fun(G × G, k)), 
and counit ε(f) = f(1). 
(ii) Show that Fun(G, k)∗ = k[G], the monoid algebra of G (with 

basis x ∈ G and product x y = xy), with coproduct Δ(x) = x ⊗x, and · 
counit ε(x) = 1, x ∈ G. Note that the bialgebra k[G] may be defined 
for any G (not necessarily finite). 

Exercise 1.21.6. Let H be a k-algebra, C = H −mod be the category 
of H-modules, and F : C → Vec be the forgetful functor (we don’t 
assume finite dimensionality). Assume that C is monoidal, and F is 
given a monoidal structure J . Show that this endows H with the 
structure of a bialgebra, such that (F, J) defines a monoidal equivalence 
C → Rep(H). 

Note that not only modules, but also comodules over a bialgebra H 
form a monoidal category. Indeed, for a finite dimensional bialgebra, 
this is clear, as right (respectively, left) modules over H is the same 
thing as left (respectively, right) comodules over H∗. In general, if 
X, Y are, say, right H-comodules, then the right comodule X ⊗ Y is 
the usual tensor product of X, Y with the coaction map defined as 
follows: if x ∈ X, y ∈ Y , π(x) = xi ⊗ ai, π(y) = yj ⊗ bj , then 

πX⊗Y (x ⊗ y) = xi ⊗ yj ⊗ aibj . 
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For a bialgebra H, the monoidal category of right H-comodules will 
be denoted by H − comod, and the subcategory of finite dimensional 
comodules by H − comod. 

1.22. Hopf algebras. Let us now consider the additional structure 
on the bialgebra H = End(F ) from the previous subsection in the case 
when the category C has right duals. In this case, one can define a 
linear map S : H H by the formula→ 

S(a)X = a∗ 
X∗ , 

where we use the natural identification of F (X)∗ with F (X∗). 

Proposition 1.22.1. (“the antipode axiom”) Let µ : H ⊗ H H and→
i : k H be the multiplication and the unit maps of H. Then→


µ (Id ⊗ S) Δ = i ε = µ (S ⊗ Id) Δ
◦ ◦ ◦ ◦ ◦ 
as maps H H.→ 

Proof. For any b ∈ End(F ⊗F ) the linear map µ◦(Id⊗S)(α−1 (b))X , X ∈F,F 
C is given by 
(1.22.1) 

coevF (X) bX,X∗ evF (X)
F (X) −−−−−→ F (X)⊗F (X)∗⊗F (X) −−−→ F (X)⊗F (X)∗⊗F (X) −−−−→ F (X), 

where we suppress the identity isomorphisms, the associativity con­
straint, and the isomorphism F (X)∗ = F (X∗). Indeed, it suffices to∼
check (1.22.1) for b = η ⊗ ν, where η, ν ∈ H, which is straightforward. 

Now the first equality of the proposition follows from the commuta­
tivity of the diagram 

coevF (X)

(1.22.2) F (X) �� F (X) ⊗ F (X)∗ ⊗ F (X) 

Id JX,X∗ 

F (coevX )
F (X) �� F (X ⊗ X∗) ⊗ F (X) 

η1 ηX⊗X∗ 

F (coevX )
F (X) �� F (X ⊗ X∗) ⊗ F (X) 

J−1 
Id X,X∗ 

evF (X)

F (X) �� F (X) ⊗ F (X)∗ ⊗ F (X), 

for any η ∈ End(F ). 
Namely, the commutativity of the upper and the lower square fol­

lows from the fact that upon identification of F (X)∗ with F (X∗), the 
morphisms evF (X) and coevF (X) are given by the diagrams of Exer­
cise 1.10.6. The middle square commutes by the naturality of η. The 
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composition of left vertical arrows gives ε(η)IdF (X), while the compo­
sition of the top, right, and bottom arrows gives µ (Id ⊗ S) Δ(η). 
The second equality is proved similarly. 

◦ ◦ 
� 

Definition 1.22.2. An antipode on a bialgebra H is a linear map 
S : H H which satisfies the equalities of Proposition 1.22.1. → 

Exercise 1.22.3. Show that the antipode axiom is self-dual in the 
following sense: if H is a finite dimensional bialgebra with antipode 
SH , then the bialgebra H∗ also admits an antipode SH∗ = S∗ 

H . 

The following is a “linear algebra” analog of the fact that the right 
dual, when it exists, is unique up to a unique isomorphism. 

Proposition 1.22.4. An antipode on a bialgebra H is unique if exists. 

Proof. The proof essentially repeats the proof of uniqueness of right 
dual. Let S, S � be two antipodes for H. Then using the antipode 
properties of S, S �, associativity of µ, and coassociativity of Δ, we get 

S = µ ◦ (S ⊗ [µ ◦ (Id ⊗ S �) ◦ Δ]) ◦ Δ = 

µ ◦ (Id ⊗ µ) ◦ (S ⊗ Id ⊗ S �) ◦ (Id ⊗ Δ) ◦ Δ = 

µ ◦ (µ ⊗ Id) ◦ (S ⊗ Id ⊗ S �) ◦ (Δ ⊗ Id) ◦ Δ = 

µ ◦ ([µ ◦ (S ⊗ Id) ◦ Δ] ⊗ S �) ◦ Δ = S �. 

Proposition 1.22.5. If S is an antipode on a bialgebra H then S is an 
antihomomorphism of algebras with unit and of coalgebras with counit. 

Proof. Let 

1 2 3(Δ ⊗ Id) Δ(a) = (Id ⊗ Δ) Δ(a) = ◦ ◦ a
 ⊗ a
 ⊗ a
i ,i i 
i 

(Δ ⊗ Id) Δ(b) = (Id ⊗ Δ) Δ(b) = b◦ ◦ 21 
j ⊗ bj ⊗ b

j 

Then using the definition of the antipode, we have 

3 
j . 

332211321 
i b)ai S(ai ) = i bj )ai bj S(bj )S(ai ) = S(b)S(a). 

i i,j 

Thus S is an antihomomorphism of algebras (which is obviously unital). 
The fact that it is an antihomomorphism of coalgebras then follows 
using the self-duality of the axioms (see Exercises 1.21.4,1.22.3), or can 
be shown independently by a similar argument. � 

S(ab) = S(a
 S(a
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Corollary 1.22.6. (i) If H is a bialgebra with an antipode S, then 
the abelian monoidal category C = Rep(H) has right duals. Namely, 
for any object X, the right dual X∗ is the usual dual space of X, with 
action of H given by 

ρX∗ (a) = ρX (S(a))
∗, 

and the usual evaluation and coevaluation morphisms of the category 
Vec. 

(ii) If in addition S is invertible, then C also admits left duals, i.e. 
is rigid (in other words, C is tensor category). Namely, for any object 
X, the left dual ∗X is the usual dual space of X, with action of H given 
by 

ρ∗X (a) = ρX (S
−1(a))∗, 

and the usual evaluation and coevaluation morphisms of the category 
Vec. 

Proof. Part (i) follows from the antipode axiom and Proposition 1.22.5. 
Part (ii) follows from part (i) and the fact that the operation of taking 
the left dual is inverse to the operation of taking the right dual. � 

Remark 1.22.7. A similar statement holds for finite dimensional co­
modules. Namely, if X is a finite dimensional right comodule over a 
bialgebra H with an antipode, then the right dual is the usual dual X∗ 

with 
(πX∗ (f), x ⊗ φ) := ((Id ⊗ S)(πX (x)), f ⊗ φ), 

x ∈ X, f ∈ X∗, φ ∈ H∗. If S is invertible, then the left dual ∗X is 
defined by the same formula with S replaced by S−1 . 

Remark 1.22.8. The fact that S is an antihomomorphism of coalge­
bras is the “linear algebra” version of the categorical fact that dualiza­
tion changes the order of tensor product (Proposition 1.10.7(ii)). 

Definition 1.22.9. A bialgebra equipped with an invertible antipode 
S is called a Hopf algebra. 

Remark 1.22.10. We note that many authors use the term “Hopf 
algebra” for any bialgebra with an antipode. 

Thus, Corollary 1.22.6 states that if H is a Hopf algebra then Rep(H) 
is a tensor category. So, we get the following reconstruction theorem 
for finite dimensional Hopf algebras. 

Theorem 1.22.11. The assignments (C, F ) �→ H = End(F ), H �→
(Rep(H), Forget) are mutually inverse bijections between 

1) finite tensor categories C with a fiber functor F , up to monoidal 
equivalence and isomorphism of monoidal functors; 
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2) finite dimensional Hopf algebras over k up to isomorphism. 

Proof. Straightforward from the above. � 

Exercise 1.22.12. The algebra of functions Fun(G, k) on a finite 
monoid G is a Hopf algebra if and only if G is a group. In this case, 
the antipode is given by the formula S(f)(x) = f(x−1), x ∈ G. 

More generally, if G is an affine algebraic group over k, then the 
algebra O(G) of regular functions on G is a Hopf algebra, with the 
comultiplication, counit, and antipode defined as in the finite case. 

Similarly, k[G] is a Hopf algebra if and only if G is a group, with 
S(x) = x−1 , x ∈ G. 

Exercises 1.21.5 and 1.22.12 motivate the following definition: 

Definition 1.22.13. In any coalgebra C, a nonzero element g ∈ C 
such that Δ(g) = g ⊗ g is called a grouplike element. 

Exercise 1.22.14. Show that if g is a grouplike of a Hopf algebra H, 
then g is invertible, with g−1 = S(g). Also, show that the product of 
two grouplike elements is grouplike. In particular, grouplike elements 
of any Hopf algebra H form a group, denoted G(H). Show that this 
group can also be defined as the group of isomorphism classes of 1­
dimensional H-comodules under tensor multiplication. 

Proposition 1.22.15. If H is a finite dimensional bialgebra with an 
antipode S, then S is invertible, so H is a Hopf algebra. 

Proof. Let Hn be the image of Sn . Since S is an antihomomorphism 
of algebras and coalgebras, Hn is a Hopf subalgebra of H. Let m be 
the smallest n such that Hn = Hn+1 (it exists because H is finite 
dimensional). We need to show that m = 0. If not, we can assume 
that m = 1 by replacing H with Hm−1. 
We have a map S � : H1 → H1 inverse to S. For a ∈ H, let the triple 

coproduct of a be � 
1 2 3 ai ⊗ ai ⊗ ai . 

i 

Consider the element 

b = S �(S(ai 
1))S(ai 

2)ai 
3 . 

i 

On the one hand, collapsing the last two factors using the antipode 
axiom, we have b = S �(S(a)). On the other hand, writing b as 

b = S �(S(ai 
1))S(S �(S(ai 

2)))ai 
3 

i 
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and collapsing the first two factors using the antipode axiom, we get b = 
a. Thus a = S �(S(a)) and thus a ∈ H1, so H = H1, a contradiction. � 

Exercise 1.22.16. Let µop and Δop be obtained from µ, Δ by permu­
tation of components. 
(i) Show that if (H, µ, i, Δ, ε, S) is a Hopf algebra, then Hop := 

(H, µop, i, Δ, ε, S−1), Hcop := (H, µ, i, Δop, ε, S−1), Hcop := (H, µop, i, Δop, ε, S)op 
are Hopf algebras. Show that H is isomorphic to Hcop, and Hop to Hcop.op 

(ii) Suppose that a bialgebra H is a commutative (µ = µop) or co­
commutative (Δ = Δop). Let S be an antipode on H. Show that 
S2 = 1. 
(iii) Assume that bialgebras H and Hcop have antipodes S and S �. 

Show that S � = S−1, so H is a Hopf algebra. 

Exercise 1.22.17. Show that if A, B are bialgebras, bialgebras with 
antipode, or Hopf algebras, then so is the tensor product A ⊗ B. 

Exercise 1.22.18. A finite dimensional module or comodule over a 
Hopf algebra is invertible if and only if it is 1-dimensional. 

1.23. Reconstruction theory in the infinite setting. In this sub­
section we would like to generalize the reconstruction theory to the 
situation when the category C is not assumed to be finite. 

Let C be any essentially small k-linear abelian category, and F : C → 
Vec an exact, faithful functor. In this case one can define the space 
Coend(F ) as follows: 

Coend(F ) := (⊕X∈CF (X)∗ ⊗ F (X))/E 

where E is spanned by elements of the form y∗ ⊗ F (f)x − F (f)∗y∗ ⊗ x, 
x ∈ F (X), y∗ ∈ F (Y )∗, f ∈ Hom(X, Y ); in other words, Coend(F ) = 
lim End(F (X))∗. Thus we have End(F ) = lim End(F (X)) = Coend(F )∗,−→ ←−
which yields a coalgebra structure on Coend(F ). So the algebra End(F ) 
(which may be infinite dimensional) carries the inverse limit topology, 
in which a basis of neighborhoods of zero is formed by the kernels KX 

of the maps End(F ) → End(F (X)), X ∈ C, and Coend(F ) = End(F )∨, 
the space of continuous linear functionals on End(F ). 

The following theorem is standard (see [Ta2]). 

Theorem 1.23.1. Let C be a k-linear abelian category with an ex­
act faithful functor F : Vec. Then F defines an equivalence C → 
between C and the category of finite dimensional right comodules over 
C := Coend(F ) (or, equivalently, with the category of continuous finite 
dimensional left End(F )-modules). 
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Proof. (sketch) Consider the ind-object Q := ⊕X∈CF (X)∗ ⊗ X. For 
X, Y ∈ C and f ∈ Hom(X, Y ), let 

jf : F (Y )∗ ⊗ X → F (X)∗ ⊗ X ⊕ F (Y )∗ ⊗ Y ⊂ Q 

be the morphism defined by the formula 

jf = Id ⊗ f − F (f)∗ ⊗ Id. 

Let I be the quotient of Q by the image of the direct sum of all jf . In 
other words, I = lim (F (X)∗ ⊗ X).−→

The following statements are easy to verify: 
(i) I represents the functor F ( )∗, i.e. Hom(X, I) is naturally iso­•

morphic to F (X)∗; in particular, I is injective. 
(ii) F (I) = C, and I is naturally a left C-comodule (the comod­

ule structure is induced by the coevaluation morphism F (X)∗ ⊗ X →
F (X)∗ ⊗ F (X) ⊗ F (X)∗ ⊗ X). 

(iii) Let us regard F as a functor C → C − comod. For M ∈ C −
comod, let θM : M ⊗I M ⊗C ⊗I be the morphism πM ⊗Id−Id⊗πI ,→
and let KM be the kernel of θM . Then the functor G : C − comod → C 
given by the formula G(M) = KerθM , is a quasi-inverse to F . 

This completes the proof. � 

Now assume that the abelian category C is also monoidal. Then the 
coalgebra Coend(F ) also carries a multiplication and unit, dual to the 
comultiplication and counit of End(F ). More precisely, since End(F ) 
may now be infinite dimensional, the algebra End(F ⊗ F ) is in general 
isomorphic not to the usual tensor product End(F )⊗End(F ), but rather 
to its completion End(F )⊗� End(F ) with respect to the inverse limit 
topology. Thus the comultiplication of End(F ) is a continuous linear 
map Δ : End(F ) → End(F )⊗� End(F ). The dual Δ∗ of this map defines 
a multiplication on Coend(F ). 
If C has right duals, the bialgebra Coend(F ) acquires an antipode, 

defined in the same way as in the finite dimensional case. This antipode 
is invertible if there are also left duals (i.e. if C is rigid). Thus Theorem 
1.23.1 implies the following “infinite” extensions of the reconstruction 
theorems. 

Theorem 1.23.2. The assignments (C, F ) �→ H = Coend(F ), H �→
(H − Comod, Forget) are mutually inverse bijections between 

1) k-linear abelian monoidal categories C with a fiber functor F , up 
to monoidal equivalence and isomorphism of monoidal functors, and 
bialgebras over k, up to isomorphism; 
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2) k-linear abelian monoidal categories C with right duals with a fiber 
functor F , up to monoidal equivalence and isomorphism of monoidal 
functors, and bialgebras over k with an antipode, up to isomorphism; 

3) tensor categories C over k with a fiber functor F , up to monoidal 
equivalence and isomorphism of monoidal functors, and Hopf algebras 
over k, up to isomorphism. 

Remark 1.23.3. This theorem allows one to give a categorical proof 
of Proposition 1.22.4, deducing it from the fact that the right dual, 
when it exists, is unique up to a unique isomorphism. 

Remark 1.23.4. Corollary 1.22.15 is not true, in general, in the infi­
nite dimensional case: there exist bialgebras H with a non-invertible 
antipode S, see [Ta1]. Therefore, there exist ring categories with sim­
ple object 1 and right duals that do not have left duals, i.e., are not 
tensor categories (namely, H − comod). 

In the next few subsections, we will review some of the most im­
portant basic results about Hopf algebras. For a much more detailed 
treatment, see the book [Mo]. 

1.24. More examples of Hopf algebras. Let us give a few more 
examples of Hopf algebras. As we have seen, to define a Hopf algebra, it 
suffices to give an associative unital algebra H, and define a coproduct 
on generators of H (this determines a Hopf algebra structure on H 
uniquely if it exists). This is what we’ll do in the examples below. 

Example 1.24.1. (Enveloping algebras) Let g be a Lie algebra, and 
let H = U(g) be the universal enveloping algebra of g. Define the 
coproduct on H by setting Δ(x) = x ⊗ 1+1 ⊗ x for all x ∈ g. It is easy 
to show that this extends to the whole H, and that H equipped with 
this Δ is a Hopf algebra. Moreover, it is easy to see that the tensor 
category Rep(H) is equivalent to the tensor category Rep(g). 

This example motivates the following definition. 

Definition 1.24.2. An element x of a bialgebra H is called primitive 
if Δ(x) = x⊗1+1⊗x. The space of primitive elements of H is denoted 
Prim(H). 

Exercise 1.24.3. (i) Show that Prim(H) is a Lie algebra under the 
commutator. 

(ii) Show that if x is a primitive element then ε(x) = 0, and in 
presence of an antipode S(x) = −x. 
Exercise 1.24.4. (i) Let V be a vector space, and SV be the symmet­
ric algebra V . Then SV is a Hopf algebra (namely, it is the universal 
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enveloping algebra of the abelian Lie algebra V ). Show that if k has 
characteristic zero, then Prim(SV ) = V . 

(ii) What happens in characteristic p? 
Hint. One can restrict to a situation when V is finite dimensional. 

In this case, regarding elements f ∈ SV as polynomials on V ∗, one can 
show that f is primitive if and only if it is additive, i.e., f(x + y) = 
f(x) + f(y). 

(iii) Let g be a Lie algebra over a field of characteristic zero. Show 
that Prim(U(g)) = g. 

Hint. Identify U(g) with Sg as coalgebras by using the symmetriza­
tion map. 

Example 1.24.5. (Taft algebras) Let q be a primitive n-th root of 
unity. Let H be the algebra (of dimension n2) generated over k by g 

n nand x satisfying the following relations: g = 1, x = 0 and gxg−1 = qx. 
Define the coproduct on H by Δ(g) = g ⊗ g, Δ(x) = x ⊗ g +1 ⊗ x. It is 
easy to show that this extends to a Hopf algebra structure on H. This 
Hopf algebra H is called the Taft algebra. For n = 2, one obtains the 
Sweedler Hopf algebra of dimension 4. Note that H is not commutative 
or cocommutative, and S2 = 1 on � H (as S2(x) = qx). 

This example motivates the following generalization of Definition 
1.24.2. 

Definition 1.24.6. Let g, h be grouplike elements of a coalgebra H. 
A skew-primitive element of type (h, g) is an element x ∈ H such that 
Δ(x) = h ⊗ x + x ⊗ g. 

Remark 1.24.7. A multiple of h−g is always a skew-primitive element 
of type (h, g). Such a skew-primitive element is called trivial. Note that 
the element x in Example 1.24.5 is nontrivial. 

Exercise 1.24.8. Let x be a skew-primitive element of type h, g in a 
Hopf algebra H. 

(i) Show that ε(x) = 0, S(x) = −h−1xg−1 . 
(ii) Show that if a, b ∈ H are grouplike elements, then axb is a skew-

primitive element of type (ahb, agb). 

Example 1.24.9. (Nichols Hopf algebras) Let H = C[Z/2Z]�∧(x1, ..., xn), 
where the generator g of Z/2Z acts on xi by gxig−1 = −xi. De­
fine the coproduct on H by making g grouplike, and setting Δ(xi) := 
xi ⊗ g + 1 ⊗ xi (so xi are skew-primitive elements). Then H is a Hopf 
algebra of dimension 2n+1 . For n = 1, H is the Sweedler Hopf algebra 
from the previous example. 
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Exercise 1.24.10. Show that the Hopf algebras of Examples 1.24.1,1.24.5,1.24.9 
are well defined. 

Exercise 1.24.11. (Semidirect product Hopf algebras) Let H be a 
Hopf algebra, and G a group of automorphisms of H. Let A be the 
semidirect product k[G] � H. Show that A admits a unique structure 
of a Hopf algebra in which k[G] and H are Hopf subalgebras. 
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1.25. The Quantum Group Uq (sl2). Let us consider the Lie algebra 
sl2. Recall that there is a basis h, e, f ∈ sl2 such that [h, e] = 2e, [h, f] = 
−2f, [e, f] = h. This motivates the following definition. 

Definition 1.25.1. Let q ∈ k, q =� ±1. The quantum group U (sl2) is q

generated by elements E, F and an invertible element K with defining 
relations 

KEK−1 = q 2E, KFK−1 = q−2F, [E, F] = 
K − K−1 

. 
q − q−1 

Theorem 1.25.2. There exists a unique Hopf algebra structure on 
Uq (sl2), given by 

• Δ(K) = K ⊗ K (thus K is a grouplike element); 
• Δ(E) = E ⊗ K + 1 ⊗ E; 
• Δ(F) = F ⊗ 1 + K−1 ⊗ F (thus E, F are skew-primitive ele­
ments). 

Exercise 1.25.3. Prove Theorem 1.25.2. 

Remark 1.25.4. Heuristically, K = qh, and thus 

K − K−1 

lim = h. 
q 1→ q − q−1 

So in the limit q 1, the relations of Uq (sl2) degenerate into the →
relations of U(sl2), and thus Uq (sl2) should be viewed as a Hopf algebra 
deformation of the enveloping algebra U(sl2). In fact, one can make 
this heuristic idea into a precise statement, see e.g. [K]. 

If q is a root of unity, one can also define a finite dimensional version 
of Uq (sl2). Namely, assume that the order of q is an odd number �. Let 
uq (sl2) be the quotient of Uq (sl2) by the additional relations 

E� = F� = K� − 1 = 0. 

Then it is easy to show that uq (sl2) is a Hopf algebra (with the co­
product inherited from Uq (sl2)). This Hopf algebra is called the small 
quantum group attached to sl2. 

1.26. The quantum group Uq (g). The example of the previous sub­
section can be generalized to the case of any simple Lie algebra. Namely, 
let g be a simple Lie algebra of rank r, and let A = (aij ) be its Cartan 
matrix. Recall that there exist unique relatively prime positive integers 
di, i = 1, . . . r such that diaij = dj aji. Let q ∈ k, q =� ±1. 
Definition 1.26.1. • The q-analog of n is 

nq − q−n 

[n]q = . 
q − q−1 
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•	The q-analog of the factorial is 
n

[n]q ! = 
� 

[l]q =
(q − q−1) · · · (qn − q−n) 

. 
(q − q−1)n 

l=1 

Definition 1.26.2. The quantum group Uq(g) is generated by elements 
Ei, Fi and invertible elements Ki, with defining relations 

KiKj = Kj Ki, KiEj Ki
−1 = q aij Ej , KiFj Ki

−1 = q−aij Fj , 

Kdi − K−di 

[Ei, Fj ] = δij
i i , and the q-Serre relations: 
qdi − q−di 

1−aij

(1.26.1) 
� 

[l]q ![1

(

−
−
a

1)

ij

l 

− l]q ! 
Ei 
1−aij −lEj Ei

l = 0, i =� j 
l=0 i i 

and 

(1.26.2) 
1−aij

[l]q ![1

(

−
−
a

1)

ij

l 

− l]q ! 
Fi 
1−aij −lFj F

l
i = 0, i =� j. 

l=0 i i 

More generally, the same definition can be made for any symmetriz­
able Kac-Moody algebra g. 

Theorem 1.26.3. (see e.g. [CP]) There exists a unique Hopf algebra 
structure on Uq (g), given by 

•	Δ(Ki) = Ki ⊗ Ki; 
•	Δ(Ei) = Ei ⊗ Ki + 1 ⊗ Ei;

Δ(Fi) = Fi ⊗ 1 + Ki

−1 ⊗ Fi.
• 

Remark 1.26.4. Similarly to the case of sl2, in the limit q 1, these →
relations degenerate into the relations for U(g), so Uq(g) should be 
viewed as a Hopf algebra deformation of the enveloping algebra U(g). 

1.27. Categorical meaning of skew-primitive elements. We have 
seen that many interesting Hopf algebras contain nontrivial skew-primitive 
elements. In fact, the notion of a skew-primitive element has a cate­
gorical meaning. Namely, we have the following proposition. 

Proposition 1.27.1. Let g, h be grouplike elements of a coalgebra 
C, and Primh,g(C) be the space of skew-primitive elements of type 
h, g. Then the space Primh,g(H)/k(h − g) is naturally isomorphic to 
Ext1(g, h), where g, h are regarded as 1-dimensional right C-comodules. 

Proof. Let V be a 2-dimensional H-comodule, such that we have an 
exact sequence 

0 h V g 0.→ → → → 
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Then V has a basis v0, v1 such that


π(v0) = v0 ⊗ h, π(v1) = v1 ⊗ x + v0 ⊗ g.


The condition that this is a comodule yields that x is a skew-primitive 
element of type (h, g). So any extension defines a skew-primitive el­
ement and vice versa. Also, we can change the basis by v0 v0,→ 
v1 v1 + λv0, which modifies x by adding a trivial skew-primitive →
element. This implies the result. � 

Example 1.27.2. The category C of finite dimensional comodules over 
uq (sl2) is an example of a finite tensor category in which there are 
objects V such that V ∗∗ is not isomorphic to V . Namely, in this 
category, the functor V �→ V ∗∗ is defined by the squared antipode 
S2 , which is conjugation by K: S2(x) = KxK−1 . Now, we have 
Ext1(K, 1) = Y = �E, F K�, a 2-dimensional space. The set of iso­
morphism classes of nontrivial extensions of K by 1 is therefore the 
projective line PY . The operator of conjugation by K acts on Y with 
eigenvalues q2, q−2, hence nontrivially on PY . Thus for a generic ex­
tension V , the object V ∗∗ is not isomorphic to V . 
However, note that some power of the functor ∗∗ on C is isomorphic 

(in fact, monoidally) to the identity functor (namely, this power is the 
order of q). We will later show that this property holds in any finite 
tensor category. 
Note also that in the category C, V ∗∗ ∼= V if V is simple. This clearly 

has to be the case in any tensor category where all simple objects 
are invertible. We will also show (see Proposition 1.41.1 below) that 
this is the case in any semisimple tensor category. An example of a 
tensor category in which V ∗∗ is not always isomorphic to V even for 
simple V is the category of finite dimensional representations of the 
the Yangian H = Y (g) of a simple complex Lie algebra g, see [CP, 
12.1]. Namely, for any finite dimensional representation V of H and 
any complex number z one can define the shifted representation V (z) 
(such that V (0) = V ). Then V ∗∗ ∼ V (2h∨), where h∨ is the dual = 
Coxeter number of g, see [CP, p.384]. If V is a non-trivial irreducible 
finite dimensional representation then V (z) = V for z = 0. Thus, ∼

= V . Moreover, we see that the functor ∗∗ has infinite order even 
when restricted to simple objects of C. 

However, the representation category of the Yangian is infinite, and 
the answer to the following question is unknown to us. 

V ∗∗ ∼�

Question 1.27.3. Does there exist a finite tensor category, in which 
there is a simple object V such that V ∗∗ is not isomorphic to V ? (The 
answer is unknown to the authors). 



� � 

� �
 � 

� 

58 

Theorem 1.27.4. Assume that k has characteristic 0. Let C be a finite 
ring category over k with simple object 1. Then Ext1(1, 1) = 0. 

Proof. Assume the contrary, and suppose that V is a nontrivial exten­
sion of 1 by itself. Let P be the projective cover of 1. Then Hom(P, V ) 
is a 2-dimensional space, with a filtration induced by the filtration on 
V , and both quotients naturally isomorphic to E := Hom(P, 1). Let 
v0, v1 be a basis of Hom(P, V ) compatible to the filtration, i.e. v0 spans 
the 1-dimensional subspace defined by the filtration. Let A = End(P ) 
(this is a finite dimensional algebra). Let ε : A k be the character →
defined by the (right) action of A on E. Then the matrix of a ∈ A in 
the basis v0, v1 has the form 

ε(a) χ1(a)(1.27.1) [a]1 = 
0 ε(a) 

where χ1 ∈ A∗ is nonzero. Since a → [a]1 is a homomorphism, χ1 is a 
derivation: χ1(xy) = χ1(x)ε(y) + ε(x)χ1(y). 
Now consider the representation V ⊗ V . Using the exactness of 

tensor products, we see that the space Hom(P, V ⊗V ) is 4-dimensional, 
and has a 3-step filtration, with successive quotients E, E ⊕ E, E, and 
basis v00; v01, v10; v11, consistent with this filtration. The matrix of 
a ∈ End(P ) in this basis is ⎞⎛ 

(1.27.2) [a]2 = 
⎜⎜⎝


ε(a) χ1(a) χ1(a) χ2(a) 
0 ε(a) 0 χ1(a) 
0 0 ε(a) χ1(a) 
0 0 0 ε(a) 

⎟⎟⎠


Since a [a]2 is a homomorphism, we find → 

χ2(ab) = ε(a)χ2(b) + χ2(a)ε(b) + 2χ1(a)χ1(b). 

We can now proceed further (i.e. consider V ⊗V ⊗V etc.) and define for 
every positive n, a linear function χn ∈ A∗ which satisfies the equation 

n

χn(ab) = 
j

χj (a)χn−j (b), 
j=0 

n


where χ0 ε.� 
by φs(a) = χm(a)s

=


m≥0 
pairwise distinct homomorphisms. 

Thus for any s ∈ k, we can define φs : A k((t))→
mtm/m!, and we find that φs is a family of 

finite dimensional algebra. We are done.

This is a contradiction, as A is a 

Corollary 1.27.5. If a finite ring category C over a field of charac­
teristic zero has a unique simple object 1, then C is equivalent to the 
category Vec. 
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Corollary 1.27.6. A finite dimensional bialgebra H over a field of 
characteristic zero cannot contain nonzero primitive elements. 

Proof. Apply Theorem 1.27.4 to the category H − comod and use 
Proposition 1.27.1. � 

Remark 1.27.7. Here is a “linear algebra” proof of this corollary. Let 
x be a nonzero primitive element of H. Then we have a family of 
grouplike elements estx ∈ H((t)), s ∈ k, i.e., an infinite collection of 
characters of H∗((t)), which is impossible, as H is finite dimensional. 

Corollary 1.27.8. If H is a finite dimensional commutative Hopf 
algebra over an algebraically closed field k of characteristic 0, then 
H = Fun(G, k) for a unique finite group G. 

Proof. Let G = Spec(H) (a finite group scheme), and x ∈ T1G = 
(m/m2)∗ where m is the kernel of the counit. Then x is a linear function 
on m. Extend it to H by setting x(1) = 0. Then x s a derivation: 

x(fg) = x(f)g(1) + f(1)x(g). 

This implies that x is a primitive element in H∗. So by Corollary 
1.27.6, x = 0. this implies that G is reduced at the point 1. By using 
translations, we see that G is reduced at all other points. So G is a 
finite group, and we are done. � 

Remark 1.27.9. Theorem 1.27.4 and all its corollaries fail in char­
acteristic p > 0. A counterexample is provided by the Hopf algebra 
k[x]/(xp), where x is a primitive element. 

1.28. Pointed tensor categories and pointed Hopf algebras. 

Definition 1.28.1. A coalgebra C is pointed if its category of right co­
modules is pointed, i.e., if any simple right C-comodule is 1-dimensional. 

Remark 1.28.2. A finite dimensional coalgebra C is pointed if and 
only if the algebra C∗ is basic, i.e., the quotient C∗/Rad(C∗) of C∗ by 
its radical is commutative. In this case, simple C-comodules are points 
of Specm(H∗/Rad(H∗)), which justifies the term “pointed”. 

Definition 1.28.3. A tensor category C is pointed if every simple 
object of C is invertible. 

Thus, the category of right comodules over a Hopf algebra H is 
pointed if and only if H is pointed. 

Example 1.28.4. The category Vecω is a pointed category. If G isG 
a p-group and k has characteristic p, then Repk(G) is pointed. Any 
cocommutative Hopf algebra, the Taft and Nichols Hopf algebras, as 
well as the quantum groups Uq (g) are pointed Hopf algebras. 
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1.29. The coradical filtration. Let C be a locally finite abelian cat­
egory. 

Any object X ∈ C has a canonical filtration 

(1.29.1) 0 = X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn = X 

such that Xi+1/Xi is the socle (i.e., the maximal semisimple subobject) 
of X/Xi (in other words, Xi+1/Xi is the sum of all simple subobjects 
of X/Xi). This filtration is called the socle filtration, or the coradical 
filtration of X. It is easy to show by induction that the coradical 
filtration is a filtration of X of the smallest possible length, such that 
the successive quotients are semisimple. The length of the coradical 
filtration of X is called the Loewy length of X, and denoted Lw(X). 
Then we have a filtration of the category C by Loewy length of objects: 
C0 ⊂ C1 ⊂ ..., where Ci denotes the full subcategory of objects of C of 
Loewy length ≤ i + 1. Clearly, the Loewy length of any subquotient of 
an object X does not exceed the Loewy length of X, so the categories 
Ci are closed under taking subquotients. 

Definition 1.29.1. The filtration of C by Ci is called the coradical 
filtration of C. 
If C is endowed with an exact faithful functor F : C → Vec then we 

can define the coalgebra C = Coend(F ) and its subcoalgebras Ci = 
Coend(F |Ci ), and we have Ci ⊂ Ci+1 and C = ∪iCi (alternatively, we 
can say that Ci is spanned by matrix elements of C-comodules F (X), 
X ∈ Ci). Thus we have defined an increasing filtration by subcoalgebras 
of any coalgebra C. This filtration is called the coradical filtration, and 
the term C0 is called the coradical of C. 

The “linear algebra” definition of the coradical filtration is as fol­
lows. One says that a coalgebra is simple if it does not have nontrivial 
subcoalgebras, i.e. if it is finite dimensional, and its dual is a simple 
(i.e., matrix) algebra. Then C0 is the sum of all simple subcoalgebras 
of C. The coalgebras Cn+1 for n ≥ 1 are then defined inductively to 
be the spaces of those x ∈ C for which 

Δ(x) ∈ Cn ⊗ C + C ⊗ C0. 

Exercise 1.29.2. (i) Suppose that C is a finite dimensional coalgebra, 
and I is the Jacobson radical of C∗. Show that Cn

⊥ = In+1 . This 
justifies the term “coradical filtration”. 
(ii) Show that the coproduct respects the coradical filtration, i.e. 

Δ(Cn) ⊂ i
n 
=0 Ci ⊗ Cn−i. 

(iii) Show that C0 is the direct sum of simple subcoalgebras of C. 
In particular, grouplike elements of any coalgebra C are linearly inde­
pendent. 
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Hint. Simple subcoalgebras of C correspond to finite dimensional 
irrreducible representations of C∗. 

Denote by gr(C) the associated graded coalgebra of a coalgebra C 
with respect to the coradical filtration. Then gr(C) is a Z+-graded 
coalgebra. It is easy to see from Exercise 1.29.2(i) that the coradical 

¯filtration of gr(C) is induced by its grading. A graded coalgebra C 
with this property is said to be coradically graded, and a coalgebra C 

¯such that gr(C) = C is called a lifting of C. 

Definition 1.29.3. A coalgebra C is said to be cosemisimple if C is a 
direct sum of simple subcoalgebras. 

Clearly, C is cosemisimple if and only if C − comod is a semisimple 
category. 

Proposition 1.29.4. (i) A category C is semisimple if and only if 
C0 = C1. 

(ii) A coalgebra C is cosemisimple if and only if C0 = C1. 

Proof. (ii) is a special case of (i), and (i) is clear, since the condition 
means that Ext1(X, Y ) = 0 for any simple X, Y , which implies (by 
the long exact sequence of cohomology) that Ext1(X, Y ) = 0 for all 
X, Y ∈ C. � 

Corollary 1.29.5. (The Taft-Wilson theorem) If C is a pointed coal­
gebra, then C0 is spanned by (linearly independent) grouplike elements 
g, and C1/C0 = ⊕h,gPrimh,g(C)/k(h − g). In particular, any non­
cosemisimple pointed coalgebra contains nontrivial skew-primitive ele­
ments. 

Proof. The first statement is clear (the linear independence follows from 
Exercise 1.29.2(iii). Also, it is clear that any skew-primitive element 
is contained in C1. Now, if x ∈ C1, then x is a matrix element of a 
C-comodule of Loewy length ≤ 2, so it is a sum of matrix elements 2­
dimensional comodules, i.e. of grouplike and skew-primitive elements. 

It remains to show that the sum Primh,g(C)/k(h − g) ⊂ C/C0h,g 
is direct. For this, it suffices to consider the case when C is finite 
dimensional. Passing to the dual algebra A = C∗, we see that the 
statement is equivalent to the claim that I/I2 (where I is the radical 
of A) is isomorphic (in a natural way) to ⊕g,hExt1(g, h)∗. 

Let pg be a complete system of orthogonal idempotents in A/I2, such 
that h(pg) = δhg. Define a pairing I/I2 × Ext1(g, h) → k which sends 
a ⊗ α to the upper right entry of the 2-by-2 matrix by which a acts 
in the extension of g by h defined by α. It is easy to see that this 
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pairing descends to a pairing B : ph(I/I2)pg × Ext1(g, h) → k. If the 
extension α is nontrivial, the upper right entry cannot be zero, so B is 
right-nondegenerate. Similarly, if a belongs to the left kernel of B, then 
a acts by zero in any A-module of Loewy length 2, so a = 0. Thus, B 
is left-nondegenerate. This implies the required isomorphism. � 

Proposition 1.29.6. If C, D are coalgebras, and f : C D is a→
coalgebra homomorphism such that f |C1 is injective, then f is injective. 

Proof. One may assume that C and D are finite dimensional. Then 
the statement can be translated into the following statement about 
finite dimensional algebras: if A, B are finite dimensional algebras and 
f : A B is an algebra homomorphism which descends to a surjective →
homomorphism A B/Rad(B)2, then f is surjective. →

To prove this statement, let b ∈ B. Let I = Rad(B). We prove by 
induction in n that there exists a ∈ A such that b − f(a) ∈ In . The 
base of induction is clear, so we only need to do the step of induction. 
So assume b ∈ In . We may assume that b = b1...bn, bi ∈ I, and let 
ai ∈ A be such that f(ai) = bi modulo I2 . Let a = a1...an. Then 
b − f(a) ∈ In+1, as desired. � 

Corollary 1.29.7. If H is a Hopf algebra over a field of characteristic 
zero, then the natural map ξ : U(Prim(H)) H is injective. → 

Proof. By Proposition 1.29.6, it suffices to check the injectivity of ξ in 
degree 1 of the coradical filtration. Thus, it is enough to check that 
ξ is injective on primitive elements of U(Prim(H)). But by Exercise 
1.24.4, all of them lie in Prim(H), as desired. � 

1.30. Chevalley’s theorem. 

Theorem 1.30.1. (Chevalley) Let k be a field of characteristic zero. 
Then the tensor product of two simple finite dimensional representa­
tions of any group or Lie algebra over k is semisimple. 

Proof. Let V be a finite dimensional vector space over a field k (of any 
characteristic), and G ⊂ GL(V ) be a Zariski closed subgroup. 

Lemma 1.30.2. If V is a completely reducible representation of G, 
then G is reductive. 

Proof. Let V be a nonzero rational representation of an affine algebraic 
group G. Let U be the unipotent radical of G. Let V U ⊂ V be the space 
of invariants. Since U is unipotent, V U = 0. So if � V is irreducible, then 
V U = V , i.e., U acts trivially. Thus, U acts trivially on any completely 
reducible representation of G. So if V is completely reducible and 
G ⊂ GL(V ), then G is reductive. � 

http:a1...an
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Now let G be any group, and V, W be two finite dimensional irre­
ducible representations of G. Let GV , GW be the Zariski closures of 
the images of G in GL(V ) and GL(W ), respectively. Then by Lemma 
1.30.2 GV , GW are reductive. Let GVW be the Zariski closure of the 
image of G in GV × GW . Let U be the unipotent radical of GVW . Let 
pV : GVW GV , pW : GVW GW be the projections. Since pV is→ →
surjective, pV (U) is a normal unipotent subgroup of GV , so pV (U) = 1. 
Similarly, pW (U) = 1. So U = 1, and GVW is reductive. 

Let G�
VW be the closure of the image of G in GL(V ⊗ W ). Then 

G�
VW is a quotient of GVW , so it is also reductive. Since chark = 0, 

this implies that the representation V ⊗ W is completely reducible as 
a representation of G�

VW , hence of G. 
This proves Chevalley’s theorem for groups. The proof for Lie alge­

bras is similar. � 

1.31. Chevalley property. 

Definition 1.31.1. A tensor category C is said to have Chevalley prop­
erty if the category C0 of semisimple objects of C is a tensor subcategory. 

Thus, Chevalley theorem says that the category of finite dimensional 
representations of any group or Lie algebra over a field of characteristic 
zero has Chevalley property. 

Proposition 1.31.2. A pointed tensor category has Chevalley prop­
erty. 

Proof. Obvious. � 

Proposition 1.31.3. In a tensor category with Chevalley property, 

(1.31.1) Lw(X ⊗ Y ) ≤ Lw(X) + Lw(Y ) − 1. 

Thus Ci ⊗ Cj ⊂ Ci+j . 

Proof. Let X(i), 0 ≤ i ≤ m, Y (j), 0 ≤ j ≤ n, be the successive 
quotients of the coradical filtrations of X, Y . Then Z := X ⊗ Y has 
a filtration with successive quotients Z(r) = ⊕i+j=rX(i) ⊗ Y (j), 0 ≤ 
r m + n. Because of the Chevalley property, these quotients are ≤
semisimple. This implies the statement. � 

Remark 1.31.4. It is clear that the converse to Proposition 1.31.3 
holds as well: equation (1.31.3) (for simple X and Y ) implies the 
Chevalley property. 

Corollary 1.31.5. In a pointed Hopf algebra H, the coradical filtration 
is a Hopf algebra filtration, i.e. HiHj ⊂ Hi+j and S(Hi) = Hi, so gr(H) 
is a Hopf algebra. 
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In this situation, the Hopf algebra H is said to be a lifting of the 
coradically graded Hopf algebra gr(H). 

Example 1.31.6. The Taft algebra and the Nichols algebras are corad­
ically graded. The associated graded Hopf algebra of Uq (g) is the Hopf 
algebra defined by the same relations as Uq (g), except that the commu­
tation relation between Ei and Fj is replaced with the condition that Ei 
and Fj commute (for all i, j). The same applies to the small quantum 
group uq (sl2). 

Exercise 1.31.7. Let k be a field of characteristic p, and G a finite 
group. Show that the category Repk(G) has Chevalley property if and 
only if G has a normal p-Sylow subgroup. 
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1.32. The Andruskiewitsch-Schneider conjecture. It is easy to 
see that any Hopf algebra generated by grouplike and skew-primitive 
elements is automatically pointed. 

On the other hand, there exist pointed Hopf algebras which are not 
generated by grouplike and skew-primitive elements. Perhaps the sim­
plest example of such a Hopf algebra is the algebra of regular functions 
on the Heisenberg group (i.e. the group of upper triangular 3 by 3 
matrices with ones on the diagonal). It is easy to see that the commu­
tative Hopf algebra H is the polynomial algebra in generators x, y, z 
(entries of the matrix), so that x, y are primitive, and 

Δ(z) = z ⊗ 1 + 1 ⊗ z + x ⊗ y. 

Since the only grouplike element in H is 1, and the only skew-primitive 
elements are x, y, H is not generated by grouplike and skew-primitive 
elements. 

However, one has the following conjecture, due to Andruskiewitsch 
and Schneider. 

Conjecture 1.32.1. Any finite dimensional pointed Hopf algebra over 
a field of characteristic zero is generated in degree 1 of its coradical 
filtration, i.e., by grouplike and skew-primitive elements. 

It is easy to see that it is enough to prove this conjecture for corad­
ically graded Hopf algebras; this has been done in many special cases 
(see [AS]). 

The reason we discuss this conjecture here is that it is essentially a 
categorical statement. Let us make the following definition. 

Definition 1.32.2. We say that a tensor category C is tensor-generated 
by a collection of objects Xα if every object of C is a subquotient of a 
finite direct sum of tensor products of Xα. 

Proposition 1.32.3. A pointed Hopf algebra H is generated by grou­
plike and skew-primitive elements if and only if the tensor category 
H − comod is tensor-generated by objects of length 2. 

Proof. This follows from the fact that matrix elements of the tensor 
product of comodules V, W for H are products of matrix elements of 
V, W . � 

Thus, one may generalize Conjecture 1.32.1 to the following conjec­
ture about tensor categories. 

Conjecture 1.32.4. Any finite pointed tensor category over a field of 
characteristic zero is tensor generated by objects of length 2. 
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As we have seen, this property fails for infinite categories, e.g., for 
the category of rational representations of the Heisenberg group. In 
fact, this is very easy to see categorically: the center of the Heisenberg 
group acts trivially on 2-dimensional representations, but it is not true 
for a general rational representation. 

1.33. The Cartier-Kostant theorem. 

Theorem 1.33.1. Any cocommutative Hopf algebra H over an alge­
braically closed field of characteristic zero is of the form k[G] � U(g), 
where g is a Lie algebra, and G is a group acting on g. 

Proof. Let G be the group of grouplike elements of H. Since H is 
cocommutative, it is pointed, and Ext1(g, h) = 0 if g, h ∈ G, g �= h. 
Hence the category C = H−comod splits into a direct sum of blocks C = 
⊕g∈GCg, where Cg is the category of objects of C which have a filtration 
with successive quotients isomorphic to g. So H = ⊕g∈GHg, where 
Cg = Hg −comod, and Hg = gH1. Moreover, A = H1 is a Hopf algebra, 
and we have an action of G on A by Hopf algebra automorphisms. 
Now let g = Prim(A) = Prim(H). This is a Lie algebra, and the 

group G acts on it (by conjugation) by Lie algebra automorphisms. So 
we need just to show that the natural homomorphism ψ : U(g) A is→
actually an isomorphism. 

It is clear that any morphism of coalgebras preserves the coradical 
filtration, so we can pass to the associated graded morphism ψ0 : Sg →
A0, where A0 = gr(A). It is enough to check that ψ0 is an isomorphism. 

The morphism ψ0 is an isomorphism in degrees 0 and 1, and by 
Corollary 1.29.7, it is injective. So we only need to show surjectivity. 
We prove the surjectivity in each degree n by induction. To simplify 

notation, let us identify Sg with its image under ψ0. Suppose that the 
surjectivity is known in all degrees below n. Let z be a homogeneous 
element in A0 of degree n. Then it is easy to see from the counit axiom 
that 

(1.33.1) Δ(z) − z ⊗ 1 − 1 ⊗ z = u 

where u ∈ Sg ⊗ Sg is a symmetric element (as Δ is cocommutative). 
Equation 1.33.1 implies that the element u satisfies the equation 

(1.33.2) (Δ ⊗ Id)(u) + u ⊗ 1 = (Id ⊗ Δ)(u) + 1 ⊗ u. 

Lemma 1.33.2. Let V be a vector space over a field k of characteristic 
zero. Let u ∈ SV ⊗ SV be a symmetric element satisfying equation 
(1.33.2). Then u = Δ(w) − w ⊗ 1 − 1 ⊗ w for some w ∈ SV . 
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Proof. Clearly, we may assume that V is finite dimensional. Regard u 
as a polynomial function on V ∗ × V ∗; our job is to show that 

u(x, y) = w(x + y) − w(x) − w(y) 

for some polynomial w. 
If we regard u as a polynomial, equation (1.33.2) takes the form of 

the 2-cocycle condition 

u(x + y, t) + u(x, y) = u(x, y + t) + u(y, t). 

Thus u defines a group law on U := V ∗ ⊕ k, given by 

(x, a) + (y, b) = (x + y, a + b + u(x, y)). 

Clearly, we may assume that u is homogeneous, of some degree d = 1. 
Since u is symmetric, the group U is abelian. So in U we have 

((x, 0) + (x, 0)) + ((y, 0) + (y, 0)) = ((x, 0) + (y, 0)) + ((x, 0) + (y, 0)) 

Computing the second component of both sides, we get 

u(x, x) + u(y, y) + 2d u(x, y) = 2u(x, y) + u(x + y, x + y). 

So one can take w(x) = (2d − 2)−1u(x, x), as desired. � 

Now, applying Lemma 1.33.2, we get that there exists w ∈ A0 such 
that z − w is a primitive element, which implies that z − w ∈ A0, so 
z ∈ A0. � 

Remark 1.33.3. The Cartier-Kostant theorem implies that any co­
commutative Hopf algebra over an algebraically closed field of char­
acteristic zero in which the only grouplike element is 1 is of the form 
U(g), where g is a Lie algebra (a version of the Milnor-Moore theorem), 
in particular is generated by primitive elements. The latter statement 
is false in positive charactersitic. Namely, consider the commutative 
Hopf algebra Q[x, z] where x, z are primitive, and set y = z + xp/p, 
where p is a prime. Then 

p−1
1 
� 
p 
� 

(1.33.3) Δ(y) = y ⊗ 1 + 1 ⊗ y + 
p i

x i ⊗ xp−i . 
i=1 

Since the numbers 1 
p 
p
i are integers, this formula (together with Δ(x) = 

x ⊗ 1+1 ⊗ x, S(x) = −x, S(y) = −y) defines a Hopf algebra structure 
on H = k[x, y] for any field k, in particular, one of characteristic p. But 
if k has characteristic p, then it is easy to see that H is not generated 
by primitive elements (namely, the element y is not in the subalgebra 
generated by them). 
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The Cartier-Kostant theorem implies that any affine pro-algebraic 
group scheme over a field of characteristic zero is in fact a pro-algebraic 
group. Namely, we have 

Corollary 1.33.4. Let H be a commutative Hopf algebra over a field 
k of characteristic zero. Then H has no nonzero nilpotent elements. 

Proof. It is clear that H is a union of finitely generated Hopf subalge­
bras (generated by finite dimensional subcoalgebras of H), so we may 
assume that H is finitely generated. Let m be the kernel of the counit 
of H, and B = ∪∞n=1(H/m

n)∗ (i.e., B is the continuous dual of the 
formal completion of H near the ideal m). It is easy to see that B is 
a cocommutative Hopf algebra, and its only grouplike element is 1. So 
by the Cartier-Kostant theorem B = U(g), where g = (m/m2)∗. This 
implies that G = Spec(H) is smooth at 1 ∈ G, i.e. it is an algebraic 
group, as desired. � 

Remark 1.33.5. Note that Corollary 1.33.4 is a generalization of 
Corollary 1.27.6. 

1.34. Quasi-bialgebras. Let us now discuss reconstruction theory for 
quasi-fiber functors. This leads to the notion of quasi-bialgebras and 
quasi-Hopf algebras, which were introduced by Drinfeld in [Dr1] as 
linear algebraic counterparts of abelian monoidal categories with quasi-
fiber functors. 

Definition 1.34.1. Let C be an abelian monoidal category over k, 
and (F, J) : C → Vec be a quasi-fiber functor. (F, J) is said to be 
normalized if J1X = JX1 = IdF (X) for all X ∈ C. 
Definition 1.34.2. Two quasi-fiber functors (F, J1) and (F, J2) are 
said to be twist equivalent (by the twist J1

−1J2). 

Since for a quasi-fiber functor (unlike a fiber functor), the isomor­
phism J is not required to satisfy any equations, it typically does not 
carry any valuable structural information, and thus it is more reason­
able to classify quasi-fiber functors not up to isomorphism, but rather 
up to twist equivalence combined with isomorphism. 

Remark 1.34.3. It is easy to show that any quasi-fiber functor is 
equivalent to a normalized one. 

Now let C be a finite abelian monoidal category over k, and let 
(F, J) be a normalized quasi-fiber functor. Let H = End F be the 
corresponding finite dimensional algebra. Then H has a coproduct Δ 
and a counit ε defined exactly as in the case of a fiber functor, which 
are algebra homomorphisms. The only difference is that, in general, 
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Δ is not coassociative, since J does not satisfy the monoidal structure 
axiom. Rather, there is an invertible element Φ ∈ H⊗3, defined by the 
commutative diagram 
(1.34.1) 

Φ 
F (X),F (Y ),F (Z)

(F (X) ⊗ F (Y )) ⊗ F (Z) −−−−−−−−−→ F (X) ⊗ (F (Y ) ⊗ F (Z))⏐⏐� 
⏐⏐�JX,Y ⊗IdF (Z) IdF (X)⊗JY,Z 

F (X ⊗ Y ) ⊗ F (Z) 

JX⊗Y,Z 

⏐⏐� ⏐⏐� 

F (X) ⊗ F (Y ⊗ Z) 

JX,Y ⊗Z 

F (a
X,Y,Z ) 

F ((X ⊗ Y ) ⊗ Z)
 −−−−−−→
 F (X ⊗ (Y ⊗ Z))


for all X, Y, Z ∈ C, and we have the following proposition. 

Proposition 1.34.4. The following identities hold: 

(1.34.2) (Id ⊗ Δ)(Δ(h)) = Φ(Δ ⊗ Id)(Δ(h))Φ−1 , h ∈ H, 

(1.34.3)

(Id ⊗ Id ⊗ Δ)(Φ)(Δ ⊗ Id ⊗ Id)(Φ) = (1 ⊗ Φ)(Id ⊗ Δ ⊗ Id)(Φ)(Φ ⊗ 1),


(1.34.4) (ε ⊗ Id)(Δ(h)) = h = (Id ⊗ ε)(Δ(h)),


(1.34.5) (Id ⊗ ε ⊗ Id)(Φ) = 1 ⊗ 1.


Proof. The first identity follows from the definition of Φ, the second 
one from the pentagon axiom for C, the third one from the condition 
that (F, J) is normalized, and the fourth one from the triangle axiom 
and the condition that (F, J) is normalized. � 

Definition 1.34.5. An associative unital k-algebra H equipped with 
unital algebra homomorphisms Δ : H H ⊗ H (the coproduct) and→
ε : H → k (the counit) and an invertible element Φ ∈ H⊗3 satisfying 
the identities of Proposition 1.34.4 is called a quasi-bialgebra. The 
element Φ is called the associator of H. 

Thus, the notion of a quasi-bialgebra is a generalization of the notion 
of a bialgebra; namely, a bialgebra is a quasi-bialgebra with Φ = 1.11 

For a quasi-bialgebra H, the tensor product of (left) H-modules V 
and W is an H-module via Δ, i.e., in the same way as for bialgebras. 
Also, it follows from (1.34.2) that for any H-modules U, V, W the map­
ping 

(1.34.6) = U ⊗(V ⊗W ) : u⊗v⊗w �→ Φ(u⊗v⊗w)aU,V,W : (U ⊗V )⊗W ∼

11However, note that Δ can be coassociative even if Φ = 1.�
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is an H-module isomorphism. The axiom (1.34.4) implies that the 
natural maps lV = Id : 1 ⊗ V 

∼
V and rV = Id : V ⊗ 1 

∼
V are also −→ −→

H-module isomorphisms. Finally, equations (1.34.3) and (1.34.5) say, 
respectively, that the pentagon axiom (1.1.2) and the triangle axiom 
(1.2.1) are satisfied for Rep(H). In other words, Rep(H) is a monoidal 
category. 

Definition 1.34.6. A twist for a quasi-bialgebra H is an invertible 
element J ∈ H ⊗ H such that (ε ⊗ Id)(J) = (Id ⊗ ε)(J) = 1. Given a 
twist, we can define a new quasi-bialgebra HJ which is H as an algebra, 
with the same counit, the coproduct given by 

ΔJ (x) = J−1Δ(x)J, 

and the associator given by 

ΦJ = (Id ⊗ J)−1(Id ⊗ Δ)(J)−1Φ(Δ ⊗ Id)(J)(J ⊗ Id) 

The algebra HJ is called twist equivalent to H, by the twist J . 

It is easy to see that twist equivalent quasi-fiber functors produce 
twist-equivalent quasi-bialgebras, and vice versa. Also, we have the 
following proposition. 

Proposition 1.34.7. If a finite k-linear abelian monoidal category C
admits a quasi-fiber functor, then this functor is unique up to twisting. 

Proof. Let Xi, i = 1, ..., n be the simple objects of C. The functor 
F is exact, so it is determined up to isomorphism by the numbers 
di = dim F (Xi). So our job is to show that these numbers are uniquely 
determined by C. 
Let Ni = (Nij

k ) be the matrix of left multiplication by Xi in the 
Grothendieck ring of C in the basis {Xj }, i.e. 

XiXj = Nij
k Xk 

(so, k labels the rows and j labels the columns of Ni). 
We claim that di is the spectral radius of Ni. Indeed, on the one 

hand, we have � 
Nij
mdm = didj , 

so di is an eigenvalue of Ni
T , hence of Ni. On the other hand, if ej is the 

standard basis of Zn then for any r ≥ 0 the sum of the coordinates of 
the vector Ni

rej is the length of the object X⊗r ⊗Xj , so it is dominated i 
by dri dj. This implies that the spectral radius of Ni is at most di. This 
means that the spectral radius is exactly di, as desired. � 

Therefore, we have the following reconstruction theorem. 
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Theorem 1.34.8. The assignments (C, F ) �→ H = End(F ), H �→
(Rep(H), Forget) are mutually inverse bijections between 

1) finite k-linear abelian monoidal categories C admitting a quasi-
fiber functor, up to monoidal equivalence of categories. 
2) finite dimensional quasi-bialgebras H over k up to twist equiva­

lence and isomorphism. 

Proof. Straightforward from the above.	 � 

Exercise 1.34.9. Suppose that in the situation of Exercise 1.21.6, the 
functor F is equipped with a quasi-monoidal structure J , i.e. an iso­
morphism J : F ( ) ⊗ F ( ) F (•⊗•), such that J1X = JX1 = IdF (X).• • →
Show that this endows H with the structure of a quasi-bialgebra, such 
that (F, J) defines a monoidal equivalence C → Rep(H). 

Remark 1.34.10. Proposition 1.34.7 is false for infinite categories. 
For example, it is known that if C = Rep(SL2(C)), and V ∈ C is a 2­
dimensional repesentation, then there exists a for any positive integer 
n ≥ 2 there exists a fiber functor on C with dim F (V ) = n (see [Bi]). 

1.35. Quasi-bialgebras with an antipode and quasi-Hopf alge­
bras. Now consider the situation of the previous subsection, and as­
sume that the category C has right duals. In this case, by Proposition 
1.13.5, the right dualization functor is exact; it is also faithful by Propo­
sition 1.10.9. Therefore, the functor F (V ∗)∗ is another quasi-fiber func­
tor on C. So by Proposition 1.34.7, this functor is isomorphic to F . Let 
us fix such an isomorphism ξ = (ξV ), ξV : F (V ) F (V ∗)∗. Then we →
have natural linear maps k → F (V ) ⊗ F (V ∗), F (V ∗) ⊗ F (V ) → k con­
structed as in Exercise 1.10.6, which can be regarded as linear maps 
α̂ : F (V ) F (V ∗)∗ and β̂ : F (V ∗)∗ F (V ). Thus, the quasi­→	 →
bialgebra H = End(F ) has the following additional structures. 

1. The elements α, β ∈ H such that for any V ∈ C, αV = ξ−1 α̂V ,V 

βV = β̂V ◦ ξV . Note that α and β are not necessarily invertible. 
◦ 

2. The antipode S : H H, which is a unital algebra antihomo­→ � 
morphism such that if Δ(a) = i ai 

1 ⊗ ai 
2 , a ∈ H, then 

(1.35.1)	 S(a 1 
i )αa

2 
i = ε(a)α, a 1 

i βS(a 2 
i ) = ε(a)β. 

i i 

Namely, for a ∈ H S(a) acts on F (V ) by ξ−1 ◦ a∗ ξ.� F (V ∗) ◦ 
Let us write the associator as Φ = i Φ

1 
i ⊗ Φi 

2 ⊗ Φ3 
i and its inverse 

as Φ̄1 
i ⊗ Φ̄2 

i ⊗ Φ̄3 
i . 

Proposition 1.35.1. One has 

(1.35.2)	 Φ1 
i βS(Φi 

2)αΦ3 
i = 1, S(Φ̄1 

i )αΦ̄
2 
i βS(Φ̄

3 
i ) = 1. 
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Proof. This follows directly from the duality axioms. � 

Definition 1.35.2. An antipode on a quasi-bialgebra H is a triple 
(S, α, β), where S : H H is a unital antihomomorphism and α, β ∈→
H, satisfying identities (1.35.1) and (1.35.2). 

A quasi-Hopf algebra is a quasi-bialgebra (H, Δ, ε, Φ) for which there 
exists an antipode (S, α, β) such that S is bijective. 

Thus, the notion of a quasi-Hopf algebra is a generalization of the 
notion of a Hopf algebra; namely, a Hopf algebra is a quasi-Hopf algebra 
with Φ = 1, α = β = 1. 

We see that if in the above setting C has right duals, then H = 
End(F ) is a finite dimensional bialgebra admitting antipode, and if C
is rigid (i.e., a tensor category), then H is a quasi-Hopf algebra. 

Conversely, if H is a quasi-bialgebra with an antipode, then the 
category C = Rep(H) admits right duals. Indeed, the right dual module 
of an H-module V is defined as in the Hopf algebra case: it is the dual 
vector space V ∗ with the action of H given by 

� hφ, v � = � φ, S(h)v �, v ∈ V, φ ∈ V ∗, h ∈ H. 

Let vi ⊗ fi be the image of IdV under the canonical isomorphism 
End(V ) 

∼
Then the evaluation and coevaluation maps are −→ V ⊗ V ∗. 

defined using the elements α and β: 

evV (f ⊗ v) = f(αv), coevV (1) = βvi ⊗ fi. 

Axiom (1.35.1) is then equivalent to evV and coevV being H-module 
maps. Equations (1.35.2) are equivalent, respectively, to axioms (1.10.1) 
and (1.10.2) of a right dual. 

If S is invertible, then the right dualization functor is an equivalence 
of categories, so the representation category Rep(H) of a quasi-Hopf 
algebra H is rigid, i.e., a tensor category. 

Exercise 1.35.3. Let H := (H, Δ, ε, Φ, S, α, β) be a quasi-bialgebra 
with an antipode, and u ∈ H be an invertible element. 

(i) Show that if one sets 

(1.35.3) S(h) = uS(h)u−1 , α = uα, and β = βu−1 

then the triple (S, α, β) is an antipode. 
(ii) Conversely, show that any S, α, and β satisfying conditions 

(1.35.1) and (1.35.2) are given by formulas (1.35.3) for a uniquely de­
fined u. 

Hint. If H is finite dimensional, (ii) can be formally deduced from 
the uniqueness of the right dual in a tensor category up to a unique 
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isomorphism. Use this approach to obtain the unique possible formula 
for u, and check that it does the job for any H. 

Remark 1.35.4. The non-uniqueness of S, α, and β observed in Ex­
ercise 1.35.3 reflects the freedom in choosing the isomorphism ξ. 

Example 1.35.5. (cf. Example 1.10.14) Let G be a finite group and 
let ω ∈ Z3(G, k×) be a normalized 3-cocycle, see (1.3.1). Consider 
the algebra H = Fun(G, k) of k-valued functions on G with the usual 
coproduct and counit. Set 

Φ = ω(f, g, h)pf ⊗ pg ⊗ ph, α = ω(g, g−1 , g)pg, β = 1, 

where pg is the primitive idempotent of H corresponding to g ∈ G. 
It is straightforward to check that these data define a commutative 
quasi-Hopf algebra, which we denote Fun(G, k)ω. The tensor category 
Rep(Fun(G, k)ω) is obviously equivalent to Vecω 

G. 

It is easy to show that a twist of a quasi-bialgebra H with an antipode 
is again a quasi-bialgebra with an antipode (this reflects the fact that 
in the finite dimensional case, the existence of an antipode for H is the 
property of the category of finite dimensional representations of H). 
Indeed, if the twist J and its inverse have the form � � 

J = ai ⊗ bi, J
−1 = a�i ⊗ b�i 

i i � 
then HJ has an antipode (SJ , αJ , βJ ) with SJ = S and αJ � = i S(ai)αbi, 
βJ = i a

�
iβS(b

�
i). Thus, we have the following reconstruction theorem. 

Theorem 1.35.6. The assignments (C, F ) �→ H = End(F ), H �→
(Rep(H), Forget) are mutually inverse bijections between 

(i) finite abelian k-linear monoidal categories C with right duals ad­
mitting a quasi-fiber functor, up to monoidal equivalence of categories, 
and finite dimensional quasi-bialgebras H over k with an antipode, up 
to twist equivalence and isomorphism; 

(ii) finite tensor categories C admitting a quasi-fiber functor, up to 
monoidal equivalence of categories, and finite dimensional quasi-Hopf 
algebras H over k, up to twist equivalence and isomorphism. 

Remark 1.35.7. One can define the dual notions of a coquasi-bialgebra 
and coquasi-Hopf algebra, and prove the corresponding reconstruction 
theorems for tensor categories which are not necessarily finite. This is 
straightforward, but fairly tedious, and we will not do it here. 
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1.36. Twists for bialgebras and Hopf algebras. Let H be a bial­
gebra. We can regard it as a quasi-bialgebra with Φ = 1. Let J be a 
twist for H. 

Definition 1.36.1. J is called a bialgebra twist if HJ is a bialgebra, 
i.e. ΦJ = 1. 

Thus, a bialgebra twist for H is an invertible element J ∈ H ⊗H such 
that (ε ⊗ Id)(J) = (Id ⊗ ε)(J) = 1, and J satisfies the twist equation 

(1.36.1) (Id ⊗ Δ)(J)(Id ⊗ J) = (Δ ⊗ Id)(J)(J ⊗ Id). 

Exercise 1.36.2. Show that if a bialgebra H has an antipode S, and J 
is a bialgebra twist for H, then the bialgebra HJ also has an antipode. 
Namely, let J = ai ⊗ bi, J−1 = a�i ⊗ b�i, and set QJ = S(ai)bi.� i 
Then QJ is invertible with Q−

J 
1 = i a

�
iS(b

�
i), and the antipode of HJ 

is defined by SJ (x) = QJ
−1S(x)QJ . In particular, a bialgebra twist of 

a Hopf algebra is again a Hopf algebra. 

Remark 1.36.3. Twisting does not change the category of H-modules 
as a monoidal category, and the existence of an antipode (for finite 
dimensional H) is a categorical property (existence of right duals). 
This yields the above formulas, and then one easily checks that they 
work for any H. 

Any twist on a bialgebra H defines a fiber functor (Id, J) on the 
category Rep(H). However, two different twists J1, J2 may define iso­
morphic fiber functors. It is easy to see that this happens if there is an 
invertible element v ∈ H such that 

J2 = Δ(v)J1(v
−1 ⊗ v−1). 

In this case the twists J1 and J2 are called gauge equivalent by the 
gauge transformation v, and the bialgebras HJ1 , HJ2 are isomorphic 
(by conjugation by v). So, we have the following result. 

Proposition 1.36.4. Let H be a finite dimensional bialgebra. Then 
J �→ (Id, J) is a bijection between: 

1) gauge equivalence classes of bialgebra twists for H, and 
2) fiber functors on C = Rep(H), up to isomorphism. 

Proof. By Proposition 1.34.7, any fiber functor on C is isomorphic to 
the forgetful functor F as an additive functor. So any fiber functor, up 
to an isomorphism, has the form (F, J), where J is a bialgebra twist. 
Now it remains to determine when (F, J1) and (F, J2) are isomorphic. 
Let v : (F, J1) → (F, J2) be an isomorphism. Then v ∈ H is an 
invertible element, and it defines a gauge transformation mapping J1 

to J2. � 
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Proposition 1.36.5. Let G be a group. Then fiber functors on VecG 

up to an isomorphism bijectively correspond to H2(G, k×). 

Proof. A monoidal structure on the forgetful functor F is given by a 
function J(g, h) : δg ⊗ δh → δg ⊗ δh, J(g, h) ∈ k×. It is easy to see that 
the monoidal structure condition is the condition that J is a 2-cocycle, 
and two 2-cocycles define isomorphic monoidal structures if and only 
if they differ by a coboundary. Thus, equivalence classes of monoidal 
structures on F are parametrized by H2(G, k×), as desired. � 

Remark 1.36.6. Proposition 1.36.5 shows that there may exist non-
isomorphic fiber functors on a given finite tensor category C defining 
isomorphic Hopf algebras. Indeed, all fiber functors on VecG yield the 
same Hopf algebra Fun(G, k). These fiber functors are, however, all 
equivalent to each other by monoidal autoequivalences of C. 

Remark 1.36.7. Since Vecω does not admit fiber functors for cohomo-G 
logically nontrivial ω, Proposition 1.36.5 in fact classifies fiber functors 
on all categories Vecω 

G. 
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1.37. Quantum traces. Let C be a rigid monoidal category, V be an 
object in C, and a ∈ Hom(V, V ∗∗). Define the left quantum trace 

(1.37.1) TrL (a) := evV ∗ ◦ (a ⊗ IdV ∗ ) ◦ coevV ∈ End(1).V 

Similarly, if a ∈ Hom(V, ∗∗V ) then we can define the right quantum 
trace 

(1.37.2) TrR (a) := ev∗∗V ◦ (Id∗V ⊗ a) ◦ coev∗V ∈ End(1).V 

In a tensor category over k, TrL(a) and TrR(a) can be regarded as 
elements of k. 

When no confusion is possible, we will denote TrLV by TrV . 
The following proposition shows that usual linear algebra formulas 

hold for the quantum trace. 

Proposition 1.37.1. If a ∈ Hom(V, V ∗∗), b ∈ Hom(W, W ∗∗) then 
(1) TrV

L (a) = TrV
R 

∗ (a∗); 
(2) TrV

L 
⊕W (a ⊕ b) = TrL W (b) (in additive categories); V (a) + TrL 

(3) TrV
L 
⊗W (a ⊗ b) = TrL (a)TrL (b);V W 

(4) If c ∈ Hom(V, V ) then TrL (ac) = TrL (c∗∗a), TrR (ac) = TrR(∗∗ca).V V V V 

Similar equalities to (2),(3) also hold for right quantum traces. 

Exercise 1.37.2. Prove Proposition 1.37.1. 

If C is a multitensor category, it is useful to generalize Proposi­
tion 1.37.1(2) as follows. 

Proposition 1.37.3. If a Hom(V, V ∗∗) and W V such that ∈ ⊂ 
a(W ) ⊂ W ∗∗ then TrL = TrL 

V/W (a). That is, Tr is addi-V (a) W (a) + TrL 

tive on exact sequences. The same statement holds for right quantum 
traces. 

Exercise 1.37.4. Prove Proposition 1.37.3. 

1.38. Pivotal categories and dimensions. 

Definition 1.38.1. Let C be a rigid monoidal category. A pivotal 
structure on C is an isomorphism of monoidal functors a : Id 

∼
?∗∗.−→

That is, a pivotal structure is a collection of morphisms aX : X 
∼−→

X∗∗ natural in X and satisfying aX⊗Y = aX ⊗ aY for all objects X, Y 
in C. 

Definition 1.38.2. A rigid monoidal category C equipped with a piv­
otal structure is said to be pivotal. 

Exercise 1.38.3. (1) If a is a pivotal structure then aV ∗ = (aV )
∗−1 . 

Hence, aV ∗∗ = a∗∗ 
V . 
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(2) Let	 C = Rep(H), where H is a finite dimensional Hopf alge­
bra. Show that pivotal structures on C bijectively correspond 
to group-like elements of H such that gxg−1 = S2(x) for all 
x ∈ H. 

Let a be a pivotal structure on a rigid monoidal category C. 

Definition 1.38.4. The dimension of an object X with respect to a 
is dima(X) := Tr(aX ) ∈ End(1). 

Thus, in a tensor category over k, dimensions are elements of k. Also, 
it follows from Exercise 1.38.3 that dima(V ) = dima(V ∗∗). 

Proposition 1.38.5. If C is a tensor category, then the function X �→
dima(X) is a character of the Grothendieck ring Gr(C). 

Proof. Proposition 1.37.3 implies that dima is additive on exact se­
quences, which means that it gives rise to a well-defined linear map 
from Gr(C) to k. The fact that this map is a character follows from the 
obvious fact that dima(1) = 1 and Proposition 1.37.1(3). � 

Corollary 1.38.6. Dimensions of objects in a pivotal finite tensor cat­
egory are algebraic integers in k. 12 

Proof. This follows from the fact that a character of any ring that is 
finitely generated as a Z-module takes values in algebraic integers. � 

1.39. Spherical categories. 

Definition 1.39.1. A pivotal structure a on a tensor category C is 
spherical if dima(V ) = dima(V ∗) for any object V in C. A tensor 
category is spherical if it is equipped with a spherical structure. 

Since dima is additive on exact sequences, it suffices to require the 
property dima(V ) = dima(V ∗) only for simple objects V . 

Theorem 1.39.2. Let C be a spherical category and V be an object of 
Then for any x ∈ Hom(V, V ) one has TrL (aV x) = TrR (xa−1).C.	 V V V 

Proof. We first note that TrR (a−1) = dima(X
∗) for any object X by X	 X 

Proposition 1.37.1(1) and Exercise 1.38.3(1). Now let us prove the 
proposition in the special case when V is semisimple. Thus V = ⊕i Yi ⊗
Vi, where Vi are vector spaces and Yi are simple objects. Then x = 

12If k has positive characteristic, by an algebraic integer in k we mean an element 
of a finite subfield of k. 
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⊕i xi ⊗IdVi with xi ∈ Endk(Yi) and a = ⊕ IdYi ⊗aVi (by the functoriality 
of a). Hence 

TrLV (ax) = Tr(xi) dim(Vi), 

TrRV (xa
−1) = Tr(xi) dim(Vi 

∗). 

This implies the result for a semisimple V . 
Consider now the general case. Then V has the coradical filtration 

(1.39.1) 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = V 

(such that Vi+1/Vi is a maximal semisimple subobject in V/Vi). This 
filtration is preserved by x and by a (i.e., a : Vi Vi 

∗∗). Since traces →
are additive on exact sequences by Proposition 1.37.3, this implies that 
the general case of the required statement follows from the semisimple 
case. � 

Exercise 1.39.3. (i) Let Aut⊗(IdC) be the group of isomorphism classes 
of monoidal automorphisms of a monoidal category C. Show that the 
set of isomorphism classes of pivotal structures on C is a torsor over 
Aut⊗(IdC), and the set of isomorphism classes of spherical structures 
on C is a torsor over the subgroup Aut⊗(IdC)2 in Aut⊗(IdC ) of elements 
which act by ±1 on simple objects. 

1.40. Semisimple multitensor categories. In this section we will 
more closely consider semisimple multitensor categories which have 
some important additional properties compared to the general case. 

1.41. Isomorphism between V ∗∗ and V . 

Proposition 1.41.1. Let C be a semisimple multitensor category and 
let V be an object in C. = V ∗. = V ∗∗.Then ∗V ∼ Hence, V ∼

Proof. We may assume that V is simple. 
We claim that the unique simple object X such that Hom(1, V ⊗X) =�

0 is V ∗. Indeed, Hom(1, V ⊗ X) ∼ Hom(∗X, V ) which is non-zero if = 
and only if ∗X ∼ = V ∗.= V , i.e., X ∼ Similarly, the unique simple object 
X such that Hom(V ⊗ X, 1) =� 0 is ∗V . But since C is semisimple, 
dimk Hom(1, V ⊗ X) = dimk Hom(V ⊗ X, 1), which implies the result. 

Remark 1.41.2. As noted in Remark 1.27.2, the result of Proposi­
tion 1.41.1 is false for non-semisimple categories. 

Remark 1.41.3. Proposition 1.41.1 gives rise to the following ques­
tion. 
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Question 1.41.4. Does any semisimple tensor category admit a piv­
otal structure? A spherical structure? 

This is the case for all known examples. The general answer is un­
known to us at the moment of writing (even for ground fields of char­
acteristic zero). 

Proposition 1.41.5. If C is a semisimple tensor category and a : V 
∼−→

V ∗∗ for a simple object V then Tr(a) = 0. 

Proof. Tr(a) is the composition morphism of the diagram 1 V ⊗→
V ∗ 1 where both morphisms are non-zero. If the composition mor­→
phism is zero then there is a non-zero morphism (V ⊗V ∗)/1 → 1 which 
means that the [V ⊗ V ∗ : 1] ≥ 2. Since C is semisimple, this implies 
that dimk Hom(1, V ⊗ V ∗) is at least 2. Hence, dimk Hom(V, V ) ≥ 2 
which contradicts the simplicity of V . � 

Remark 1.41.6. The above result is false for non-semisimple cate­
gories. For example, let C = Repk(GLp(Fp)), the representation cat­
egory of the group GLp(Fp) over a field k of characteristic p. Let 
V be the p dimensional vector representation of GLp(Fp) (which is 
clearly irreducible). Let a : V V ∗∗ be the identity map. Then→
Tr(a) = dimk(V ) = p = 0 in k. 

1.42. Grothendieck rings of semisimple tensor categories. 

Definition 1.42.1. (i) A Z+−basis of an algebra free as a module over 
Z is a basis B = {bi} such that bibj = k cij

k bk, cij
k ∈ Z+. 

(ii) A Z+−ring is an algebra over Z with unit equipped with a fixed 
Z+−basis. 

Definition 1.42.2. (1) A Z+−ring A with basis {bi}i∈I is called a 
based ring if the following conditions hold � 

[a] There exists a subset I0 ⊂ I such that 1 = i∈I0 
bi. 

[b] Let τ : A Z be the group homomorphism defined by → � 

(1.42.1) τ(bi) = 
1 if i ∈ I0 

0 if i �∈ I0 

There exists an involution i �→ i∗ of I such that induced map 
a = i∈I aibi �→ a∗ = i∈I aibi∗ , ai ∈ Z is an anti-involution 
of ring A and such that 

1 if i = j∗ 

(1.42.2) τ(bibj ) = 
0 if i = j∗. 

(2) A unital Z+-ring is a Z+-ring A such that 1 belongs to the basis. 
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(3) A multifusion ring is a based ring of finite rank. A fusion ring 
is a unital based ring of finite rank. 

Remark 1.42.3. (1) It follows easily from definition that i, j ∈
I0, i =� j implies that b2 

i = bi, bibj = 0, i∗ = i. 
(2) It is easy to see that for a given Z+−ring A, being a (unital) 

based ring is a property, not an additional structure. 
(3) Note that any Z+-ring is assumed to have a unit, and is not 

necessarily a unital Z+-ring. 

Proposition 1.42.4. If C is a semisimple multitensor category then 
Gr(C) is a based ring. If C is semisimple tensor category then Gr(C) is 
a unital based ring. If C is a (multi)fusion category, then Gr(C) is a 
(multi)fusion ring. 

Proof. The Z+-basis in Gr(C) consists of isomorphism classes of simple 
objects of C. The set I0 consists of the classes of simple subobjects of 
1. The involution ∗ is the duality map (by Proposition 1.41.1 it does 
not matter whether to use left or right duality). This implies the first 
two statements. The last statement is clear. � 

Example 1.42.5. Let C be the category of finite dimensional repre­
sentations of the Lie algebra sl2(C). Then the simple objects of this 
category are irreducible representations Vm of dimension m + 1 for 
m = 0, 1, 2, . . . ; V0 = 1. The Grothendieck ring of C is determined by 
the well-known Clebsch-Gordon rule 

i+j

(1.42.3) Vi ⊗ Vj = Vl. 
l=|i−j|,i+j−l∈2Z 

The duality map on this ring is the identity. The same is true if C = 
Rep(Uq (sl2)) when q is not a root of unity, see [K]. 

Let C be a semisimple multitensor category with simple objects 
{Xi}i∈I . Let I0 be the subset of I such that 1 = ⊕i∈I0 Xi. Let 
Hij
l := Hom(Xl, Xi ⊗ Xj ) (if Xp ∈ Cij with p ∈ I and i, j ∈ I0, we 

will identify spaces Hp and Hp with k using the left and right unit pi ip 

morphisms). � 
We have Xi ⊗ Xj = l Hij

l ⊗ Xl. Hence, 

(Xi1 = Hj ⊗ H i4⊗ Xi2 ) ⊗ Xi3 
∼

i1i2 ji3 
⊗ Xi4 

i4 j 

Xi1 ⊗ (Xi2 ) = Hi
i
1

4 
l ⊗ H l .⊗ Xi3 

∼
i2i3 
⊗ Xi4 

i4 l 
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Thus the associativity constraint reduces to a collection of linear iso­
morphisms 

(1.42.4) Φi4 : Hj ⊗ H i4 = H i4 .i1i2i3 i1i2 ji3 
∼

i1l ⊗ Hi
l 
2i3 

j l 

The matrix blocks of these isomorphisms, 

(1.42.5) (Φi4 )jl : H
j ⊗ H i4 Hi

i
1

4 
l ⊗ H l 

i1i2i3 i1i2 ji3 
→ i2i3 

are called 6j-symbols because they depend on six indices. 

Example 1.42.6. Let C be the category of finite dimensional repre­
sentations of the Lie algebra sl2(C). Then the spaces Hij

l are 0- or 
1-dimensional. In fact, it is obvious from the Clebsch-Gordan rule that 
the map (Φi

i
4

1i2i3 
)jl is a map between nonzero (i.e., 1-dimensional) spaces 

if and only if the numbers i1, i2, i3, i4, j, l are edge lengths of a tetrahe­
dron with faces corresponding to the four H-spaces (i1i2j, ji3i4,i1li4, 
i2i3l, such that the perimeter of every face is even (this tetrahedron 
is allowed to be in the Euclidean 3-space, Euclidean plane, or hyper­
bolic 3-space, so the only conditions are the triangle inequalities on 
the faces). In this case, the 6j-symbol can be regarded as a number, 
provided we choose a basis vector in every non-zero Hij

l . Under an ap­
propriate normalization of basis vectors these numbers are the Racah 
coefficients or classical 6j-symbols. More generally, if C = Uq (sl2), 
where q is not a root of unity, then the numbers (Φi

i
4

1i2i3 
)jl are called 

q-Racah coefficients or quantum 6j-symbols [CFS]. 

Further, the evaluation and coevaluation maps define elements 

(1.42.6) αij ∈ (Hii
j 
∗ )∗ and βij ∈ Hii

j 
∗ , j ∈ I0. 

Now the axioms of a rigid monoidal category, i.e., the triangle and 
pentagon identities and the rigidity axioms translate into non-linear al­
gebraic equations with respect to the 6j-symbols (Φi

i
4

1i2i3 
)jl and vectors 

αij , βij . 

Exercise 1.42.7. Write down explicitly the relation on 6j symbols 
coming from the pentagon identity. If C = Rep(sl2(C)) this relation is 
called the Elliott-Biedenharn relation ([CFS]). 

Proposition 1.42.4 gives rise to the following general problem of cat­
egorification of based rings which is one of the main problems in the 
structure theory of tensor categories. 

Problem 1.42.8. Given a based ring R, describe (up to equivalence) 
all multitensor categories over k whose Grothendieck ring is isomorphic 
to R. 
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It is clear from the above explanations that this problem is equiva­
lent to finding all solutions of the system of algebraic equations coming 
from the axioms of the rigid monoidal category modulo the group of au­
tomorphisms of the spaces Hij

k (“gauge transformations”). In general, 
this problem is very difficult because the system of equations involved 
is nonlinear, contains many unknowns and is usually over-determined. 
In particular, it is not clear a priori whether for a given R this sys­
tem has at least one solution, and if it does, whether the set of these 
solutions is finite. It is therefore amazing that the theory of tensor 
categories allows one to solve the categorification problem in a number 
of nontrivial cases. This will be done in later parts of these notes; now 
we will only mention the simplest result in this direction, which follows 
from the results of Subsection 1.7. 

Let Z[G] be the group ring of a group G, with basis {g ∈ G} and 
involution g∗ = g−1 . Clearly, Z[G] is a unital based ring. 

Proposition 1.42.9. The categorifications of Z[G] are Vecω 
G, and they 

are parametrized by H3(G, k×)/Out(G). 

Remark 1.42.10. It is tempting to say that any Z+-ring R has a 
canonical categorification over any field k: one can take the skeletal 
semisimple category C = CR over k whose Grothendieck group is R, 
define the tensor product functor on C according to the multiplication 
in R, and then “define” the associativity isomorphism to be the identity 
(which appears to make sense because the category is skeletal, and 
therefore by the associativity of R one has (X ⊗Y )⊗Z = X ⊗(Y ⊗Z)). 
However, a more careful consideration shows that this approach does 
not actually work. Namely, such “associativity isomorphism” fails to 
be functorial with respect to morphisms; in other words, if g : Y Y is→
a morphism, then (IdX ⊗g)⊗IdZ is not always equal to IdX ⊗(g ⊗IdZ ). 

To demonstrate this explicitly, denote the simple objects of the cat­
egory C by Xi, i = 1, ..., r, and let Xi ⊗ Xj = ⊕kNij

l Xl. Take X = Xi, 
Y = mXj , and Z = Xl; then g is an m by m matrix over k. The alge­
bra End((X ⊗ Y ) ⊗ Z) = End(X ⊗ (Y ⊗ Z)) is equal to ⊕sMatmns (k), 
where � � 

ns = Nij
p Npl

s = Niq
s Njl

q , 
p q 

and in this algebra we have 

(IdX ⊗ g) ⊗ IdZ = ⊕pr =1IdN p ⊗ g ⊗ IdNs ,
ij pl 

IdX ⊗ (g ⊗ IdZ ) = ⊕r IdNs ,q=1 iq 
⊗ g ⊗ IdN q 

jl 

We see that these two matrices are, in general, different, which shows 
that the identity “associativity isomorphism” is not functorial. 
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1.43. Semisimplicity of multifusion rings. 

Definition 1.43.1. A ∗-algebra is an associative algebra B over C 
with an antilinear anti-involution ∗ : B B and a linear functional →
τ : B C such that τ(ab) = τ(ba), and the Hermitian form τ(ab∗) is →
positive definite. 

Obviously, any semisimple algebra B = ⊕r Mati(C) is a ∗-algebra.i=1

Namely, if pi > 0 are any positive numbers for i = 1, ..., r then one 
can define ∗ to be the usual hermitian adjoint of matrices, and set 
τ(a1, ..., ar) = i piTr(ai). Conversely, it is easy to see that any 8­
algebra structure on a finite dimensional semisimple algebra has this 
form up to an isomorphism (and the numbers pi are uniquely deter­
mined, as traces of central idempotents of B). 

It turns out that this is the most general example of a finite dimen­
sional ∗-algebra. Namely, we have 

Proposition 1.43.2. Any finite dimensional ∗-algebra B is semisim­
ple. 

Proof. If M ⊂ B is a subbimodule, and M⊥ is the orthogonal comple­
ment of M under the form τ(ab∗), then M⊥ is a subbimodule of B, 
and M ∩ M⊥ = 0 because of the positivity of the form. So we have 
B = M ⊕ M⊥. Thus B is a semisimple B-bimodule, which implies the 
proposition. � 

Corollary 1.43.3. If e is a nonzero idempotent in a finite dimensional 
∗-algebra B then τ(e) > 0. 

The following proposition is obvious. 

Proposition 1.43.4. Let A be a based ring. Then the algebra A ⊗Z C 
is canonically a ∗-algebra. 

Corollary 1.43.5. Let A be a multifusion ring. Then the algebra 
A ⊗Z C is semsimiple. 

Corollary 1.43.6. Let X be a basis element of a fusion ring A. Then 
there exists n > 0 such that τ(Xn) > 0. 

Proof. Since τ(Xn(X∗)n) > 0 for all n > 0, X is not nilpotent. Let 

r

q(x) := (x − ai)
mi 

i=0 
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be the minimal polynomial of X (ai are distinct). Assume that a0 = 0 
(we can do so since X is not nilpotent). Let 

r

g(t) = (x − ai)
mi xh(x), 

i=1 

where h is a polynomial chosen in such a way that g(a0) = 1, g(j)(a0) = 
0 for j = 1, ..., m0 − 1 (this is clearly possible). Then g(X) is an 
idempotent, so by Corollary 1.43.3, τ(g(X)) > 0. Hence there exists 
n > 0 such that τ(Xn) = 0, as desired. � � 

1.44. The Frobenius-Perron theorem. The following classical the­
orem from linear algebra [Ga, XIII.2] plays a crucial role in the theory 
of tensor categories. 

Theorem 1.44.1. Let B be a square matrix with nonnegative entries. 

(1)	B has a nonnegative real eigenvalue. The largest nonnegative 
real eigenvalue λ(B) of B dominates the absolute values of all 
other eigenvalues µ of B: |µ| ≤ λ(B) (in other words, the spec­
tral radius of B is an eigenvalue). Moreover, there is an eigen­
vector of B with nonnegative entries and eigenvalue λ(B). 

(2)	 If B has strictly positive entries then λ(B) is a simple positive 
eigenvalue, and the corresponding eigenvector can be normalized 
to have strictly positive entries. Moreover, |µ| < λ(B) for any 
other eigenvalue µ of B. 

(3)	 If B has an eigenvector v with strictly positive entries, then the 
corresponding eigenvalue is λ(B). 

Proof. Let B be an n by n matrix with nonnegative entries. Let us first 
show that B has a nonnegative eigenvalue. If B has an eigenvector v 
with nonnegative entries and eigenvalue 0, then there is nothing to 
prove. Otherwise, let Σ be the set of column vectors x ∈ Rn with 
with nonnegative entries xi and s(x) := xi equal to 1 (this is a 
simplex). Define a continuous map fB : Σ → Σ by fB(x) = 

s(
B
B
x
x) . By 

the Brouwer fixed point theorem, this map has a fixed point f . Then 
Bf = λf , where λ > 0. Thus the eigenvalue λ(B) is well defined, and 
B always has a nonnegative eigenvector f with eigenvalue λ = λ(B). 

Now assume that B has strictly positive entries. Then f must have 
strictly positive entries fi. If d is another real eigenvector of B with 
eigenvalue λ, let z be the smallest of the numbers of di/fi. Then the 
vector v = d − zf satisfies Bv = λv, has nonnegative entries and has 
one entry equal to zero. Hence v = 0 and λ is a simple eigenvalue. 
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Now let y = (y1, ..., yn) ∈ Cn be a row vector. Define the norm 
|y| := |yj|fj . Then 

|yB| = | yibij |fj ≤ |yi|bij fj = λ|y|, 
j i i,j 

and the equality holds if and only if all the complex numbers yibij 
which are nonzero have the same argument. So if yB = µy, then 
|µ| ≤ λ, and if |µ| = λ then all yi which are nonzero have the same 
argument, so we can renormalize y to have nonnegative entries. This 
implies that µ = λ. Thus, part (2) is proved. 

Now consider the general case (B has nonnegative entries). Assume 
that B has a row eigenevector y with strictly positive entries and eigen­
value µ. Then 

µyf = yBf = λyf , 

which implies µ = λ, as yf = 0. This implies (3). 
It remains to finish the proof of part (1) (i.e. to prove that λ(B) 

dominates all other eigenvalues of B). Let ΓB be the oriented graph 
whose vertices are labeled by 1, ..., n, and there is an edge from j to 
i if and only if bij > 0. Let us say that i is accessible from j if there 
is a path in ΓB leading from j to i. Let us call B irreducible if any 
vertex is accessible from any other. By conjugating B by a permutation 
matrix if necessary, we can get to a situation when i ≥ j implies that 
i is accessible from j. This means that B is a block upper triangular 
matrix, whose diagonal blocks are irreducible. So it suffices to prove 
the statement in question for irreducible B. 

But if B is irreducible, then for some N the matrix 1 + B + + BN · · · 
has strictly positive entries. So the nonnegative eigenvector f of B 
with eigenvalue λ(B) is actually strictly positive, and one can run the 
argument in the proof of part (2) with a norm bound (all that is used 
in this argument is the positivity of f). Hence, the result follows from 
(2). � 
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1.45. Tensor categories with finitely many simple objects. Frobenius-
Perron dimensions. Let A be a Z+-ring with Z+-basis I. 

Definition 1.45.1. We will say that A is transitive if for any X, Z ∈ I 
there exist Y1, Y2 ∈ I such that XY1 and Y2X involve Z with a nonzero 
coefficient. 

Proposition 1.45.2. If C is a ring category with right duals then Gr(C) 
is a transitive unital Z+-ring. 

Proof. Recall from Theorem 1.15.8 that the unit object 1 in C is simple. 
So Gr(C) is unital. This implies that for any simple objects X, Z of C, 
the object X ⊗ X∗ ⊗ Z contains Z as a composition factor (as X ⊗ X∗ 

contains 1 as a composition factor), so one can find a simple object 
Y1 occurring in X∗ ⊗ Z such that Z occurs in X ⊗ Y1. Similarly, the 
object Z ⊗ X∗ ⊗ X contains Z as a composition factor, so one can find 
a simple object Y2 occurring in Z ⊗ X∗ such that Z occurs in Y2 ⊗ X. 
Thus Gr(C) is transitive. � 

Let A be a transitive unital Z+-ring of finite rank. Define the group 
homomorphism FPdim : A → C as follows. For X ∈ I, let FPdim(X) be 
the maximal nonnegative eigenvalue of the matrix of left multiplication 
by X. It exists by the Frobenius-Perron theorem, since this matrix has 
nonnegative entries. Let us extend FPdim from the basis I to A by 
additivity. 

Definition 1.45.3. The function FPdim is called the Frobenius-Perron 
dimension. 

In particular, if C is a ring category with right duals and finitely many 
simple objects, then we can talk about Frobenius-Perron dimensions of 
objects of C. 

Proposition 1.45.4. Let X ∈ I. 

(1)	The number α = FPdim(X) is an algebraic integer, and for any

algebraic conjugate α� of α we have α ≥ |α�|.


(2)	FPdim(X) ≥ 1. 

Proof. (1) Note that α is an eigenvalue of the integer matrix NX of left 
multiplication by X, hence α is an algebraic integer. The number α� is 
a root of the characteristic polynomial of NX , so it is also an eigenvalue 
of NX . Thus by the Frobenius-Perron theorem α ≥ |α�|. 

(2) Let r be the number of algebraic conjugates of α. Then αr ≥
N(α) where N(α) is the norm of α. This implies the statement since 
N(α) ≥ 1. � 
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Proposition 1.45.5. (1) The function FPdim : A C is a ring →
homomorphism. 

(2) There exists a unique, up to scaling, element R ∈ AC := A⊗ZC 
such that XR = FPdim(X)R, for all X ∈ A. After an appro­
priate normalization this element has positive coefficients, and 
satisfies FPdim(R) > 0 and RY = FPdim(Y )R, Y ∈ A. 

(3)	FPdim is a unique nonzero character of A which takes non­
negative values on I. 

(4)	 If X ∈ A has nonnegative coefficients with respect to the basis of 
A, then FPdim(X) is the largest nonnegative eigenvalue λ(NX ) 
of the matrix NX of multiplication by X. 

Proof. Consider the matrix M of right multiplication by X∈I X in A 
in the basis I. By transitivity, this matrix has strictly positive entries, 
so by the Frobenius-Perron theorem, part (2), it has a unique, up to 
scaling, eigenvector R ∈ AC with eigenvalue λ(M) (the maximal posi­
tive eigenvalue of M). Furthermore, this eigenvector can be normalized 
to have strictly positive entries. 

Since R is unique, it satisfies the equation XR = d(X)R for some 
function d : A C. Indeed, XR is also an eigenvector of M with→
eigenvalue λ(M), so it must be proportional to R. Furthermore, it 
is clear that d is a character of A. Since R has positive entries, 
d(X) = FPdim(X) for X ∈ I. This implies (1). We also see that 
FPdim(X) > 0 for X ∈ I (as R has strictly positive coefficients), and 
hence FPdim(R) > 0. 
Now, by transitivity, R is the unique, up to scaling, solution of the 

system of linear equations XR = FPdim(X)R (as the matrix N of left 
multiplication by X∈I X also has positive entries). Hence, RY = 
d�(Y )R for some character d�. Applying FPdim to both sides and using 
that FPdim(R) > 0, we find d� = FPdim, proving (2). 

If χ is another character of A taking positive values on I, then the 
vector with entries χ(Y ), Y ∈ I is an eigenvector of the matrix N of the 
left multiplication by the element X∈I X. Because of transitivity of 
A the matrix N has positive entries. By the Frobenius-Perron theorem 
there exists a positive number λ such that χ(Y ) = λ FPdim(Y ). Since 
χ is a character, λ = 1, which completes the proof. 
Finally, part (4) follows from part (2) and the Frobenius-Perron the­

orem (part (3)). � 

Example 1.45.6. Let C be the category of finite dimensional repre­
sentations of a quasi-Hopf algebra H, and A be its Grothendieck ring. 
Then by Proposition 1.10.9, for any X, Y ∈ C 

dim Hom(X ⊗ H, Y ) = dim Hom(H, ∗X ⊗ Y ) = dim(X) dim(Y ), 
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where H is the regular representation of H. Thus X ⊗ H = dim(X)H, 
so FPdim(X) = dim(X) for all X, and R = H up to scaling. 

This example motivates the following definition. 

Definition 1.45.7. The element R will be called a regular element of 
A. 

Proposition 1.45.8. Let A be as above and ∗ : I I be a bijection →
which extends to an anti-automorphism of A. Then FPdim is invariant 
under ∗. 
Proof. Let X ∈ I. Then the matrix of right multiplication by X∗ is 
the transpose of the matrix of left multiplication by X modified by 
the permutation ∗. Thus the required statement follows from Proposi­
tion 1.45.5(2). � 

Corollary 1.45.9. Let C be a ring category with right duals and finitely 
many simple objects, and let X be an object in C. If FPdim(X) = 1 
then X is invertible. 

Proof. By Exercise 1.15.10(d) it is sufficient to show that X ⊗ X∗ = 
1. This follows from the facts that 1 is contained in X ⊗ X∗ and 
FPdim(X ⊗ X∗) = FPdim(X) FPdim(X∗) = 1. � 

Proposition 1.45.10. Let f : A1 → A2 be a unital homomorphism of 
transitive unital Z+-rings of finite rank, whose matrix in their Z+-bases 
has non-negative entries. Then 

(1) f preserves Frobenius-Perron dimensions. 
(2) Let I1, I2 be the Z+-bases of A1, A2, and suppose that for any 

Y in I2 there exists X ∈ I1 such that the coefficient of Y in 
f(X) is non-zero. If R is a regular element of A1 then f(R) is 
a regular element of A2. 

Proof. (1) The function X �→ FPdim(f(X)) is a nonzero character of 
A1 with nonnegative values on the basis. By Proposition 1.45.5(3), 
FPdim(f(X)) = FPdim(X) for all X in I. (2) By part (1) we have 

(1.45.1) f( X)f(R1) = FPdim(f( X))f(R1). � 
X∈I1 X∈I1 

But f( X∈I1 
X) has strictly positive coefficients in I2, hence f(R1) = 

βR2 for some β > 0. Applying FPdim to both sides, we get the result. 

Corollary 1.45.11. Let C and D be tensor categories with finitely 
many classes of simple objects. If F : C → D be a quasi-tensor functor, 
then FPdimD(F (X)) = FPdimC (X) for any X in C. 
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Example 1.45.12. (Tambara-Yamagami fusion rings) Let G be a fi­
nite group, and TYG be an extension of the unital based ring Z[G]: 

TYG := Z[G] ⊕ ZX, 

where X is a new basis vector with gX = Xg = X, X2 = g∈G g. This 
is a fusion ring, with X∗ = X. It is easy to see that FPdim(g) = 1, 
FPdim(X) = |G|1/2 . We will see later that these rings are categorifiable 
if and only if G is abelian. 

Example 1.45.13. (Verlinde rings for sl2). Let k be a nonnegative 
integer. Define a unital Z+-ring Verk = Verk(sl2) with basis Vi, i = 
0, ..., k (V0 = 1), with duality given by Vi 

∗ = Vi and multiplication 
given by the truncated Clebsch-Gordan rule: 

min(i+j,2k−(i+j)) 

(1.45.2) Vi ⊗ Vj = Vl. 
l=|i−j|,i+j−l∈2Z 

It other words, one computes the product by the usual Clebsch-Gordan 
rule, and then deletes the terms that are not defined (Vi with i > k) and 
also their mirror images with respect to point k +1. We will show later 
that this ring admits categorifications coming from quantum groups at 
roots of unity. 
Note that Ver0 = Z, Ver1 = Z[Z2], Ver2 = TYZ2 . The latter is 

called the Ising fusion ring, as it arises in the Ising model of statistical 
mechanics. 

Exercise 1.45.14. Show that FPdim(Vj ) = [j+1]q := q
j+1−q−j−1 

, where 
q−q−1 

πi 

q = e k+2 . 

Note that the Verlinde ring has a subring Ver0 
k spanned by Vj with 

even j. If k = 3, this ring has basis 1, X = V2 with X2 = X + 1, X∗ = 
X. This ring is called the Yang-Lee fusion ring. In the Yang-Lee ring, 
FPdim(X) is the golden ratio 1+

2 

√
5 . 

Note that one can define the generalized Yang-Lee fusion rings Y Ln 

n ∈ Z+, with basis 1, X, multiplication X2 = 1+nX and duality X∗ = 
X. It is, however, shown in [O2] that these rings are not categorifiable 
when n > 1. 

Proposition 1.45.15. (Kronecker) Let B be a matrix with nonnegative 
integer entries, such that λ(BBT ) = λ(B)2 . If λ(B) < 2 then λ(B) = 
2 cos(π/n) for some integer n ≥ 2. 

Proof. Let λ(B) = q + q−1 . Then q is an algebraic integer, and |q| = 
1. Moreover, all conjugates of λ(B)2 are nonnegative (since they are 
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eigenvalues of the matrix BBT , which is symmetric and nonnegative 
definite), so all conjugates of λ(B) are real. Thus, if q∗ is a conjugate of 
q then q∗ +q

−1 is real with absolute value < 2 (by the Frobenius-Perron ∗ 
theorem), so |q∗| = 1. By a well known result in elementary algebraic 
number theory, this implies that q is a root of unity: q = e2πik/m, where 
k and m are coprime. By the Frobenius-Perron theorem, so k = ±1, 
and m is even (indeed, if m = 2p + 1 is odd then |qp + q−p| > |q + q−1|). 
So q = eπi/n for some integer n ≥ 2, and we are done. � 

Corollary 1.45.16. Let A be a fusion ring, and X ∈ A a basis ele­
ment. Then if F P dim(X) < 2 then F P dim(X) = 2cos(π/n), for some 
integer n ≥ 3. 

Proof. This follows from Proposition 1.45.15, since F P dim(XX∗) = 
F P dim(X)2 . � 

1.46. Deligne’s tensor product of finite abelian categories. Let 
C, D be two finite abelian categories over a field k. 

Definition 1.46.1. Deligne’s tensor product C � D is an abelian cat­
egory which is universal for the functor assigning to every k-linear 
abelian category A the category of right exact in both variables bilin­
ear bifunctors C × D → A. That is, there is a bifunctor � : C × D → 
C � D : (X, Y ) �→ X � Y which is right exact in both variables and is 
such that for any right exact in both variables bifunctor F : C×D → A 
there exists a unique right exact functor F̄ : C � D → A satisfying 
F̄ � = F .◦ 

Proposition 1.46.2. (cf. [D, Proposition 5.13]) (i) The tensor product 
C � D exists and is a finite abelian category. 

(ii) It is unique up to a unique equivalence. 
(iii) Let C, D be finite dimensional algebras and let C = C − mod 

and D = D − mod. Then C � D = C ⊗ D − mod. 
(iv) The bifunctor � is exact in both variables and satisfies 

HomC(X1, Y1) ⊗ HomD(X2, Y2) ∼= HomC�D(X1 � X2, Y1 � Y2). 

(v) any bilinear bifunctor F : C × D → A exact in each variable 
defines an exact functor F̄ : C � D → A. 

Proof. (sketch). (ii) follows from the universal property in the usual 
way. 
(i) As we know, a finite abelian category is equivalent to the category 

of finite dimensional modules over an algebra. So there exist finite 
dimensional algebras C, D such that C = C − mod, D = D − mod. 
Then one can define C � D = C ⊗ D − mod, and it is easy to show that 
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it satisfies the required conditions. This together with (ii) also implies 
(iii). 

(iv),(v) are routine. � 

A similar result is valid for locally finite categories.

Deligne’s tensor product can also be applied to functors. Namely, if


F : C → C � and G : D → D� are additive right exact functors between 
finite abelian categories then one can define the functor F �G : C�D → 
C � � D�.


Proposition 1.46.3. If C, D are multitensor categories then the cate­

gory C � D has a natural structure of a multitensor category.


Proof. Let X1 � Y1, X2 � Y2 ∈ C � D. Then we can set 

(X1 � Y1) ⊗ (X2 � Y2) := (X1 ⊗ X2) � (Y1 � Y2). 

and define the associativity isomorphism in the obvious way. This 
defines a structure of a monoidal category on the subcategory of C � 
D consisting of “�-decomposable” objects of the form X � Y . But 
any object of C � D admits a resolution by �-decomposable injective 
objects. This allows us to use a standard argument with resolutions to 
extend the tensor product to the entire category C �D. It is easy to see 
that if C, D are rigid, then so is C �D, which implies the statement. � 

1.47. Finite (multi)tensor categories. In this subsection we will 
study general properties of finite multitensor and tensor categories. 
Recall that in a finite abelian category, every simple object X has a 

projective cover P (X). The object P (X) is unique up to a non-unique 
isomorphism. For any Y in C one has 
(1.47.1) dim Hom(P (X), Y ) = [Y : X]. 

Let K0(C) denote the free abelian group generated by isomorphism 
classes of indecomposable projective objects of a finite abelian category 
C. Elements of K0(C) ⊗ZC will be called virtual projective objects. We 
have an obvious homomorphism γ : K0(C) Gr(C). Although groups →
K0(C) and Gr(C) have the same rank, in general γ is neither surjective 
nor injective even after tensoring with C. The matrix C of γ in the 
natural basis is called the Cartan matrix of C; its entries are [P (X) : Y ], 
where X, Y are simple objects of C. 
Now let C be a finite multitensor category, let I be the set of isomor­

phism classes of simple objects of C, and let i∗, ∗i denote the right and 
left duals to i, respectively. Let Gr(C) be the Grothendieck ring of C, 
spanned by isomorphism classes of the simple objects Xi, i ∈ I. In this 
ring, we have XiXj = k Nij

k Xk, where Nij
k are nonnegative integers. 

Also, let Pi denote the projective covers of Xi. 
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Proposition 1.47.1. Let C be a finite multitensor category. Then 
K0(C) is a Gr(C)-bimodule. 

Proof. This follows from the fact that the tensor product of a projective 
object with any object is projective, Proposition 1.13.6. � 

Let us describe this bimodule explicitly. 

Proposition 1.47.2. For any object Z of C, 

= ⊕j,kN i = ⊕j,kN iPi ⊗ Z ∼ kj∗ [Z : Xj ]Pk, Z ⊗ Pi ∼ ∗jk[Z : Xj ]Pk. 

Proof. Hom(Pi ⊗ Z, Xk) = Hom(Pi, Xk ⊗ Z∗), and the first formula 
follows from Proposition 1.13.6. The second formula is analogous. � 

Proposition 1.47.3. Let P be a projective object in a multitensor 
category C. Then P ∗ is also projective. Hence, any projective object in 
a multitensor category is also injective. 

Proof. We need to show that the functor Hom(P ∗, ) is exact. This•
functor is isomorphic to Hom(1, P ⊗ •). The functor P ⊗ • is exact 
and moreover, by Proposition 1.13.6, any exact sequence splits after 
tensoring with P , as an exact sequence consisting of projective objects. 
The Proposition is proved. � 

Proposition 1.47.3 implies that an indecomposable projective object 
P has a unique simple subobject, i.e. that the socle of P is simple. 

For any finite tensor category C define an element RC ∈ K0(C) ⊗Z C 
by 

(1.47.2) R = FPdim(Xi)Pi.C 

i∈I 

Definition 1.47.4. The virtual projective object RC is called the reg­
ular object of C. 

Definition 1.47.5. Let C be a finite tensor category. Then the Frobenius-
Perron dimension of C is defined by 

(1.47.3) FPdim(C) := FPdim(RC) = FPdim(Xi) FPdim(Pi). 
i∈I 

Example 1.47.6. Let H be a finite dimensional quasi-Hopf algebra. 
Then FPdim(Rep(H)) = dim(H). 

Proposition 1.47.7. (1) Z ⊗ RC = RC ⊗ Z = FPdim(Z)RC for all 
Z ∈ Gr(C). 

(2) The image of RC in Gr(C) ⊗Z C is a regular element. 
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Proof. We have FPdim(Xi) dim Hom(Pi, Z) = FPdim(Z) for any ob­i 
ject Z of C. � 

Hence, � 
FPdim(Xi) dim Hom(Pi ⊗ Z, Y ) = FPdim(Xi) dim Hom(Pi, Y ⊗ Z∗) 

i i 

= FPdim(Y ⊗ Z∗) 

= FPdim(Y ) FPdim(Z∗) 

= FPdim(Y ) FPdim(Z)� 
= FPdim(Z) FPdim(Xi) dim Hom(Pi, Y ). 

i 

Now, P (X)⊗Z are projective objects by Proposition 1.13.6. Hence, the 
formal sums FPdim(Xi)Pi⊗Z = RC⊗Z and FPdim(Z) FPdim(Xi)Pi = i i 
FPdim(Z)RC are linear combinations of Pj , j ∈ I with the same coeffi­
cients. � 

Remark 1.47.8. We note the following useful inequality: 

(1.47.4) FPdim(C) ≥ N FPdim(P ), 

where N is the number of simple objects in C, and P is the projective 
cover of the neutral object 1. Indeed, for any simple object V the 
projective object P (V ) ⊗ ∗V has a nontrivial homomorphism to 1, and 
hence contains P . So FPdim(P (V )) FPdim(V ) ≥ FPdim(P ). Adding 
these inequalities over all simple V , we get the result. 

1.48. Integral tensor categories. 

Definition 1.48.1. A transitive unital Z+-ring A of finite rank is said 
to be integral if FPdim : A Z (i.e. the Frobenius-Perron dimnensions →
of elements of C are integers). A tensor category C is integral if Gr(C) 
is integral. 

Proposition 1.48.2. A finite tensor category C is integral if and only 
if C is equivalent to the representation category of a finite dimensional 
quasi-Hopf algebra. 

Proof. The “if” part is clear from Example 1.45.6. To prove the “only 
if” part, it is enough to construct a quasi-fiber functor on C. Define 
P = ⊕i FPdim(Xi)Pi, where Xi are the simple objects of C, and Pi 
are their projective covers. Define F = Hom(P, ). Obviously, F is•
exact and faithful, F (1) ∼= 1, and dim F (X) = FPdim(X) for all X ∈ 
C. Using Proposition 1.46.2, we continue the functors F (• ⊗ •) and 
F ( ) ⊗ F ( ) to the functors C � C → Vec. Both of these functors are 
exact and take the same values on the simple objects of C � C. Thus 
these functors are isomorphic and we are done. � 
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Corollary 1.48.3. The assignment H �→ Rep(H) defines a bijection 
between integral finite tensor categories C over k up to monoidal equiva­
lence, and finite dimensional quasi-Hopf algebras H over k, up to twist 
equivalence and isomorphism. 

1.49. Surjective quasi-tensor functors. Let C, D be abelian cate­
gories. Let F : C → D be an additive functor. 

Definition 1.49.1. We will say that F is surjective if any object of D
is a subquotient in F (X) for some X ∈ C. 13 

Exercise 1.49.2. Let A, B be coalgebras, and f : A B a homomor­→
phism. Let F = f ∗ : A − comod → B − comod be the corresponding 
pushforward functor. Then F is surjective if and only if f is surjective. 

Now let C, D be finite tensor categories. 

Theorem 1.49.3. ([EO]) Let F : C → D be a surjective quasi-tensor 
functor. Then F maps projective objects to projective ones. 

Proof. Let C be a finite tensor category, and X ∈ C. Let us write 
X as a direct sum of indecomposable objects (such a representation 
is unique). Define the projectivity defect p(X) of X to be the sum 
of Frobenius-Perron dimensions of all the non-projective summands in 
this sum (this is well defined by the Krull-Schmidt theorem). It is clear 
that p(X ⊕ Y ) = p(X)+ p(Y ). Also, it follows from Proposition 1.13.6 
that p(X ⊗ Y ) ≤ p(X)p(Y ). 
Let Pi be the indecomposable projective objects in C. Let Pi ⊗ Pj ∼= 

⊕kBk Pk, and let Bi be the matrix with entries Bk Also, let B = Bi.ij ij . 
Obviously, B has strictly positive entries, and the Frobenius-Perron 
eigenvalue of B is i FPdim(Pi). 

On the other hand, let F : C → D be a surjective quasi-tensor functor 
between finite tensor categories. Let pj = �p(F (Pj )), and �p be the vector 
with entries pj . Then we get pipj Bk so ( pi)p ≥ Bp.≥ k ij pk, i 
So, either pi are all zero, or they are all positive, and the norm of 
B with respect to the norm |x| = pi|xi| is at most pi. Since 
pi ≤ FPdim(Pi), this implies pi = FPdim(Pi) for all i (as the largest 
eigenvalue of B is i FPdim(Pi)). 

Assume the second option is the case. Then F (Pi) do not contain 
nonzero projective objects as direct summands, and hence for any pro­
jective P ∈ C, F (P ) cannot contain a nonzero projective object as a 
direct summand. However, let Q be a projective object of D. Then, 

13This definition does not coincide with a usual categorical definition of surjec­
tivity of functors which requires that every object of D be isomorphic to some F (X) 
for an object X in C. 
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since F is surjective, there exists an object X ∈ C such that Q is a 
subquotient of F (X). Since any X is a quotient of a projective object, 
and F is exact, we may assume that X = P is projective. So Q occurs 
as a subquotient in F (P ). As Q is both projective and injective, it is 
actually a direct summand in F (P ). Contradiction. 

Thus, pi = 0 and F (Pi) are projective. The theorem is proved. � 

1.50. Categorical freeness. Let C, D be finite tensor categories, and 
F : C → D be a quasi-tensor functor. 

Theorem 1.50.1. One has 
FPdim(C)

(1.50.1) F (RC ) = 
FPdim(D) 

RD. 

Proof. By Theorem 1.49.3, F (RC) is a virtually projective object. Thus, 
F (RC ) must be proportional to RD, since both (when written in the ba­
sis Pi) are eigenvectors of a matrix with strictly positive entries with its 
Frobenius-Perron eigenvalue. (For this matrix we may take the matrix 
of multiplication by F (X), where X is such that F (X) contains as com­
position factors all simple objects of D; such exists by the surjectivity 
of F ). The coefficient is obtained by computing the Frobenius-Perron 
dimensions of both sides. � 

Corollary 1.50.2. In the above situation, one has FPdim(C) ≥ FPdim(D), 
and FPdim(D) divides FPdim(C) in the ring of algebraic integers. In 
fact, 

FPdim(C) � 
(1.50.2) 

FPdim(D)
= FPdim(Xi) dim Hom(F (Pi), 1D), 

where Xi runs over simple objects of C. 

Proof. The statement is obtained by computing the dimension of Hom(•, 1D) 
for both sides of (1.50.1). � 

Suppose now that C is integral, i.e., by Proposition 1.48.2, it is the 
representation category of a quasi-Hopf algebra H. In this case, RC
is an honest (not only virtual) projective object of C, namely the free 
rank 1 module over H. Theorefore, multiples of RC are free H-modules 
of finite rank, and vice versa. 
Then Theorem 1.49.3 and the fact that F (RC ) is proportional to RD

implies the following categorical freeness result. 

Corollary 1.50.3. If C is integral, and F : C → D is a surjective 
quasi-tensor functor then D is also integral, and the object F (RC) is 
free of rank FPdim(C)/ FPdim(D) (which is an integer). 
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Proof. The Frobenius-Perron dimensions of simple objects of D are 
coordinates of the unique eigenvector of the positive integer matrix of 
multiplication by F (RC ) with integer eigenvalue FPdim(C), normalized 
so that the component of 1 is 1. Thus, all coordinates of this vector are 
rational numbers, hence integers (because they are algebraic integers). 
This implies that the category D is integral. The second statement is 
clear from the above. � 

Corollary 1.50.4. ([Scha]; for the semisimple case see [ENO1]) A 
finite dimensional quasi-Hopf algebra is a free module over its quasi-
Hopf subalgebra. 

Remark 1.50.5. In the Hopf case Corollary 1.50.3 is well known and 
much used; it is due to Nichols and Zoeller [NZ]. 
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1.51. The distinguished invertible object. Let C be a finite tensor 
category with classes of simple objects labeled by a set I. Since duals 
to projective objects are projective, we can define a map D : I I 
such that Pi 

∗ = PD(i). It is clear that D2(i) = i∗∗. 
→ 

Let 0 be the label for the unit object. Let ρ = D(0). (In other words, 
∗Lρ is the socle of P0 = P (1)). We have 

Hom(Pi 
∗, Lj ) = Hom(1, Pi ⊗ Lj ) = Hom(1, ⊕kN i 

kj∗ Pk). 

This space has dimension N i Thus we get ρj∗ . 

N i 
ρj∗ = δD(i),j. 

Let now Lρ be the corresponding simple object. By Proposition 1.47.2, 
we have 

= ⊕kNk = PD(m)∗ .L∗ 
ρ ⊗ Pm 

∼
ρmPk 

∼

Lemma 1.51.1. Lρ is an invertible object. 

Proof. The last equation implies that the matrix of action of Lρ∗ on 
projectives is a permutation matrix. Hence, the Frobenius-Perron di­
mension of Lρ∗ is 1, and we are done. � 

Lemma 1.51.2. One has: PD(i) = P∗i ⊗ Lρ; LD(i) = L∗i ⊗ Lρ. 

Proof. It suffices to prove the first statement. Therefore, our job is to 
show that dim Hom(Pi 

∗, Lj ) = dim Hom(P∗i, Lj ⊗ Lρ∗ ). The left hand 
side was computed before, it is N i On the other hand, the right hand ρj∗ . 
side is N

∗i (we use that ρ∗ = ∗ρ for an invertible object ρ). Thesej,ρ∗ 

numbers are equal by the properies of duality, so we are done. � 

Corollary 1.51.3. One has: Pi∗∗ = L∗ 
ρ⊗P∗∗i⊗Lρ; Li∗∗ = L∗ 

ρ⊗L∗∗i⊗Lρ. 

Proof. Again, it suffices to prove the first statement. We have 

Pi∗∗ = Pi 
∗∗ = (P∗i ⊗ Lρ)

∗ = Lρ 
∗ ⊗ P∗

∗ 
i = L∗ 

ρ ⊗ P∗∗i ⊗ Lρ 

Definition 1.51.4. Lρ is called the distinguished invertible object of C. 

We see that for any i, the socle of Pi is L̂i := L∗ 
ρ ⊗∗∗ Li = L∗∗ 

i ⊗ Lρ
∗. 

This implies the following result. 

Corollary 1.51.5. Any finite dimensional quasi-Hopf algebra H is a 
Frobenius algebra, i.e. H is isomorphic to H∗ as a left H-module. 

Proof. It is easy to see that that a Frobenius algebra is a quasi-Frobenius 
algebra (i.e. a finite dimensional algebra for which projective and in­
jective modules coincide), in which the socle of every indecomposable 
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projective module has the same dimension as its cosocle (i.e., the simple 
quotient). As follows from the above, these conditions are satisfied for 
finite dimensional quasi-Hopf algebras (namely, the second condition 
follows from the fact that Lρ is 1-dimensional). � 

1.52. Integrals in quasi-Hopf algebras. 

Definition 1.52.1. A left integral in an algebra H with a counit ε : 
H k is an element I ∈ H such that xI = ε(x)I for all x ∈ H.→
Similarly, a right integral in H is an element I ∈ H such that Ix = ε(x)I 
for all x ∈ H. 

Remark 1.52.2. Let H be the convolution algebra of distributions 
on a compact Lie group G. This algebra has a counit ε defined by 
ε(ξ) = ξ(1). Let dg be � a left-invariant Haar measure on G. Then 
the distribution I(f) = 

G f(g)dg is a left integral in H (unique up to 
scaling). This motivates the terminology. 

Note that this example makes sense for a finite group G over any 
field k. In this case, H = k[G], and I = g∈G g is both a left and a 
right integral. 

Proposition 1.52.3. Any finite dimensional quasi-Hopf algebra ad­
mits a unique nonzero left integral up to scaling and a unique nonzero 
right integral up to scaling. 

Proof. It suffices to prove the statement for left integrals (for right 
integrals the statement is obtained by applying the antipode). A left 
integral is the same thing as a homomorphism of left modules k H.→
Since H is Frobenius, this is the same as a homomorphism k H∗, i.e. →
a homomorphism H k. But such homomorphisms are just multiples 
of the counit. 

→ 
� 

Note that the space of left integrals of an algebra H with a counit 
is a right H-module (indeed, if I is a left integral, then so is Iy for all 
y ∈ H). Thus, for finite dimensional quasi-Hopf algebras, we obtain 
a character χ : H k, such that Ix = χ(x)I for all x ∈ H. This→
character is called the distinguished character of H (if H is a Hopf 
algebra, it is commonly called the distinguished grouplike element of 
H∗, see [Mo]). 

Proposition 1.52.4. Let H be a finite dimensional quasi-Hopf algebra, 
and C = Rep(H). Then Lρ coincides with the distinguished character 
χ. 

Proof. Let I be a nonzero left integral in H. We have xI = ε(x)I and 
Ix = χ(x)I. This means that for any V ∈ C, I defines a morphism 
from V ⊗ χ−1 to V . 
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The element I belongs to the submodule Pi of H, whose socle is 
the trivial H-module. Thus, Pi 

∗ = P (1), and hence by Lemma 1.51.2, 
i = ρ. Thus, I defines a nonzero (but rank 1) morphism Pρ ⊗χ−1 → Pρ. 
The image of this morphism, because of rank 1, must be L0 = 1, so 
1 is a quotient of Pρ ⊗ χ−1, and hence χ is a quotient of Pρ. Thus, 
χ = Lρ, and we are done. � 

Proposition 1.52.5. The following conditions on a finite dimensional 
quasi-Hopf algebra H are equivalent: 

(i) H is semisimple; 
(ii) ε(I) = 0 (where I is a left integral in H); 
(iii) I2 = 0� ; 
(iv) I can be normalized to be an idempotent. 

Proof. (ii) implies (i): If ε(I) = 0 then k = 1 is a direct summand in 
H as a left H-module. This implies that 1 is projective, hence Rep(H) 
is semisimple (Corollary 1.13.7). 

(i) implies (iv): If H is semisimple, the integral is a multiple of the 
projector to the trivial representation, so the statement is obvious. 

(iv) implies (iii): obvious. 
(iii) implies (ii): clear, since I2 = ε(I)I. � 

Definition 1.52.6. A finite tensor category C is unimodular if Lρ = 1. 
A finite dimensional quasi-Hopf algebra H is unimodular if Rep(H) is 
a unimodular category, i.e. if left and right integrals in H coincide. 

Remark 1.52.7. This terminology is motivated by the notion of a 
unimodular Lie group, which is a Lie group on which a left invariant 
Haar measure is also right invariant, and vice versa. 

Remark 1.52.8. Obviously, every semisimple category is automati­
cally unimodular. 

Exercise 1.52.9. (i) Let H be the Nichols Hopf algebra of dimension 
2n+1 (Example 1.24.9). Find the projective covers of simple objects, 
the distinguished invertible object, and show that H is not unimod­
ular. In particular, Sweedler’s finite dimensional Hopf algebra is not 
unimodular. 
(ii) Do the same if H is the Taft Hopf algebra (Example 1.24.5). 
(iii) Let H = uq (sl2) be the small quantum group at a root of unity q 

of odd order (see Subsection 1.25). Show that H is unimodular, but H∗ 

is not. Find the distinguished character of H∗ (i.e., the distinguished 
grouplike element of H). What happens for the corresponding graded 
Hopf algebra gr(H)? 
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1.53. Dimensions of projective objects and degeneracy of the 
Cartan matrix. The following result in the Hopf algebra case was 
proved by M.Lorenz [L]; our proof in the categorical setting is analogous 
to his. 
Let Cij = [Pi : Lj ] be the entries of the Cartan matrix of a finite 

tensor category C. 

Theorem 1.53.1. Suppose that C is not semisimple, and admits an 
isomorphism of additive functors u : Id → ∗∗. Then the Cartan matrix 
C is degenerate over the ground field k. 

Proof. Let dim(V ) = Tr|V (u) be the dimension function defined by 
the (left) categorical trace of u. This function is additive on exact 
sequences, so it is a linear functional on Gr(C). 

On the other hand, the dimension of every projective object P with 
respect to this function is zero. Indeed, the dimension of P is the 
composition of maps 1 → P ⊗ P ∗ → P ∗∗ ⊗ P ∗ → 1, where the maps 
are the coevaluation, u ⊗ Id, and the evaluation. If this map is nonzero 
then 1 is a direct summand in P ⊗ P ∗, which is projective. Thus 1 is 
projective, So C is semisimple by Corollary 1.13.7. Contradiction. 
Since the dimension of the unit object 1 is not zero, 1 is not a linear 

combination of projective objects in the Grothendieck group tensored 
with k. We are done. � 

2. Module categories 

We have seen that the notion of a tensor category categorifies the 
notion of a ring. In a similar way, the notion of a module category 
categorifies the notion of a module over a ring. In this section we will 
develop a systematic theory of module categories over tensor categories. 
This theory is interesting by itself, but is also crucial for understanding 
the structure of tensor categories, similarly to how the study of modules 
is improtant in understanding the structure of rings. 

We will begin with a discussion of module categories over general 
monoidal categories, and then pass to the k-linear case. 

2.1. The definition of a module category. Let C be a monoidal 
category. 

Definition 2.1.1. A left module category over C is a category M
equipped with an action (or tensor product) bifunctor ⊗M : C ×M→ 
M and a functorial associativity isomorphism (or constraint) aM : 
(• ⊗ •) ⊗M • → • ⊗ (• ⊗M •), such that the functor 1⊗M : M→M 
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is an autoequivalence, and aM satisfies the pentagon relation: 
(2.1.1) 

((X ⊗ Y ) ⊗ Z) ⊗M M 
aM aX,Y,Z ⊗IdMX⊗Y,Z,M 

����������������� ����������������� 

(X ⊗ Y ) ⊗ (Z ⊗M M) (X ⊗ (Y ⊗ Z)) ⊗ M 

aM aMX,Y ⊗Z,MX,Y,Z⊗MM 
�� IdX ⊗aM ��

Y,Z,M

X ⊗ (Y ⊗ (Z ⊗ M)) �� X ⊗ ((Y ⊗ Z) ⊗M M) 

is commutative for all objects X, Y, Z in C and M in M. 

Clearly, this definition categorifies the notion of a module over a 
monoid. 

In a similar way one defines a right C-module category. Namely, a 
right C-module category is the same thing as a left Cop-module category. 
By a module category we will always mean a left module category unless 
otherwise specified. 

Similarly to the case of monoidal categories, for any C-module cate­
gory M, one has a canonical functorial unit isomorphism lM : 1⊗M →
Id (also called the unit constraint), and one can give the following 
equivalent definition of a module category, making this isomorphism a 
part of the data. 

Definition 2.1.2. A left module category over C is a category M
equipped with a bifunctor ⊗M : C × M → M, a functorial isomor­
phism aM : (•⊗•) ⊗M • → •⊗ (•⊗M •), and a functorial isomorphism 
lM : 1⊗M → Id such that aM satisfies the pentagon relation (2.1.1), 
and lM satisfies the triangle relation: 

aMX,1,M

(2.1.2) (X ⊗ 1) ⊗M M �� X ⊗M (1 ⊗M M) , 
rX ⊗MId Id⊗MlMM 

������������ ������������� 

X ⊗M M 

X ∈ C, M ∈M. 

We leave it to the reader to establish the equivalence of the two 
definitions; this is entirely parallel to the case of monoidal categories. 

Similarly to the case of monoidal categories, one can assume without 
loss of generality that 1⊗M = IdM, lM = Id, and we will often do so 
from now on. We will also often suppress the superscript M and write 
⊗ instead of ⊗M. 
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The following proposition gives an alternative definition of a module 
category. Let M be a category. Consider the category End(M) of 
endofunctors of M. As we know, End(M) is a monoidal category. 

Exercise 2.1.4. Fill the details in the proof of Proposition 2.1.3. 

⏐⏐�

Proposition 2.1.3. Structures of a C-module category on M are in a 
natural 1-1 correspondence with monoidal functors F : C → End(M). 

Proof. Let F : C → End(M) be a monoidal functor. We set 
X ⊗ M := F (X)(M), and define the associativity constraint aM us­
ing the monoidal structure on F , as a composition (X ⊗ Y ) ⊗ M = 
F (X ⊗ Y )(M) � F (X)(F (Y )(M)) = X ⊗ (Y ⊗ M). 

Conversely, let M be a module category over C. Then for any 
X ∈ C we have a functor M �→ X ⊗ M ; thus we have a functor 
F : C → End(M). Using the associativity isomorphism aM, one de­
fines a monoidal structure on F . � 

Clearly, Proposition 2.1.3 categorifies the fact in elementary algebra 
that a module over a ring is the same thing as a representation. 

Remark 2.1.5. Note that under the correspondence of Proposition 
2.1.3, the hexagon diagram for the monoidal structure on F corresponds 
to the pentagon diagram (2.1.1). One of the sides of the hexagon 
disappears due to the fact that the category End(M) is strict, so its 
associativity isomorphism (which is the identity) is suppressed. 

⏐⏐�

Definition 2.1.6. A module subcategory of a C-module category M is 
a full subcategory M� ⊂M which is closed under the action of C. 
Exercise 2.1.7. Let M be a C-module category. Show that for any 
X ∈ C which has a left dual and any M, N ∈ M there a natural 
isomorphism Hom(X ⊗ M, N) � Hom(M, ∗X ⊗ N). Thus, if C is rigid, 
the functor X∗⊗ is left adjoint to X⊗, and ∗X⊗ is right adjoint to 
X⊗. 
2.2. Module functors. 

Definition 2.2.1. Let M1 and M2 be two module categories over C. A 
module functor from M1 to M2 is a pair (F, s) where F : M1 →M2 

is a functor, and s is a natural isomorphism sX,M : F (X ⊗ M) →
X ⊗ F (M) such that the following diagrams commute: 

(2.2.1) 

F ((X ⊗ Y ) ⊗ M) 
sX⊗Y,M 

F (X ⊗ (Y ⊗ M)) ←−−−−−− −−−−→ (X ⊗ Y ) ⊗ F (M) 
F (aX,Y,M ) 

X ⊗ F (Y ⊗ M)


sX,Y ⊗M 
Id ⊗ sY,M � 

aX,Y,F (M) 

X ⊗ (Y ⊗ F (M))
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and 

(2.2.2) F (1 ⊗ M) 
F (lM ) 

��

���������� 

s1,M �� 1 ⊗ F (M) 
lF (M ) 

������������ 

F (M) 

A module equivalence F : M1 → M2 of C-module categories is a 
module functor (F, s) from M1 to M2 such that F is an equivalence 
of categories. 

Clearly, this definition categorifies the notion of a homomorphism 
(respectively, isomorphism) of modules. 

Remark 2.2.2. Note that if lMi = Id then the second diagram reduces 
to the condition that s1,M = IdF (M). 

Remark 2.2.3. One can prove a version of Maclane’s coherence theo­
rem for module categories and module functors, stating that positions 
of brackets are, essentially, immaterial (we leave it to the reader to 
state and prove this theorem). For this reason, when working with 
module categories, we will suppress brackets from now on. 

2.3. Module categories over multitensor categories. Our main 
interest will be module categories over multitensor categories (defined 
over a field k). In this case, we would like to consider module categories 
with an additional structure of an abelian category. 

Let C be a multitensor category over k. 

Definition 2.3.1. A (left or right) abelian module category over C is 
a locally finite abelian category M over k which is equipped with a 
structure of a (left or right) C-module category, such that the functor 
⊗M is bilinear on morphisms and exact in the first variable. 

Remark 2.3.2. Note that ⊗M is always exact in the second variable 
due to Exercise 2.1.7. 

All module categories over multitensor categories that we will con­
sider will be abelian, so we will usually suppress the word “abelian” 
from now on. 

Let EndL(M) be the category of left exact functors from M to M. 
This is an abelian category. (Namely, if M is the category of finite 
dimensional comodules over a coalgebra C then EndL(M) is equivalent 
to a full subcategory of the category of C-bicomodules, via F �→ F (C); 
note that F (C) is well defined, since F , being left exact, commutes 
with direct limits, and thus extends to the ind-completion of M). 
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Proposition 2.3.3. Structures of a C-module category on M are in 
a natural 1-1 correspondence with exact monoidal functors F : C → 
End(M). 

Proof. The proof is the same as that of Proposition 2.1.3. � 

We will also need to consider module functors between abelian mod­
ule categories. Unless otherwise specified, we will consider only left 
exact module functors, referring to them just as “module functors”. 

2.4. Direct sums. There is a very simple construction of the direct 
sum of module categories. 

Proposition 2.4.1. Let M1, M2 be two module categories over C. 
Then the category M = M1 ⊕M2 with ⊗M = ⊗M1 ⊕ ⊗M2 , aM = 
aM1 ⊕ aM2 , lM = lM1 ⊕ lM2 is a module category over C. 

Proof. Obvious. � 

Definition 2.4.2. The module category M is called the direct sum of 
module categories M1 and M2. 

Definition 2.4.3. We will say that a module category M over C is in-
decomposable if it is not equivalent to a nontrivial direct sum of module 
categories (that is, with M1, M2 nonzero). 

2.5. Examples of module categories. The following are some basic 
examples of module categories. 

Example 2.5.1. Any multitensor category C is a module category 
over itself; in this case we set ⊗M = ⊗, aM = a, lM = l. This 
module category can be considered as a categorification of the regular 
representation of an algebra. 

Example 2.5.2. Let C be a multitensor category. Then one considers 
M = C as a module category over C�Cop via (X�Y )⊗MZ = X⊗Z⊗Y . 
(This can be extended to the entire category C�Cop by resolving objects 
of this category by injective �-decomposable objects). 

Exercise 2.5.3. Define the associativity and unit constraints for this 
example using the associativity and unit constraints in C. 

This module category corresponds to the algebra considered as a 
bimodule over itself. 

Definition 2.5.4. Let C, D be multitensor categories. A (C, D)-bimodule 
category is a module category over C � Dop. 
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Example 2.5.5. Let C be a multitensor category and let C = i,j Cij 
be its decomposition into components (see Proposition 1.15.5). Then 
obviously Cij is a (Cii, Cjj )-bimodule category. 

Example 2.5.6. Let us study when the simplest category M = Vec is 
a module category over a multitensor category C. Obviously Fun(M, M) = 
Vec as a tensor category. Hence by Proposition 2.1.3 the structures of 
the module category over C on M are in a natural bijection with tensor 
functors F : C → Vec, that is, with fiber functors. Thus the theory of 
module categories can be considered as an extension of the theory of 
fiber functors. 

Example 2.5.7. Let F : C → D be a tensor functor. Then M = D
has a structure of module category over C with X ⊗M Y := F (X) ⊗ Y . 

Exercise 2.5.8. Define the associativity and unit constraints for this 
example using the tensor structure of the functor F and verify the 
axioms. 

Example 2.5.9. Let G be a finite group and let H ⊂ G be a subgroup. 
Since the restriction functor Res : Rep(G) Rep(H) is tensor functor, →
we conclude that Rep(H) is a module category over C = Rep(G). A lit­
tle bit more generally, assume that we have a central extension of groups 
1 → k× → H̃ → H → 1 representing an element ψ ∈ H2(H, k×). 
Consider the category Repψ(H) of representations of H̃ such that any 
λ ∈ k× acts by multiplication by λ (thus any object of Repψ(H) is a 
projective representation of H). Then usual tensor product and usual 
associativity and unit constraints determine the structure of module 
category over C on M = Repψ(H). One can show that all semisimple 
indecomposable module categories over C = Rep(G) are of this form. 

Example 2.5.10. Let C = VecG, where G is a group. In this case, a 
module category M over C is an abelian category M with a collection 
of exact functors Fg : M → M, Fg(M) := g ⊗ M , together with a 
collection of functorial isomorphisms ηg,h : Fg ◦ Fh → Fgh satisfying the 
2-cocycle relation: 

ηgh,k ◦ ηgh = ηg,hk ◦ ηhk 

as morphisms Fg ◦ Fh ◦ Fk → Fghk. 
Such data is called an action of G on M. So, module categories over 

VecG is the same thing as abelian categories with an action of G. 

Example 2.5.11. Here is an example which we consider as somewhat 
pathological with respect to finiteness properties: let C = Vec and let 
M = Vec be the category of all (possibly infinite dimensional) vector 
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spaces. Then the usual tensor product and the usual associativity and 
unit constraints determine the structure of module category over C on 
M. 

2.6. Exact module categories for finite tensor categories. Con­
sider the simplest tensor category C = Vec. Let M be any abelian 
category over k. Then M has a unique (up to equivalence) structure 
of module category over C. Thus in this case the understanding of 
all module categories over C is equivalent to the understanding of all 
k−linear abelian categories. This seems to be too complicated even if 
restrict ourselves only to categories satisfying some finiteness conditions 
(for example, to finite categories). Thus in this section we introduce a 
much smaller class of module categories which is quite manageable (for 
example, this class admits an explicit classification for many interesting 
tensor categories C) but on the other hand contains many interesting 
examples. Here is the main definition: 

Definition 2.6.1. Let C be a multitensor category with enough pro­
jective objects. A module category M over C is called exact if for any 
projective object P ∈ C and any object M ∈ M the object P ⊗ M is 
projective in M. 

Exercise 2.6.2. Let M be an arbitrary module category over C. Show 
that for any object X ∈ C and any projective object Q ∈M the object 
X ⊗ Q is projective in M. 

It is immediate from the definition that any semisimple module cat­
egory is exact (since any object in a semisimple category is projective). 

Remark 2.6.3. We will see that the notion of an exact module cat­
egory may be regarded as the categorical analog of the notion of a 
projective module in ring theory. 

Example 2.6.4. Notice that in the category C = Vec the object 1 
is projective. Therefore for an exact module category M over C any 
object M = 1 ⊗ M is projective. Hence an abelian category M consid­
ered as a module category over C is exact if and only if it is semisimple. 
Thus the exact module categories over Vec are classified by the cardi­
nality of the set of the isomorphism classes of simple objects. More 
generally, the same argument shows that if C is semisimple (and hence 
1 is projective) then any exact module category over C is semisimple. 
But the classification of exact module categories over non-semisimple 
categories C can be quite nontrivial. 

Example 2.6.5. Any finite multitensor category C considered as a 
module category over itself (see Example 2.5.1) is exact. Also the 
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category C considered as a module over C � Cop (see Example 2.5.2) is 
exact. 

Example 2.6.6. Let C and D be a finite multitensor categories and 
let F : C → D be a surjective tensor functor. Then the category D
considered as a module category over C (see Example 2.5.7) is exact by 
Theorem 1.49.3. 

Exercise 2.6.7. Show that the assumption that F is surjective is es­
sential for this example. 
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2.7. First properties of exact module categories. 

Lemma 2.7.1. Let M be an exact module category over finite multi-
tensor category C. Then the category M has enough projective objects. 

Proof. Let P0 denote the projective cover of the unit object in C. Then 
the natural map P0 ⊗ X 1 ⊗ X � X is surjective for any X ∈ M →
since ⊗ is exact. Also P0 ⊗ X is projective by definition of an exact 
module category. � 

Corollary 2.7.2. Assume that an exact module category M over C
has finitely many isomorphism classes of simple objects. Then M is 
finite. 

Lemma 2.7.3. Let M be an exact module category over C. Let P ∈ C 
be projective and X ∈M. Then P ⊗ X is injective. 

Proof. The functor Hom( , P ⊗ X) is isomorphic to the functor•
Hom(P ∗ ⊗ •, X). The object P ∗ is projective by Proposition 1.47.3. 
Thus for any exact sequence 

0 Y1 → Y2 → Y3 → 0→ 

the sequence 

0 → P ∗ ⊗ Y1 → P ∗ ⊗ Y2 → P ∗ ⊗ Y3 → 0 

splits, and hence the functor Hom(P ∗ ⊗ •, X) is exact. The Lemma is 
proved. � 

Corollary 2.7.4. In the category M any projective object is injective 
and vice versa. 

Proof. Any projective object X of M is a direct summand of the object 
of the form P0 ⊗ X and thus is injective. � 

Remark 2.7.5. A finite abelian category A is called a quasi-Frobenius 
category if any projective object of A is injective and vice versa. Thus 
any exact module category over a finite multitensor category (in par­
ticular, any finite multitensor category itself) is a quasi-Frobenius cat­
egory. It is well known that any object of a quasi-Frobenius category 
admitting a finite projective resolution is projective (indeed, the last 
nonzero arrow of this resolution is an embedding of projective (= injec­
tive) modules and therefore is an inclusion of a direct summand. Hence 
the resolution can be replaced by a shorter one and by induction we 
are done). Thus any quasi-Frobenius category is either semisimple or 
of infinite homological dimension. 
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Let Irr(M) denote the set of (isomorphism classes of) simple objects 
in M. Let us introduce the following relation on Irr(M): two objects 
X, Y ∈ Irr(M) are related if Y appears as a subquotient of L ⊗ X for 
some L ∈ C. 

Lemma 2.7.6. The relation above is reflexive, symmetric and transi­
tive. 

Proof. Since 1 ⊗ X = X we have the reflexivity. Let X, Y, Z ∈ Irr(M) 
and L1, L2 ∈ C. If Y is a subquotient of L1 ⊗ X and Z is a subquotient 
of L2 ⊗Y then Z is a subquotient of (L2 ⊗L1)⊗X (since ⊗ is exact), so 
we get the transitivity. Now assume that Y is a subquotient of L ⊗ X. 
Then the projective cover P (Y ) of Y is a direct summand of P0 ⊗L⊗X; 
hence there exists S ∈ C such that Hom(S ⊗ X, Y ) =� 0 (for example 
S = P0 ⊗ L). Thus Hom(X, S∗ ⊗ Y ) = Hom(S ⊗ X, Y ) = 0 and hence �
X is a subobject of S∗ ⊗ Y . Consequently our equivalence relation is 
symmetric. � 

Thus our relation is an equivalence relation. Hence Irr(M) is par­�� 
titioned into equivalence classes, Irr(M) = i∈I Irr(M)i. For an 
equivalence class i ∈ I let Mi denote the full subcategory of M con­
sisting of objects whose all simple subquotients lie in Irr(M)i. Clearly, 
Mi is a module subcategory of M. 

Proposition 2.7.7. The module categories Mi are exact. The category 
M is the direct sum of its module subcategories Mi. 

Proof. For any X ∈ Irr(M)i its projective cover is a direct summand 
of P0 ⊗ X and hence lies in the category Mi. Hence the category M
is the direct sum of its subcategories Mi, and Mi are exact. � 

A crucial property of exact module categories is the following 

Proposition 2.7.8. Let M1 and M2 be two module categories over 
C. Assume that M1 is exact. Then any additive module functor F : 
M1 →M2 is exact. 

Proof. Let 0 X Y Z 0 be an exact sequence in M1. Assume→ → → →
that the sequence 0 F (X) F (Y ) F (Z) 0 is not exact. Then → → → →
the sequence 0 P ⊗ F (X) P ⊗ F (Y ) P ⊗ F (Z) 0 is also → → → →
non-exact for any nonzero object P ∈ C since the functor P ⊗ • is 
exact and P ⊗ X = 0 implies X = 0. In particular we can take P to be 
projective. But then the sequence 0 P ⊗X P ⊗Y P ⊗Z 0 is → → → →
exact and split and hence the sequence 0 F (P ⊗ X) F (P ⊗ Y )→ → →
F (P ⊗ Z) → 0 is exact and we get a contradiction. � 
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Remark 2.7.9. We will see later that this Proposition actually char­
acterizes exact module categories. 

2.8. Z+−modules. Recall that for any multitensor category C its Grothendieck 
ring Gr(C) is naturally a Z+−ring. 

Definition 2.8.1. Let K be a Z+−ring with basis {bi}. A Z+−module 
over K is a K−module M with fixed Z−basis {ml} such that all the 
structure constants ail

k (defined by the equality biml = k ail
k mk) are 

nonnegative integers. 

The direct sum of Z+−modules is also a Z+−module whose basis is 
a union of bases of summands. We say that Z+−module is indecom­
posable if it is not isomorphic to a nontrivial direct sum. 

Let M be a finite module category over C. By definition, the Grothendieck 
group Gr(M) with the basis given by the isomorphism classes of sim­
ple objects is a Z+−module over Gr(C). Obviously, the direct sum of 
module categories corresponds to the direct sum of Z+−modules. 

Exercise 2.8.2. Construct an example of an indecomposable module 
category M over C such that Gr(M) is not indecomposable over Gr(C). 

Note, however, that, as follows immediately from Proposition 2.7.7, 
for an indecomposable exact module category M the Z+−module Gr(M) 
is indecomposable over Gr(C). In fact, even more is true. 

Definition 2.8.3. A Z+−module M over a Z+−ring K is called irre­
ducible if it has no proper Z+−submodules (in other words, the Z−span 
of any proper subset of the basis of M is not a K−submodule). 

Exercise 2.8.4. Give an example of Z+−module which is not irre­
ducible but is indecomposable. 

Lemma 2.8.5. Let M be an indecomposable exact module category 
over C. Then Gr(M) is an irreducible Z+−module over Gr(C). 

Exercise 2.8.6. Prove this Lemma. 

Proposition 2.8.7. Let K be a based ring of finite rank over Z. Then 
there exists only finitely many irreducible Z+−modules over K. 

Proof. First of all, it is clear that an irreducible Z+−module M over 
K is of finite rank over Z. Let {ml}l∈L be the basis of M . Let us 
consider an element b := bi∈B bi of K. Let b2 = i nibi and let 
N = maxbi∈B ni (N exists since B is finite). For any l ∈ L let bml = 

k∈L d
k
l mk and let dl := k∈L d

k
l > 0. Let l0 ∈ I be such that d := dl0 

equals minl∈L dl. Let b2ml0 = l∈L clml. Calculating b2ml0 in two ways 
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— as (b2)ml0 and as b(bml0 ), and computing the sum of the coefficients, 
we have:


Nd ≥ cl ≥ d2 

l 

and consequently d ≤ N . So there are only finitely many possibilities 
for |L|, values of ci and consequently for expansions biml (since each 
ml appears in bml0 ). The Proposition is proved. 

In particular, for a given finite multitensor category C there are only 

⏐⏐� 

finitely many Z+−modules over Gr(C) which are of the form Gr(M) 
where M is an indecomposable exact module category over C. 

Exercise 2.8.8. (a) Classify irreducible Z+−modules over ZG (An­
swer: such modules are in bijection with subgroups of G up to conju­
gacy). 
(b) Classify irreducible Z+−modules over Gr(Rep(S3)) (consider all 

⏐⏐�

the cases: chark = 2, 3, chark = 2, chark = 3). 
(c) Classify irreducible Z+−modules over the Yang-Lee and Ising 

based rings. 

Now we can suggest an approach to the classification of exact mod­
ule categories over C: first classify irreducible Z+−modules over Gr(C) 
(this is a combinatorial part), and then try to find all possible cate­
gorifications of a given Z+−module (this is a categorical part). Both 
these problems are quite nontrivial and interesting. We will see later 
some nontrivial solutions to this. 

2.9. Algebras in categories. 

Definition 2.9.1. An algebra in a multitensor category C is a triple 
(A, m, u) where A is an object of C, and m, u are morphisms (called 
multiplication and unit morphisms) m : A ⊗ A A, u : 1 A such → →
that the following axioms are satisfied: 

1. Associativity: the following diagram commutes: 

A ⊗ A ⊗ A 
m⊗id −−−→ A ⊗ A 

(2.9.1) id⊗m m 

A ⊗ A −−−→ A 
m 

2. Unit: The morphisms A → 1 ⊗ A → A ⊗ A → A and A →
A ⊗ 1 → A ⊗ A → A are both equal to IdA. 
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Of course, in the case when C = Vec, we get definition of an asso­
ciative algebra with unit, and in the case C = Vec we get the definition 
of a finite dimensional associative algebra with unit. 

Remark 2.9.2. If C is not closed under direct limits (e.g., C is a 
multitensor category), one can generalize the above definition, allowing 
A to be an ind-object (i.e., “infinite dimensional”). However, we will 
mostly deal with algebras honestly in C (i.e., “finite dimensional”), and 
will make this assumption unless otherwise specified. 

Example 2.9.3. 1. 1 is an algebra. 
2. The algebra of functions Fun(G) on a finite group G (with values 

in the ground field k) is an algebra in Rep(G) (where G acts on itself 
by left multiplication). 

3. Algebras in VecG is the same thing as G-graded algebras. In 
particular, if H is a subgroup of G then the group algebra C[H] is an 
algebra in VecG. 

4. More generally, let ω be a 3-cocycle on G with values in k×, and ψ 
be a 2-cochain of G such that ω = dψ. Then one can define the twisted 
group algebra Cψ[H] in Vecω , which is ⊕h∈H h as an object of Vecω 

G G, 
and the multiplication h ⊗ h� → hh� is the operation of multiplication 
by ψ(h, h�). If ω = 1 (i.e., ψ is a 2-cocycle), the twisted group algebra 
is associative in the usual sense, and is a familiar object from group 
theory. However, if ω is nontrivial, this algebra is not associative in the 
usual sense, but is only associative in the tensor category Vecω , which, G

as we know, does not admit fiber functors. 

Example 2.9.4. Let C be a multitensor category and X ∈ C. Then the 
object A = X ⊗ X∗ has a natural structure of an algebra with unit in 
C given by the coevaluation morphism and multiplication Id ⊗evX ⊗ Id. 
In particular for X = 1 we get a (trivial) structure of an algebra on 
A = 1. 

We leave it to the reader to define subalgebras, homomorphisms, 
ideals etc in the categorical setting. 

Now we define modules over algebras: 

Definition 2.9.5. A (right) module over an algebra (A, m, u) (or just 
an A−module) is a pair (M, p), where M ∈ C and p is a morphism 
M ⊗ A M such that the following axioms are satisfied: →
1. The following diagram commutes: 
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p⊗id −−−→ M ⊗ A ⏐⏐� 

M ⊗ A ⊗ A 

(2.9.2) id⊗m 

⏐⏐� p 

M ⊗ A −−−→ M 
p 

2. The composition M M ⊗ 1 M ⊗ A M is the identity. → → → 

The definition of a left module is entirely analogous. 

Definition 2.9.6. The homomorphism between two A−modules (M1, p1) 

⏐⏐� 

and (M2, p2) is a morphism l ∈ HomC(M1,M2) such that the following 
diagram commutes: 

M1 ⊗ A 
l⊗id −−−→ M2 ⊗ A ⏐⏐�(2.9.3) p1 p2 

l 
M1 −−−→ M2 

Obviously, homomorphisms form a subspace of the the vector space 
Hom(M1,M2). We will denote this subspace by HomA(M1,M2). It is 
easy to see that a composition of homomorphisms is a homomorphism. 
Thus A−modules form a category ModC (A). 

Exercise 2.9.7. Check that ModC(A) is an abelian category. 

The following observations relate the categories ModC (A) and mod­
ule categories: 

Exercise 2.9.8. For any A−module (M, p) and any X ∈ C the pair 
(X ⊗ M, id ⊗ p) is again an A−module. 

Thus we have a functor ⊗̃ : C × ModC(A) → ModC (A). 

Exercise 2.9.9. For any A−module (M, p) and any X, Y ∈ C the 
associativity morphism aX,Y,M : (X ⊗ Y ) ⊗ M X ⊗ (Y ⊗ M) is an →
isomorphism of A−modules. Similarly the unit morphism 1 ⊗ M M→
is an isomorphism of A−modules. 

This exercise defines associativity and unit constraints ã, ̃l for the 
category ModC (A). 

Proposition 2.9.10. The category ModC (A) together with functor ⊗̃
and associativity and unit constraints ã, l̃ is a left module category over 
C. 
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Exercise 2.9.11. Prove this Proposition. 

The following statement is very useful: 

Lemma 2.9.12. For any X we have a canonical isomorphism ∈ C 
HomA(X ⊗ A, M) = Hom(X, M). 

Exercise 2.9.13. Prove this Lemma. 

Exercise 2.9.14. Is it true that any object of ModC (A) is of the form 
X ⊗ A for some X ∈ C? 

Exercise 2.9.15. Show that for any M ∈ ModC (A) there exists X ∈ C 
and a surjection X ⊗ A M (namely, X = M regarded as an object →
of C). 

Exercise 2.9.16. Assume that the category C has enough projective 
objects. Then the category ModC(A) has enough projective objects. 

Exercise 2.9.17. Assume that the category C is finite. Then the 
category ModC (A) is finite. 

Thus we get a general construction of module categories from al­
gebras in the category C. Not any module category over C is of the 
form ModC (A): for C = Vec the module category of all (possibly in­
finite dimensional) vector spaces (see Example 2.5.11) is not of this 
form. But note that for C = Vec any finite module category is of the 
form ModC (A) (just because every finite abelian category is equivalent 
to Mod(A) for some finite dimensional algebra A). We will show later 
that all finite module categories over a finite C are of the form ModC(A) 
for a suitable A. But of course different algebras A can give rise to the 
same module categories. 

Definition 2.9.18. We say that two algebras A and B in C are Morita 
equivalent if the module categories ModC (A) and ModC (B) are module 
equivalent. 

Note that in the case C = Vec this definition specializes to the usual 
notion of Morita equivalence of finite dimensional algebras. 

Example 2.9.19. We will see later that all the algebras from Exam­
ple 2.9.4 are Morita equivalent; moreover any algebra which is Morita 
equivalent to A = 1 is of the form X ⊗ X∗ for a suitable X ∈ C. 

Not any module category of the form ModC (A) is exact: 

Exercise 2.9.20. Give an example of module category of the form 
ModC (A) which is not exact. 
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Thus we are going to use the following 

Definition 2.9.21. An algebra A in the category C is called exact if 
the module category ModC (A) is exact. 

It is obvious from the definition that the exactness is invariant under 
Morita equivalence. 

We will need the notion of a tensor product over an algebra A ∈ C. 

Definition 2.9.22. Let A be an algebra in C and let (M, pM ) be a right 
A−module, and (N, pN ) be a left A−module. A tensor product over 
A, M ⊗A N ∈ C, is the quotient of M ⊗ N by the image of morphism 
pM ⊗ id − id ⊗ pN : M ⊗ A ⊗ N → M ⊗ N . 

Exercise 2.9.23. Show that the functor ⊗A is right exact in each 
variable (that is, for fixed M, N , the functors M ⊗A • and • ⊗A N are 
right exact). 

Definition 2.9.24. Let A, B be two algebras in C. An A−B−bimodule 
is a triple (M, p, q) where M ∈ C, p ∈ Hom(A ⊗ M, M), q ∈ Hom(M ⊗
B, M) such that 

1. The pair (M, p) is a left A−module. 
2. The pair (M, q) is a right B−module. 
3. The morphisms q (p⊗id) and p (id⊗q) from Hom(A⊗M ⊗B, M)◦ ◦

coincide. 

Remark 2.9.25. Note that in the categorical setting, we cannot define 
(A, B)-bimodules as modules over A ⊗ Bop, since the algebra A ⊗ Bop 

is, in general, not defined. 

We will usually say “A−bimodule” instead of “A − A−bimodule”. 

Exercise 2.9.26. Let M be a right A−module, N be an A−B−bimodule 
and P be a left B−module. Construct the associativity morphism 
(M ⊗A N) ⊗A P M ⊗A (N ⊗A P ). State and prove the pentagon →
relation for this morphism. 

2.10. Internal Hom. In this section we assume that the category C
is finite. This is not strictly necessary but simplifies the exposition. 

An important technical tool in the study of module categories is 
the notion of internal Hom. Let M be a module category over C and 
M1,M2 ∈M. Consider the functor Hom(•⊗M1,M2) from the category 
C to the category of vector spaces. This functor is left exact and thus 
is representable 

Remark 2.10.1. If we do not assume that the category C is finite, the 
functor above is still representable, but by an ind-object of C. Working 
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with ind-objects, one can extend the theory below to this more general 
case. We leave this for an interested reader. 

Definition 2.10.2. The internal Hom Hom(M1,M2) is an object of C
representing the functor Hom(• ⊗ M1,M2). 

Note that by Yoneda’s Lemma (M1,M2) �→ Hom(M1,M2) is a bi­
functor. 

Exercise 2.10.3. Show that the functor Hom(•, ) is left exact in both •
variables. 

Lemma 2.10.4. There are canonical isomorphims 

(1) Hom(X ⊗ M1,M2) ∼= Hom(X, Hom(M1,M2)), 
(2) Hom(M1, X ⊗ M2) ∼= Hom(1, X ⊗ Hom(M1,M2)), 
(3) Hom(X ⊗ M1,M2) ∼= Hom(M1,M2) ⊗ X∗, 
(4) Hom(M1, X ⊗ M2) ∼= X ⊗ Hom(M1,M2). 

Proof. Formula (1) is just the definition of Hom(M1,M2), and isomor­
phism (2) is the composition 

Hom(M1, X ⊗ M2) ∼= Hom(X∗ ⊗ M1,M2) =


= Hom(X∗, Hom(M1,M2)) ∼
= Hom(1, X ⊗ Hom(M1,M2)). 

We get isomorphism (3) from the calculation 

Hom(Y, Hom(X⊗M1,M2)) = Hom(Y ⊗(X⊗M1),M2) = Hom((Y ⊗X)⊗M1,M2) = 

= Hom(Y ⊗ X, Hom(M1,M2)) = Hom(Y, Hom(M1,M2) ⊗ X∗), 

and isomorphism (4) from the calculation 

Hom(Y, Hom(M1, X ⊗ M2)) = Hom(Y ⊗ M1, X ⊗ M2) =


= Hom(X∗ ⊗ (Y ⊗ M1),M2) = Hom((X∗ ⊗ Y ) ⊗ M1,M2) =


= Hom(X∗ ⊗ Y, Hom(M1,M2)) = Hom(Y, X ⊗ Hom(M1,M2)).


Corollary 2.10.5. (1) For a fixed M1, the assignment M2 �→ Hom(M1,M2) 
is a module functor M→ C; 

(2) For a fixed M2, the assignment M1 �→ Hom(M1,M2) is a module 
functor M→ Cop. 

Proof. This follows from the isomorphisms (4) and (3) of Lemma 2.10.4. 

Corollary 2.10.5 and Proposition 2.7.8 imply 

Corollary 2.10.6. Assume that M is an exact module category. Then 
the functor Hom(•, •) is exact in each variable. 
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The mere definition of the internal Hom allows us to prove the con­
verse to Proposition 2.7.8: 

Proposition 2.10.7. (1) Suppose that for a module category M over 
C, the bifunctor Hom is exact in the second variable, i.e., for any object 
N ∈M the functor Hom(N, ) : M→ C is exact. Then M is exact. •

(2) Let M1, M2 be two nonzero module categories over C. Assume 
that any module functor from M1 to M2 is exact. Then the module 
category M1 is exact. 

Proof. (1) Let P ∈ C be any projective object. Then for any N ∈ M 
one has Hom(P ⊗ N, ) = Hom(P, Hom(N, )), and thus the functor 
Hom(P ⊗ N, ) is exact. By the definition of an exact module category, •
we are done. 

(2) First we claim that under our assumptions any module functor 
F ∈ FunC(M1, C) is exact. Indeed, let 0 =� M ∈ M2. The functor 
F ( )⊗M ∈ FunC(M1, M2) is exact. Since •⊗M is exact, and X⊗M = •
0 implies X = 0, we see that F is exact. 

In particular, we see that for any object N the functor ∈ M1, 
Hom(N, •) : M1 → C is exact, since it is a module functor. Now 
(2) follows from (1). � 

Example 2.10.8. It is instructive to calculate Hom for the category 
ModC (A). Let M, N ∈ ModC(A). We leave it to the reader as an 
exercise to check that Hom(M, N) = (M ⊗A 

∗N)∗ (note that ∗N has 
a natural structure of a left A−module). One deduces from this de­
scription of Hom that exactness of A is equivalent to biexactness of the 
functor ⊗A. 

For two objects M1,M2 of a module category M we have the canon­
ical morphism 

evM1,M2 : Hom(M1,M2) ⊗ M1 → M2 

obtained as the image of Id under the isomorphism 

Hom(Hom(M1,M2), Hom(M1,M2)) ∼= Hom(Hom(M1,M2) ⊗ M1,M2). 

Let M1,M2,M3 be three objects of M. Then there is a canonical 
composition morphism 

(Hom(M2,M3)⊗Hom(M1,M2))⊗M1 
∼= Hom(M2,M3)⊗(Hom(M1,M2)⊗M1) 

Id ⊗evM1,M2 evM2,M3 −→ Hom(M2,M3) ⊗ M2 −→ M3 

which produces the multipication morphism 

Hom(M2,M3) ⊗ Hom(M1,M2) Hom(M1,M3).→ 
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Exercise 2.10.9. Check that this multiplication is associative and 
compatible with the isomorphisms of Lemma 2.10.4. 
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2.11. Main Theorem. 

Exercise 2.11.1. Show that for any M ∈ M the object Hom(M, M) 
with the multiplication defined above is an algebra (in particular, define 
the unit morphism!). 

Theorem 2.11.2. Let M be a module category over C, and assume 
that M ∈M satisfies two conditions: 
1. The functor Hom(M, ) is right exact (note that it is automatically •

left exact). 
2. For any N ∈M there exists X ∈ C and a surjection X ⊗M N .→
Let A = Hom(M, M). Then the functor F := Hom(M, ) : M → •

ModC (A) is an equivalence of module categories. 

Proof. We will proceed in steps: 
(1) The map F : Hom(N1, N2) HomA(F (N1), F (N2)) is an iso­→

morphism for any N2 ∈M and N1 of the form X ⊗ M, X ∈ C. 
Indeed, F (N1) = Hom(M, X ⊗ M) = X ⊗ A and the statement 

follows from the calculation: 

HomA(F (N1), F (N2)) = HomA(X ⊗ A, F (N2)) = Hom(X, F (N2)) = 

= Hom(X, Hom(M, N2)) = Hom(X ⊗ M, N2) = Hom(N1, N2). 

(2) The map F : Hom(N1, N2) HomA(F (N1), F (N2)) is an iso­→
morphism for any N1, N2 ∈M. 
By condition 2, there exist objects X, Y ∈ C and an exact sequence 

Y ⊗ M X ⊗ M N1 → 0.→ → 

Since F is exact, the sequence 

F (Y ⊗ M) F (X ⊗ M) F (N1) 0→ → → 

is exact. Since Hom is left exact, the rows in the commutative diagram 

0 −→
 ⏐⏐�
Hom(N1, N2) 

F 

−→
 ⏐⏐�
Hom(X ⊗ M, N2) 

F 

−→
 ⏐⏐�
Hom(Y ⊗ M, N2) 

F 

0 − Hom(F (N1), F (N2)) − Hom(F (X ⊗ M), F (N2)) − Hom(F (Y ⊗ M), F (N2))→ → → 

are exact. Since by step (1) the second and third vertical arrows are 
isomorphisms, so is the first one. 

(3) The functor F is surjective on isomorphism classes of objects of 
ModC (A). 

We know (see Exercise 2.9.15) that for any object L ∈ ModC(A) 
there exists an exact sequence 

f̃  
Y ⊗ A −→ X ⊗ A → L → 0 
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for some X, Y ∈ C. Let f ∈ Hom(Y ⊗ M, X ⊗ M) be the preimage of 
f̃  under the isomorphism 

Hom(Y ⊗M, X⊗M) ∼ = HomA(Y ⊗A, X⊗A)= HomA(F (Y ⊗M), F (X⊗M)) ∼

and let N ∈M be the cokernel of f . It is clear that F (N) = L. 
We proved that F is an equivalence of categories and proved the 

Theorem. 

Remark 2.11.3. This Theorem is a special case of Barr-Beck Theorem 
in category theory, see [ML]. We leave it to the interested reader to 

⏐⏐� 

deduce Theorem 2.11.2 from Barr-Beck Theorem. 

We have two situations where condition 1 of Theorem 2.11.2 is sat­
isfied: 

1. M is an arbitrary module category over C and M ∈M is projec­
tive. 
2. M is an exact module category and M ∈M is arbitrary. 

⏐⏐�

Exercise 2.11.4. Check that in both of these cases Hom(M, ) is exact •
(Hint: in the first case first prove that Hom(M, N) is a projective object 
of C for any N ∈M). 

Exercise 2.11.5. Show that in both of these cases condition 2 is equiv­
alent to the fact that [M ] generates Gr(M) as Z+−module over Gr(C). 

Thus we have proved 

Theorem 2.11.6. (i) Let M be a finite module category over C. Then 
there exists an algebra A ∈ C and a module equivalence M� ModC (A). 

(ii) Let M be an exact module category over C and let M ∈ M be 
an object such that [M ] generates Gr(M) as Z+−module over Gr(C). 
Then there is a module equivalence M� ModC (A) where A = Hom(M, M). 

2.12. Categories of module functors. Let M1, M2 be two module 
categories over a multitensor category C, and let (F, s), (G, t) be two 
module functors M1 →M2. 

Definition 2.12.1. A module functor morphism from (F, s) to (G, t) 
is a natural transformation a from F to G such that the following 
diagram commutes for any X ∈ C, M ∈M: 

s
F (X ⊗ M) −−−→ X ⊗ F (M) 

(2.12.1)
 a id⊗a 

t
G(X ⊗ M) −−−→ X ⊗ G(M) 
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It is easy to see that the module functors with module functor mor­
phisms introduced above form a category called the category of mod­
ule functors. This category is very difficult to manage (consider the 
case = Vec !) and we are going to consider a subcategory. LetC
F unC (M1, M2) denote the full subcategory of the category of module 
functors consisting of right exact module functors (which are not nec­
essarily left exact). First of all this category can be described in down 
to earth terms: 

Proposition 2.12.2. Assume that M1 � ModC (A) and M2 � ModC (B) 
for some algebras A, B ∈ C. The category F unC (M1, M2) is equiva­
lent to the category of A − B−bimodules via the functor which sends a 
bimodule M to the functor • ⊗A M . 

Proof. The proof repeats the standard proof from ring theory in the 
categorical setting. � 

Thus we have the following 

Corollary 2.12.3. The category F unC(M1, M2) of right exact module 
functors from M1 to M2 is abelian. 

Proof. Exercise. � 

In a similar way one can show that the category of left exact module 
functors is abelian (using Hom over A instead of tensor product over 
A). 

We would like now to construct new tensor categories in the fol­
lowing way: take a module category M and consider the category 
F unC (M, M) with composition of functors as a tensor product. 

Exercise 2.12.4. The category F unC (M, M) has a natural structure 
of monoidal category. 

But in general the category F unC (M, M) is not rigid (consider the 
case C = Vec!). Thus to get a good theory (and examples of new tensor 
categories), we restrict ourselves to the case of exact module categories. 
We will see that in this case we can say much more about the categories 
F unC (M, M) than in general. 

2.13. Module functors between exact module categories. Let 
M1 and M2 be two exact module categories over C. Note that the 
category F unC(M1, M2) coincides with the category of the additive 
module functors from M1 to M2 by Proposition 2.7.8. 

Exercise 2.13.1. Any object of F unC (M1, M2) is of finite length. 
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Lemma 2.13.2. Let M1, M2, M3 be exact module categories over 
C. The bifunctor of composition F unC(M2, M3) × F unC(M1, M2) →
F unC (M1, M3) is biexact.


Proof. This is an immediate consequence of Proposition 2.7.8. �


Another immediate consequence of Proposition 2.7.8 is the following: 

Lemma 2.13.3. Let M1, M2 be exact module categories over C. Any 
functor F ∈ F unC (M1, M2) has both right and left adjoint. 

We also have the following immediate 

Corollary 2.13.4. Let M1, M2 be exact module categories over C. 
Any functor F ∈ F unC (M1, M2) maps projective objects to projectives. 

In view of Example 2.6.6 this Corollary is a generalization of Theo­
rem 1.49.3 (but this does not give a new proof of Theorem 1.49.3). 

Proposition 2.13.5. The category F unC (M1, M2) is finite. 

Proof. We are going to use Theorem 2.11.2. Thus M1 = ModC (A1) 
and M2 = ModC (A2) for some algebras A1, A2 ∈ C. It is easy to 
see that the category F unC(M1, M2) is equivalent to the category of 
(A1, A2)−bimodules. But this category clearly has enough projective 
objects: for any projective P ∈ C the bimodule A1⊗P ⊗A2 is projective. 

2.14. Dual categories. Observe that the adjoint to a module func­
tor has itself a natural structure of a module functor (we leave it to 
the reader to define this). In particular, it follows that the category 
F unC (M, M) is a rigid monoidal category. 

Definition 2.14.1. We denote this category as C∗ and call it the dualM
category to C with respect to M. 

By Proposition 2.13.5, this category is finite. 

Remark 2.14.2. This notion is a categorical version of notion of the 
endomorphism ring of a module (i.e., a centralizer algebra), and gives 
many new examples of tensor categories. 

Lemma 2.14.3. The unit object 1 ∈ C∗ is a direct sum of projectors M
to subcategories Mi. Each such projector is a simple object. 

Proof. The first statement is clear. For the second statement it is 
enough to consider the case when M is indecomposable. Let F be a 
nonzero module subfunctor of the identity functor. Then F (X) = 0 
for any X = 0. Hence F (X) = X for any simple X ∈ M and thus 
F (X) = X 

�
for any X ∈M since F is exact. � 
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Thus, the category C∗ is a finite multitensor category; in particular M
if M is indecomposable then C∗ is finite tensor category. Note that M
by the definition M is a module category over C∗ .M

Lemma 2.14.4. The module category M over C∗ is exact. M 

∗
M 

Proof. Let A ∈ C be an algebra such that M = ModC(A). Thus the 
category C∗ is identified with the category Bimod(A)op of A−bimodules M
with opposite tensor product (because A−bimodules act naturally on 
ModC (A) from the right). Any projective object in the category of 
A−bimodules is a direct summand of the object of the form A ⊗ P ⊗ A 
for some projective P ∈ C. Now for any M ∈ ModC (A) one has that 
M ⊗A A ⊗ P ⊗ A = (M ⊗ P ) ⊗ A is projective by exactness of the 
category ModC (A). The Lemma is proved. � 

Example 2.14.5. It is instructive to consider the internal Hom for 
the category ModC(A) considered as a module category over C∗ = M
Bimod(A). We leave to the reader to check that Hom (M, N) =
C
∗M N (the right hand side has an obvious structure of A bimodule). ⊗ −

∗(A,A) = A A is an algebra in the category ⊗∗
M 

In particular B = HomC
of A−bimodules. Thus B is an algebra in the category C and it is easy 
to see from definitions that the algebra structure on B = ∗A ⊗ A 
comes from the evaluation morphism ev : A ⊗ ∗A → 1. Moreover, 
the coevaluation morphism induces an embedding of algebras A →
∗A ⊗ A ⊗ A → ∗A ⊗ A = B and the A−bimodule structure of B comes 
from the left and right multiplication by A. 

Thus for any exact module category M over C the category (C∗ )∗ 
M M

is well defined. There is an obvious tensor functor can : C → (C∗ )∗ .M M

Theorem 2.14.6. The functor can : C → (C∗ )∗ is an equivalence of M M
categories. 

Proof. Let A be an algebra such that M = ModC(A). The cate­
gory C∗ is identified with the category Bimod(A)op. The category 
(C∗ )∗

M 

M M is identified with the category of B−bimodules in the category 
of A−bimodules (here B is the same as in Example 2.14.5 and is con­
sidered as an algebra in the category of A−modules). But this latter 
category is tautologically identified with the category of B−bimodules 
(here B is an algebra in the category C) since for any B−module one 
reconstructs the A−module structure via the embedding A B from→
Example 2.14.5. We are going to use the following 

Lemma 2.14.7. Any left B−module is of the form ∗A ⊗ X for some 
X ∈ C with the obvious structure of an A−module. Similarly, any right 
B−module is of the form X ⊗ A. 
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Proof. Let us consider C as a module category over itself. Consider an 
object ∗A ∈ C as an object of this module category. Then by Example 
2.10.8 Hom(∗A, ∗A) = ∗A ⊗ A = B and the statement follows from 
Theorem 2.11.2. The case of right modules is completely parallel. � 

It follows from the Lemma that any B−bimodule is of the form 
∗A ⊗ X ⊗ A and it is easy to see that can(X) = ∗A ⊗ X ⊗ A. The 
Theorem is proved. � 

Remark 2.14.8. Theorem 2.14.6 categorifies the classical “double cen­
tralizer theorem” for projective modules, which says that if A is a finite 
dimensional algebra and P is a projective A-module then the central­
izer of EndA(P ) in P is A. 

Corollary 2.14.9. Assume that C is a finite tensor (not only multi-
tensor) category. Then an exact module category M over C is inde­
composable over C∗ .M

Proof. This is an immediate consequence of Theorem 2.14.6 and Lemma 
2.14.3. � 

Let M be a fixed module category over C. For any other module cat­
egory M1 over C the category FunC(M1, M) has an obvious structure 
of a module category over C∗ = FunC(M, M).M 

Lemma 2.14.10. The module category FunC (M1, M) over C∗ is ex-M
act. 

Proof. Assume that M = ModC(A) and M1 = ModC (A1). Identify 
C∗ with the category of A−bimodules and FunC(M1, M) with the M
category of (A1 −A)−bimodules. Any projective object of Bimod(A) is 
a direct summand of an object of the form A⊗P ⊗A for some projective 
P ∈ C. Let M be an (A1 − A)−bimodule, then M ⊗A A ⊗ P ⊗ A = 
M ⊗ P ⊗ A. Now HomA1−A(M ⊗ P ⊗ A, ) = HomA1 (M ⊗ P, ) (here 
HomA1−A is the Hom in the category of (A1 −A)−bimodules and HomA1 

is the Hom in the category of left A1−modules) and it is enough to 
check that M ⊗ P is a projective left A1−module. This is equivalent 
to (M ⊗ P )∗ being injective (since N �→ N∗ is an equivalence of the 
category of left A−modules to the category of right A−modules). But 
(M ⊗ P )∗ = P ∗ ⊗ M∗ and results follows from projectivity of P ∗ and 
Lemma 2.7.3. � 

The proof of the following Theorem is similar to the proof of Theorem 
2.14.6 and is left to the reader. 
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Theorem 2.14.11. Let M be an exact module category over C. The 
�→ FunC(M1, M) and M2 �→ Fun (M2, M) mutu­

ally inverse bijections of the sets of equivalence classes of exact module 
∗
M

maps M1 C are


categories over C and over C∗ .M

Following Müger, [Mu], we will say that the categories C and (C∗ )op 
M

are weakly Morita equivalent. 

Example 2.14.12. Let C be a finite multitensor category. Then C is 
an exact module category over C � Cop. 

Definition 2.14.13. The corresponding dual category Z(C) := CC∗�Cop 

is called the Drinfeld center of C. 

This notion categorifies the notion of the center of a ring, since the 
center of a ring A is the ring of endomorphisms of A as an A-bimodule. 

Let M be an exact module category over C. For X, Y ∈M we have 
two notions of internal Hom — with values in C and with values in 

respectively. The following simple ∗
M

C∗ , denoted by Hom and HomM C
consequence of calculations in Examples 2.10.8 and 2.14.5 is very useful. 

C

Proposition 2.14.14. (“Basic identity”) Let X, Y, Z ∈ M. There is 
a canonical isomorphism 

HomC (X, Y ) ⊗ Z � ∗Hom ∗
MC
(Z, X) ⊗ Y. 

Proof. By Theorem 2.14.6 it is enough to find a canonical isomorphism

∗HomC (Z, X) ⊗ Y � Hom ∗

MC
(X, Y ) ⊗ Z. 

This isomorphism is constructed as follows. Choose an algebra A such 
that M = ModC (A). By Example 2.10.8 the LHS is ∗(X ⊗A Z∗) ⊗ Y = 
∗(Z ⊗A 

∗X)∗ ⊗ Y = (Z ⊗A 
∗X) ⊗ Y . On the other hand by Example 

2.14.5 the RHS is Z ⊗A (
∗X ⊗ Y ). Thus the associativity isomorphism 

gives a canonical isomorphism of the LHS and RHS. Observe that the 
isomorphism inverse to the one we constructed is the image of the 
identity under the homomorphism 

Hom(Y, Y ) Hom(Hom
→
 C∗
M 
(X, Y ) ⊗ X, Y )
→


Hom(Hom
 ∗
MC
(X, Y ) ⊗ HomC (Z, X) ⊗ Z, Y ) � 

Hom(Hom (Z, X) ⊗ HomC C∗
M 
(X, Y ) ⊗ Z, Y ) �


Hom(Hom
 (X, Y ) ⊗ Z, ∗Hom (Z, X) ⊗ Y )
C∗
M C 

and thus does not depend on the choice of A. �
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Remark 2.14.15. Following [Mu] one can construct from M a 2­
category with 2 objects A, B such that End(A) ∼ = (C∗ )op= C, End(B) ∼ ,M
Hom(A, B) ∼ M, and Hom(B, A) F unC (M, C). In this language = = 
Proposition 2.14.14 expresses the associativity of the composition of 
Hom’s. 
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