
18.781 Solutions to Problem Set 2

1. Let m = n− (m+k)!k. We want to show that the power of p dividing
(
m+k

)
= is the number of carriesk m!k!

when adding m to k in base p. Note that each time a carry occurs, (ai + p) in the ith place becomes
ai in the ith place and (ai+1 + 1) in the (i + 1)st place, so the number of carries is

(sum of the digits of k) + (sum of the digits of m)− (sum of the digits of m + k)
.

p− 1

Since for any integer a the power of p dividing a! is (a− s)/(p− 1), where s is the sum of the digits of
(m+k)!a in base p, this expression is precisely the power of p dividing .m!k!

2. (a) Divide the m + n objects (from which we need to choose k) into two subcollections, A with m
objects and B with n objects. Then we need to choose i objects from A and k − i objects from
B, where i may range from 0 to k.

(b) In the equation
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the coefficient of xk in the LHS is m+n , and the coefficient of xk in the RHS is m n .k i k−i

(c) Setting m = n = k gives
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(d) Consider the identity

(1− x)2n(1 + x)2n = (1− x2)2n.

On the RHS, the( )coefficient of x2n is the same as the coefficient of xn in the polynomial (1 x)2n,
namely (−1)n 2n

−
. On the LHS, the coefficient of x2n isn ∑2n
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as desired.

3. (a) We know that p|
(
p
)

for i = 1, . . . , p− 1. So (1 + x)p ≡ 1 + xp (mod p) is immediate. We now usei
proof by induction, where we have just proven the base case. Now

(1 + x)p
k

≡ ((1 + x)p)p
k−1

≡
k−1

(1 + xp)p

≡ 1 + xpk

(mod p)

by the inductive hypothesis, completing the induction. We could also have used the result from

class that pk

0 (mod p) for i = 1, . . . , pk 1.i

( )
≡ −
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(b) By part (a),

(1 + x)a = (1 + x)a0+a1p+···+arp
r

r

= (1 + x)a0(1 + x)a1p · · · (1 + x)arp

≡ (1 + x)a0(1 + xp r

)a1 · · · (1 + xp )ar (mod p).

The only way to get xb0+b r
1p+···+brp from the expansion is to choose xb0 from (1 +x)a0 , xpb1 from

(1 + xp)a1 ,..., xprbr from (1 + xpr

)ar . So the coefficient is(
a

b

)
≡
(
ar
br

)(
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)
· · ·
(
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)
(mod p).

4. Suppose n is prime. Then, since the binomial coefficients in the middle vanish mod p,

(x− a)n ≡ xn + (−a)n

≡ xn + (−a) (mod n).

Now for the converse. The polynomial congruence in particular means that n must divide n fori
i = 1, . . . , n− 1. We’ll see first that this implies n must be a power of a prime.

Let p be any prime dividing n. If n is not a power of p, then the base p expansion of n does not

( )
look

like 1 followed by a bunch of zeroes, so it’s either nr0 · · · 0 with n ≥ 2, or nrnr 1 · · ·n some− i · · ·n0 with
ni ≥ 1 for i < r. In any case, let k have the base p expansion 10 · · · 0 (i.e., k = pr). Then subtracting k
from n in base p doesn’t involve any carries, so p - n and therefore nk - n , contradiction. So n mustk
be a power of p.

Let’s assume n is not a prime, so we now have n

(
=

)
pr with r

( )
≥ 2. Then it’s clear that subtracting

pr−1 (whose base p expansion is 010 · · · 0) from n in base p will involve only one carry. So p || n
pr−1 ,

and thus n = pr cannot divide this binomial coefficient, contradiction. Therefore, n is indeed a

(
prime.

)
5. We need to show that 11n7 + 7n11 + 59n is divisible by 77. It’s enough to show divisibility by 7 and

by 11 separately. Mod 7 we get

11n7 + 7n11 + 59n ≡ 11n7 + 3n

≡ 11n + 3n

≡ 0 (mod 7),

and similarly mod 11.

6. We have
pe|(x2 − 1) = (x− 1)(x + 1).

Suppose p is odd. Then p can’t divide both x+ 1 and x− 1, since their difference 2 isn’t divisible by p,
so (pe, x+ 1) = 1 or (pe, x− 1) = 1. Hence pe

3
|x− 1 or pe|x+ 1, and the only two solutions are x ≡ ±1

(mod p ).

Now suppose p = 2. Then x2 ≡ 1 (mod 2e) means x must be odd, so let x = 2y + 1. We have

2e|(x− 1)(x + 1) = 4y(y + 1).

Note that if p = 2 then x = 1, and if p = 4 then x = 1, 3. So let’s assume e 3. Since y and y + 1 are
obviously coprime, we have 2e−2|y or 2e−2|y + 1, i.e., y ≡ 0 (mod 2e 2

≥
− ) or y ≡ −1 (mod 2e−2). Then,

modulo 2e−1, the possible solutions for y are 0, 2e−2, 2e−2 1, 1, and the corresponding solutions for
x are 1,−1, 2e 1

− −
− + 1, 2e−1 − 1. It’s easy to verify that all of these work and are distinct modulo 2e.

7. (a) The binomial coefficient (
x

k

)
x(x

=
− 1) · · · (x− k + 1)

k!
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obviously has degree k in x and highest coefficient 1/k!. We show by induction on the degree n
of p(x) that there are unique complex numbers c0, . . . , cn such that

p(x) = cn

(
x
)

x
+ cn−1

n

(
n− 1

)
+ · · ·+ c0.

For n = 0, p(x) is constant, so p(x) can be uniquely expressed as p(0) x . Now suppose we’ve0
proved the proposition for polynomials( ) of degree less than n. Then if

(
p(x) = pnx

n + we
let c = k!p and note that c x is of degree n and leading coefficien( t

)
p)xn

· · ·
n n n . So p(x) − c x

n nn n

has degree less than n, and by the inductive hypothesis, equals c x
n−1 +n−1 · · · + c0 for some

cn 1, . . . , c0 uniquely determined. (Note that cn is also uniquely determined from the highest

( )
−

coefficient). This completes the induction.

(b) Note that (
x
) (
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k k
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By linearity, if p(x) =

∑
k=0 ck

(
x
k
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then
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ck∆
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(Note that the k = 0 term goes away since ∆

(c) One direction is obvious: if ck ∈ Z for all
n m

(
x
0

k

)
= 0.)

, then since m is always an integer, we havek

p(m) = k=0 ck k ∈ Z for all integers m.

Conversely, suppose p(m)

( )
∈ Z for all m. Then we’ll show by induction on the degree n of p that

the coefficien

∑
ts c

( )
k for such a p must be integers.

For n = 0 this is obvious, so suppose we’ve proved the proposition for all polynomials with degree
n

less than n. Consider the polynomial q(x) = ∆p(x). It has degree n−1 since q(x) = k=1 c
x

k .k−1
Also q(m) = p(m+1)−p(m) is an integer for all integers m. So we get by the inductive hypothesis
that c1, . . . , cn are all integers. Then, evaluating p at m = 0,

∑ ( )
(

0
) (

0
p(0) = c0 + c1 +

1
· · ·+ cn

n

= c .

)
0

So c0 ∈ Z as well. This completes the induction.
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