1. Let m = n — k. We want to show that the power of p dividing ( P

2.

18.781 Solutions to Problem Set 2

is the number of carries

m+k) _ (m+k)!
mlk!

when adding m to k in base p. Note that each time a carry occurs, (a; + p) in the ith place becomes
a; in the ith place and (a;11 + 1) in the (i + 1)st place, so the number of carries is

(sum of the digits of k) + (sum of the digits of m) — (sum of the digits of m + k)
p—1 '

Since for any integer a the power of p dividing a! is (a — s)/(p — 1), where s is the sum of the digits of

a in base p, this expression is precisely the power of p dividing

(a)

(m+k)!
mlkl ~

Divide the m + n objects (from which we need to choose k) into two subcollections, A with m
objects and B with n objects. Then we need to choose i objects from A and k& — ¢ objects from
B, where i may range from 0 to k.

In the equation

o e (D (e () o Qe ().

the coefficient of z* in the LHS is (mz"), and the coefficient of #* in the RHS is > (T) (k:)

G- ) -20)

(1 _ m)Qn(l T x)Qn _ (1 _ 562)2".

On the RHS, the coefficient of 22" is the same as the coefficient of 2™ in the polynomial (1 —z)3",
namely (—1)”(2:). On the LHS, the coefficient of 22" is

2 (1)) e (V)

k=0 k=0

Setting m = n = k gives

Consider the identity

as desired.

We know that p[(?) fori=1,...,p—1. So (1 +2)? =1+ 2P (mod p) is immediate. We now use
proof by induction, where we have just proven the base case. Now

(L) = (4
= (1+ a2y
=1+ (mod p)

by the inductive hypothesis, completing the induction. We could also have used the result from
k
class that (7/) =0 (mod p) fori=1,...,p" — 1.



4.

7.

(b) By part (a)7
(14+2)*=(1+ x)a0+alp+'“+arp7‘
=(142)°1+z)MP. . (1+z)%?
= (1t a)(1+a")" - (1+a?)*  (mod p).

The only way to get z?0+01P++02" from the expansion is to choose % from (1+ )%, 2" from
(1+xP)® ..., 2P b from (1 + 2P )% . So the coefficient is

(5)=C)G) () omoin

Suppose n is prime. Then, since the binomial coefficients in the middle vanish mod p,

(z—a)"=2" + (—a)"
=z" 4 (—a) (mod n).

Now for the converse. The polynomial congruence in particular means that n must divide (?) for
i=1,...,n— 1. We'll see first that this implies n must be a power of a prime.

Let p be any prime dividing n. If n is not a power of p, then the base p expansion of n does not look
like 1 followed by a bunch of zeroes, so it’s either n,.0---0 with n > 2, or n,.n,_1 -+ -n; - - - ng with some
n; > 1 for i < r. In any case, let k have the base p expansion 10---0 (i.e., K = p"). Then subtracting k
from n in base p doesn’t involve any carries, so p { (2) and therefore n { (Z), contradiction. So n must
be a power of p.

Let’s assume n is not a prime, so we now have n = p” with » > 2. Then it’s clear that subtracting
p"~! (whose base p expansion is 010 --0) from n in base p will involve only one carry. So p || (pﬁl),
and thus n = p" cannot divide this binomial coefficient, contradiction. Therefore, n is indeed a prime.

We need to show that 11n7 + Tn'! 4+ 59n is divisible by 77. It’s enough to show divisibility by 7 and
by 11 separately. Mod 7 we get

11n7 + 7" +59n = 1107 + 3n

=1ln+3n
=0 (mod7),

and similarly mod 11.

We have
(22 = 1) = (z — 1)(z + 1).

Suppose p is odd. Then p can’t divide both 4+ 1 and x — 1, since their difference 2 isn’t divisible by p,
so (p¢,z+1)=1or (p¢,z—1) = 1. Hence p°|z — 1 or p°|x + 1, and the only two solutions are z = +1
(mod p?).

Now suppose p = 2. Then 22 =1 (mod 2¢) means x must be odd, so let z = 2y + 1. We have
2°(x — 1)(x+ 1) =4y(y + 1).

Note that if p = 2 then x = 1, and if p = 4 then z = 1,3. So let’s assume e > 3. Since y and y + 1 are
obviously coprime, we have 22|y or 2°72|y + 1, i.e., y =0 (mod 2°72) or y = —1 (mod 2°72). Then,
modulo 2°7 !, the possible solutions for y are 0,2¢72,2°72 — 1, —1, and the corresponding solutions for
xarel,—1,2°71 41,2671 — 1. It’s easy to verify that all of these work and are distinct modulo 2°.

(a) The binomial coefficient

<z> B x(w—l)--]-d(x—k—i—l)



obviously has degree k in x and highest coefficient 1/k!. We show by induction on the degree n
of p(z) that there are unique complex numbers co, ..., ¢, such that

p(x)=cn<z) +cn1(nil> 4 4o

For n = 0, p(x) is constant, so p(x) can be uniquely expressed as p(0) (g) Now suppose we’ve
proved the proposition for polynomials of degree less than n. Then if p(x) = ppa™ + -+ we
let ¢, = k!p, and note that ¢, (2) is of degree n and leading coefficient p,z™. So p(z) — ¢, (2)
has degree less than n, and by the inductive hypothesis, equals cn,l(nfl) 4+ -+ 4+ ¢ for some
Cn—1,---,¢o uniquely determined. (Note that ¢, is also uniquely determined from the highest

coefficient). This completes the induction.
Note that

(%)

By linearity, if p(z) = Y7 _, ¢k (ﬁ) then
Ap(z) = z”: ¢ A(x>
P 2 RO\ g
n T
= Z Ck <k’ _ 1> .

k=1

(Note that the k = 0 term goes away since A(f) = 0.)

One direction is obvious: if ¢ € Z for all k, then since (Tk”) is always an integer, we have
p(m) =>1_ocx(}) € Z for all integers m.

Conversely, suppose p(m) € Z for all m. Then we’ll show by induction on the degree n of p that
the coefficients ¢, for such a p must be integers.

For n = 0 this is obvious, so suppose we’ve proved the proposition for all polynomials with degree
less than n. Consider the polynomial ¢(z) = Ap(x). It has degree n—1 since q(z) = Y"1 _; cx(,”,)-
Also ¢(m) = p(m+1)—p(m) is an integer for all integers m. So we get by the inductive hypothesis

that cq,..., ¢, are all integers. Then, evaluating p at m = 0,
0 0
0) = ceitoep
w0 =) - +e()
= (.

So ¢y € Z as well. This completes the induction.
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