
18.781 Solutions to Problem Set 3

1. It’s enough to solve the congruence mod 11 and mod 13, and then combine the solutions by Chinese
Remainder Theorem. Now x3− 9x2 + 23x− 15 factors as (x− 1)(x− 3)(x− 5), so solutions mod 11 or
mod 13 are 1, 3, 5 in each case. To combine, we first need x, y such that 13x + 11y = 1. For instance
x = −5, y = 6 works. (We can find x, y by Euclidean algorithm). So if we have a solution a mod 11
and a solution b mod 13 then the Chinese Remainder Theorem recipe tells us that

(−5)(13)a + (6)(11)b = −65a + 66b

is a solution mod 143. Running this over a ∈ {1, 3, 5} and b ∈ {1, 3, 5} we get 9 solutions: 1, 3, 5, 14,
16, 27, 122, 133, 135.

2. We just need to compute these expressions mod 4 and mod 25, and then combine using CRT. Note
that (1)(25) + (−6)(4) = 1, so if x ≡ a mod 4 and x ≡ b mod 25 then x ≡ 25a− 24b (mod 100).

For 2100: We have 2100 ≡ 0 (mod 4) and 2100 = 25φ(25) ≡ 1 (mod 25). So the last two digits are
25 · 0− 24 · 1 ≡ 76.

For 3100: We have 3100 = 350φ(4) ≡ 1 (mod 4) and 3100 = 35φ(25) ≡ 1 (mod 25). So the last two digits
are 25 · 1− 24 · 1 ≡ 01.

3. Let m = peii . By the CRT, we can simply find the number of solutions mod peii for each i and take
the product. Now x2 x (mod pe) means pe x2 x = x(x 1). Since x and x 1 are coprime, we
have pe

∏
≡ | − − −

|x or pe|x − 1. So x ≡ 0, 1 (mod pe) are the two solutions. Thus, for an arbitrary integer m,
the number of solutions is 2r where r is the number of distinct prime divisors of m.

4. (a) We need to show that a560 ≡ 1 mod 3, mod 11, and mod 17 for any a coprime to 561.

Since a is coprime to 3, a2 ≡ 1 (mod 3), so a560 = a2·280 ≡ 1 (mod 3).

Since a is coprime to 11, a10 ≡ 1 (mod 11), so a560 = a56·10 1 (mod 11).

Since a is coprime to 17, a16 ≡ 1 (mod 17), so a560 = a35 16

≡
· ≡ 1 (mod 17).

(b) Suppose n = pq with p, q distinct primes satisfies property P . Then for all a coprime to p and q,
we have apq−1 ≡ 1 (mod p) and apq−1 ≡ 1 (mod q).

Assume, without loss of generality, that p < q. Then

apq−1 = a(q−1)p+p−1

= a(q−1)p · ap−1

≡ 1p · ap−1 (mod q).

Now for any x coprime to q, we can let a be the unique integer mod pq which satisfies a ≡ x
(mod q) and a ≡ 1 (mod p), so that a is coprime to pq and thus xp−1 ≡ 1 (mod q). However,
because of the existence of a primitive root mod q, we know that q

q
− 1 is the smallest positive

integer such that x −1 ≡ 1 (mod q) for every x coprime to q. Since p − 1 < q − 1, we have a
contradiction.

(c) A sufficient condition is that p−1|pqr−1. This implies that qr ≡ 1 (mod p−1), pr ≡ 1 (mod q−1),
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and pq ≡ 1 (mod r − 1). Using it to search we find the following numbers:

561 = 3 · 11 · 17

1105 = 5 · 13 · 17

1729 = 7 · 13 · 19

2465 = 5 · 17 · 29

2821 = 7 · 13 · 31

6601 = 7 · 23 · 41

8911 = 7 · 19 · 67

10585 = 5 · 29 · 73

15841 = 7 · 31 · 73

29341 = 13 · 37 · 61.

5. Yes. Pick distinct primes p1, . . . , pN and let x solve

x ≡ 0 (mod p21)

x + 1 ≡ 0 (mod p22)

...

x + N − 1 ≡ 0 (mod p2N )

This has solutions mod p21 · · · p2N , by CRT. We can pick x positive. Then for each i, x+ i−1 is divisible
by p2i , and thus is not squarefree.

6. (a) You should find that the density is about 2/3.

(b) You should find that the density is about 1/3.

(c) The key difference is the Galois group, which is S3 for (a) and Z/3Z for (b). The reason for the
distribution you see is a deep theorem in algebraic number theory called the Chebotarev density
theorem. In terms of group theory, the main difference is that the number of permutations in S3

with a fixed point is 4, leading to the fraction 4/6 = 2/3, while the corresponding number for
A3 = {(1), (123), (132)} is 1, leading to the fraction 1/3.
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