
18.781 Problem Set 4 part 1
 

Thursday March 15, with the rest of Problem Set 4.  
Collaboration is allowed and encouraged. However, your writeups should be your own, and you
 
must note on the front the names of the students you worked with.
 
Extensions will only be given for extenuating circumstances.
 
For problems 2 and 3, turn in a printout of your gp code as well.
 

1. (a) Show that the only cube roots of 1 modulo 1024 is 1. 

(b) Find all the cube roots of −3 modulo 1024. (Hint: use Hensel’s Lemma, but you might 
want to start with a high enough power of 2 which is 3 away from a cube). 

5(c) Solve x + x4 + 1  ≡ 0 (mod  34). 

22. Write a gp program to implement Pollard rho: given N start with x0 = 1  and  let  xn+1 = xn+1. 
Evaluate gcd(x2n − xn, N) till you find a factor. Use it to find a prime factor of 21231 − 1. 

3.	 Suppose that N = pq is the product of two primes. Suppose in addition to knowing N , we  
also know M = φ(N). Describe how to obtain p and q from this information. Use your 
method to factor the number 

N = 27606985387162255149739023449107931668458716142620601169954803000803329 

which is a product of two primes, given that 

φ(N) = 27606985387162255149739023449107761527112996396559656119259509106409476. 

4.	 Suppose that f(a) ≡ 0 (mod  pj) and  that  f '(a) ≡ 0 (mod  p). Let f '(a) be an integer chosen 
so that f '(a)f '(a) ≡ 1 (mod  p2j), and set b = a − f(a)f '(a). Show that f(b) ≡ 0 (mod  p2j). 
Note: this is the p-adic Newton’s method, and it differs from the Hensel’s lemma formula in 
that f '(a) is  an  inverse  of  f '(a) modulo p2j, not just modulo p. 

5. Let p be a prime. Let σ1, σ2, . . . , σp−1 be the elementary symmetric polynomials in 1, 2, . . . , p− 
1, as in class (i.e. σk is the sum of products of k of these numbers). We showed that 
(−1)p−1σp−1 = (p − 1)! ≡ −1 (mod  p). 

(a) Show that σ1, . . . , σp−2 are all congruent to 0 (mod p) (Hint: use the polynomial con­
gruence from class). 

(b) For p ≥ 5, show that σp−2 ≡ 0 (mod  p2). (Hint: plug in x = p in the equation 
p−2(x − 1)(x − 2) . . . (x − p + 1)  =  xp−1 − σ1x + · · · + σp−1.) 

6. Let p be a prime, and g a primitive root modulo p. Show that 1, g, g2, . . . , gp−2 are all the 
nonzero residue classes mod p. For a positive integer k, let  Sk = 1k + 2k + . . . (p − 1)k . 
Compute the value of Sk modulo p in closed form, as a function of k. 
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7. (Bonus) Let p be an odd prime. 

(a) Let x1, . . . , xn be variables, and for 1 ≤ k ≤ n, let  σk(x1, . . . , xn) is the  k’th elementary 
symmetric polynomial in the xi’s as in class (i.e. the sum of all products of k distinct 
xi’s). For instance, 

σ1 = x1 + · · · + xn 

σ2 = x1x2 + x1x3 + · · · + x1xn + x2x3 + . . . xn−1xn 

and so on. Note that 

n 
n n−1 n−2(y − xi) =  y − σ1y + σ2y + · · · + (−1)nσn 

i=1 

On the other hand, let Sk be the power sum 

Sk = x1 
k + · · · + xn

k 

Newton’s identities relate the power sums and the elementary symmetric polynomials: 

kσk = S1σk−1 − S2σk−2 + . . . (−1)k−2Sk−1σ1 + (−1)k−1Sk 

for 1 ≤ k ≤ n. Now  let  p be a prime and let x1, . . . xp be 0, 1, . . . , p − 1. Use Newton’s 
identities (and the result of Problem 5 (a)) to calculate the power sums S1, . . . , Sp−2, Sp−1 

modulo p. 

(b) Let f(x) be a polynomial in n variables, of degree d < n. Show that the number of zeros 
of f modulo p is divisible by p. In particular, if f has no constant term, then show that 
f(x) ≡ 0 (mod  p) has a nonzero solution (a1, . . . , an) (i.e. not all the ai are 0 mod p). 

[Hint: Consider the polynomial g(x) =  (1  − f(x))p−1 . What are the possible values of 
g(a1, . . . , an) mod  p? Compute the sum 

g(a1, . . . , an) 
a1,...,an 

nmodulo p, where  a1, . . . , an take all p possible values modulo p.] 

2
 



MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers
Spring 2012
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



