
18.781 Solutions to Problem Set 4, Part 2

1. (a) To find a primitive root mod 23, we use trial and error. Since φ(23) = 22, for a to be a primitive
root we just need to check that a2 6≡ 1 (mod 23) and a11 6≡ 1 (mod 23).

211 = 25 · 25 · 2 ≡ 9 · 9 · 2 ≡ −11 · 2 ≡ 1 (mod 23),

so 2 doesn’t work.

311 ≡ 33 · 33 · 33 · 9 ≡ 43 · 9 ≡ −5 · 9 ≡ 1 (mod 23),

so 3 doesn’t work either.

511 ≡ (52)5 · 5 ≡ 25 · 5 ≡ 9 · 5 ≡ −1 (mod 23)

and 52 ≡ 2 (mod 23), so 5 is a primitve root mod 23.

Now by the proof of existence of primitive roots mod p2, using Hensel’s lemma, only one lift of 5
will fail to be a primitive root mod 232. We need to check whether 522 ≡ 1 (mod 232):

522 = (55)4 · 52 ≡ (3125)4 · 25

≡ (−49)4 · 25 ≡ (2401)2 · 25

≡ 288 · 25 ≡ 323 (mod 529).

So 5 is a primitive root mod 529.

(b) We have that
38 ≡ (34)2 ≡ (−4)2 ≡ −1 (mod 17).

Now the order of 3 mod 17 must divide φ(17) = 16, and thus must be a power of 2. Clearly the
order must be greater than 8, since otherwise the order would divide 8 and we would have 38 ≡ 1
(mod 17). So the order of 3 mod 17 is exactly 16, which implies that 3 is a primitive root mod
17.

2. Since 2m − 1 and 2n + 1 are odd, any prime p dividing both must be an odd prime. We have 2m ≡ 1
(mod p) and 2n ≡ −1 (mod p), so the order of 2 mod p, say, h, divides m and is thus odd. But since
22n ≡ (2n)2 ≡ 1 (mod p), h must also divide n, so 2n ≡ −1 ≡ 1 (mod p), contradiction. Therefore
gcd(2m − 1, 2n + 1) can’t have any prime divisors, so it must equal 1.

3. If k is not a power of 2, then some odd prime p divides k. Letting k = mp, we have

ak + 1 = amp + 1

= (am + 1)(am(p−1) − am(p−2) + · · · − am + 1).

It’s easy to see that 1 < am + 1 < ak + 1, so ak + 1 must be composite. Therefore for ak + 1 to be
prime, k must be a power of 2.

Now if p|a2n +1 and p = 2 then p is odd, and a2
n ≡ − n+1

1 (mod p) implies that a2 ≡ 1 (mod p). Note
that (a, p) = 1. So the order of a mod p, say, h, divides 2n+1 and is thus a power of 2. But h cannot
be less than or equal to 2n, else we would have 22n ≡ −1

n+1
≡ 1 (mod p), contradicting the assumption

that p is odd. Therefore, h = 2 . Then by Fermat’s Little Theorem we have 2n+1|p− 1, i.e., p ≡ 1
(mod 2n+1).
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4. Since an−1 ≡ 1 (mod n), it follows immediately that gcd(a, n) = 1. Let h be the order of a mod
n. By definition h is the smallest positive integer such that ah ≡ 1 (mod n), so h = n

φ
− 1. Now

Euler’s theorem implies that a (n) ≡ 1 (mod n). Thus, h = n−1|φ(n), which in particular means that
n − 1 ≤ φ(n). But since n > 1, we know that φ(n) is the number of elements in {1, . . . , n − 1} which
are coprime to n, so φ(n) ≤ n− 1. Hence φ(n) = n− 1 and n is coprime to 1, 2, . . . , n− 1. Therefore,
n must be prime.

5. We’ll first show that if a ≡ b (mod p(p− 1)), then aa ≡ bb (mod p). If a and b are both equivalent to
0 mod p then aa ≡ bb ≡ 0 (mod p) is clear, since a and b are positive integers. So assume a, and thus
b as well, is coprime to p. Writing b = a+ tp(p− 1), we have

bb = (a+ tp(p− 1))a+tp(p−1)

≡ aa+tp(p−1)

≡ aa · (ap−1)tp

≡ aa · (1)tp

≡ aa (mod p).

Now let the period of the sequence be h. From the above proof, h divides p(p − 1). We know that
aa ≡ (a+ th)a+th (mod p) for all positive integers a, t. If we set a = p and t = 1 we get pp ≡ (p+h)p+h

(mod p), which forces h ≡ 0 (mod p). So letting h = kp, we have

aa ≡ (a+ tkp)a+tkp ≡ aa+tkp (mod p)

for every pair of positive integers a, t. If we take a to be a primitive root g mod p and again set t = 1,
we get that gkp ≡ 1 (mod p), so p− 1|kp. Furthermore, p− 1|k because gcd(p− 1, p) = 1. Therefore,
h = kp is divisible by (p− 1)p. Since h also divides p(p− 1), it follows that h = p(p− 1).

6. We can assume that 0 < a < q, otherwise divide out a/q and reset a as the remainder. Now if k is the
order of 10 mod q then q|10k − 1, so let 10k − 1 = mq for some positive integer m. Then

a 10ka
=

q 10kq

a(10k
=

− 1 + 1)

10kq

a(10k
=

− 1) a
+

10kq 10kq
am a

= +
10k 10kq

Now note that 0 < am < qm ≤ 10m − 1. So am
10k

has a finite decimal expansion 0.m1m2 · · ·mk

with k digits, and since the decimal expansion of a
10k

is just that of a but shifted k digits to
q q

the right by adding k zeroes at the beginning, it’s clear that a will have the decimal expansionq
0.m1 · · ·mkm1 · · ·mkm1 · · ·mk · · · . So the smallest period is a divisor of k. To show it’s exactly k,
suppose that a/q = 0.r1 · · · r l

ln1 · · ·nhn1 · · ·nh · · · , where h divides k. Multiplying by 10 , we get

10la
= r1

q
· · · rl.n1 · · ·nhn1 · · ·nh · · ·

Subtracting off the integer part and replacing a by the remainder of 10la mod q (which doesn’t change
the fact that (a, q) = 1),

a
= 0.n1 · · ·nhn1

q
· · ·nh · · ·

If n is the integer with decimal expansion n1
h h

· · ·n h
h, this equation says a/q = n/(10 − 1). Then

(10 − 1)a = nq, so a(10 − 1) ≡ 0 (mod p). By definition of k, we must have k|h. Therefore k = h,
finishing the proof.
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