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18.781 Solutions to Problem Set 4, Part 2

(a) To find a primitive root mod 23, we use trial and error. Since ¢(23) = 22, for a to be a primitive
root we just need to check that a® # 1 (mod 23) and a'! # 1 (mod 23).

211 =25.2°.2=9.9.2=-11-2=1 (mod 23),
so 2 doesn’t work.
311=3%.3%.3.9=43.9=-5.9=1 (mod 23),
so 3 doesn’t work either.
511 =(5%)°.5=2°.5=9-5= -1 (mod 23)

and 52 = 2 (mod 23), so 5 is a primitve root mod 23.

Now by the proof of existence of primitive roots mod p?, using Hensel’s lemma, only one lift of 5
will fail to be a primitive root mod 23%. We need to check whether 522 = 1 (mod 232):

522 = (5%)* . 5% = (3125)* - 25
= (—49)* - 25 = (2401)% - 25
=288-25=1323 (mod 529).

So 5 is a primitive root mod 529.

(b) We have that
3 =03YY2=(-4)%=-1 (mod 17).

Now the order of 3 mod 17 must divide ¢(17) = 16, and thus must be a power of 2. Clearly the
order must be greater than 8, since otherwise the order would divide 8 and we would have 3% = 1
(mod 17). So the order of 3 mod 17 is exactly 16, which implies that 3 is a primitive root mod
17.

Since 2™ — 1 and 2™ + 1 are odd, any prime p dividing both must be an odd prime. We have 2™ =1
(mod p) and 2" = —1 (mod p), so the order of 2 mod p, say, h, divides m and is thus odd. But since
227 = (2")2 = 1 (mod p), h must also divide n, so 2" = —1 = 1 (mod p), contradiction. Therefore
ged(2™ —1,2™ + 1) can’t have any prime divisors, so it must equal 1.

If k£ is not a power of 2, then some odd prime p divides k. Letting k = mp, we have

d"+1=a" +1
= (a™ +1)(a™P™D —gmP=2) L g™ 4 1),

It’s easy to see that 1 < a™ + 1 < a* + 1, so a* + 1 must be composite. Therefore for a* + 1 to be
prime, k must be a power of 2.

Now if pla®” 41 and p # 2 then p is odd, and a®>" = —1 (mod p) implies that =1 (mod p). Note
that (a,p) = 1. So the order of a mod p, say, h, divides 2"*! and is thus a power of 2. But h cannot
be less than or equal to 27, else we would have 22" = —1 = 1 (mod p), contradicting the assumption
that p is odd. Therefore, h = 2"*1. Then by Fermat’s Little Theorem we have 2"*1|p — 1, ie.,p=1
(mod 27*1).



4. Since "1 = 1 (mod n), it follows immediately that ged(a,n) = 1. Let h be the order of a mod
n. By definition h is the smallest positive integer such that " = 1 (mod n), so h = n — 1. Now
Euler’s theorem implies that a®™ =1 (mod n). Thus, h = n— 1|¢(n), which in particular means that
n —1 < ¢(n). But since n > 1, we know that ¢(n) is the number of elements in {1,...,n — 1} which
are coprime to n, so ¢(n) < n — 1. Hence ¢(n) =n — 1 and n is coprime to 1,2,...,n — 1. Therefore,
n must be prime.

5. We'll first show that if @ = b (mod p(p — 1)), then a® = b (mod p). If a and b are both equivalent to
0 mod p then a® = b* = 0 (mod p) is clear, since a and b are positive integers. So assume a, and thus
b as well, is coprime to p. Writing b = a + tp(p — 1), we have

(a+tp(p — 1))*Tre=Y
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Now let the period of the sequence be h. From the above proof, h divides p(p — 1). We know that
a® = (a+th)***" (mod p) for all positive integers a,t. If we set a = p and t = 1 we get p? = (p+h)PT"
(mod p), which forces h =0 (mod p). So letting h = kp, we have

a® = (a + tkp)*+t*P = ¢2TP (mod p)

for every pair of positive integers a,t. If we take a to be a primitive root g mod p and again set ¢t = 1,
we get that g*? = 1 (mod p), so p — 1|kp. Furthermore, p — 1|k because ged(p — 1,p) = 1. Therefore,
h = kp is divisible by (p — 1)p. Since h also divides p(p — 1), it follows that h = p(p — 1).

6. We can assume that 0 < a < ¢, otherwise divide out a/q and reset a as the remainder. Now if k is the
order of 10 mod ¢ then ¢|10* — 1, so let 10 — 1 = mq for some positive integer m. Then
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Now note that 0 < am < ¢gm < 10™ — 1. So % has a finite decimal expansion 0.mims - --my
with & digits, and since the decimal expansion of #kq is just that of ¢ but shifted k digits to
the right by adding k zeroes at the beginning, it’s clear that ¢ will have the decimal expansion
0.mq - -mgmy -+ -mEmy---myg -+ . So the smallest period is a divisor of k. To show it’s exactly k,

suppose that a/q = 0.7 ---7ny---npny ---ny, - - -, where h divides k. Multiplying by 10, we get
10%a
q

=71 TN NN N -0

Subtracting off the integer part and replacing a by the remainder of 10'a mod ¢ (which doesn’t change
the fact that (a,q) = 1),

a
7:0n1nhn1nh

If n is the integer with decimal expansion nj ---nj, this equation says a/q = n/(10" — 1). Then
(10" — 1)a = ng, so a(10" — 1) = 0 (mod p). By definition of k, we must have k|h. Therefore k = h,
finishing the proof.
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