18.781 Solutions to Problem Set 5

1. Note that 41 — 1 = 23 . 5. Start with a quadratic nonresidue mod 41, say, 3. Now b =35 =81-3 = —3
(mod 41), which has order exactly 8. (—=3)~! = —14 (mod 41).

Now we calculate a square root of 21. First, check that 21 is a square:
91(41-1)/2 _ 9120 _ 320 520 — _q . 720

—1-4910 = —1.810 = 230

=-220.210=_1.1024

1 (mod 41).

Next, calculate
2110 = 441° = (-10)° = 18 - 18 - (—10)
=324 - (—10) = (-8)(-10)
= -1 (mod 41).
So update
A=(21)/(-3)* =21 -14?
=21-196 =21 - (—9)
=16 (mod 41).

Next, since 16° = 22° = 1 (mod 41), there is no need to modify A and b for this step. We're at the
stage where A°d = 1 (mod 41), so a square root of A is AG+1)/2 = 163 = —4 (mod 41). (Note: we
could have guessed a square root of 16 anyway since it’s a perfect square.) Thus, a square root of 21
is given by (—3)(—4) =12 (mod 41).

Check: 122 = 144 = 21 (mod 41). The other square root of 21 mod 41 is -12.

2. First, observe that (2p — 1)/3 is an integer, and that by Fermat’s Little Theorem
(a(2p—1)/3>3 = g2-!
=a(a?™1)?
=a (mod p).
Since 3 and p — 1 are coprime, this is the unique cube root of a.

3. (a) Since pta, we complete the square:
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Letting y = 2ax + b, the congruence f(x) =0 (mod p) is equivalent to y*> = D (mod p). If p|D
then obviously y = 0 is the only solution, and thus = —b/2a. Else, if p D, then there are either 0
or 2 solutions depending on whether D is or is not a square mod p. Finally, f'(xq) = 2az0+b = o
must be nonzero mod p because its square D is nonzero.

(b) By part (a), 2 = a (mod p) has exactly 1 + (%) solutions mod p. Since f(z) = x? — a satisfies

the criterion of Hensel’s Lemma, every solution mod p lifts to a unique solution mod p°. Hence,
the number of solutions mod p® is 1+ (3) as well.
4. We use the Chinese Remainder Theorem to decompose each congruence into a system of congruences
with factors of the modulus.

(a) We have 118 = 2 -59. Now the congruence 2 = —2 = 0 (mod 2) has a unique solution, and
2?2 = —2 (mod 59) has two solutions because

(3)- ()@ oo

Therefore there are two solutions to the original congruence.

(b) The congruence 22 = —1 (mod 4) has no solutions, so there are no solutions.
(c) We have 365 = 5 - 73. There are two solutions to each of the congruences x? = —1 (mod 5) and
2?2 = —1 (mod 73), so there are 2 - 2 = 4 solutions.

(d) Since 227 is prime, we use quadratic reciprocity:

(&) ()~ ()-o-

So there are two solutions.
(e) We have 789 = 3 - 263. The first congruence, 22 = 267 = 0 (mod 3), has exactly one solution.
The second, 22 = 267 =4 (mod 263), has two solutions. Thus there are two solutions.

5. Assume p is odd, since if p = 2 this is obvious. If we let x = ¢g*, where ¢ is a primitive root mod p,
then we have g% = 16 (mod p). This equation has a solution if and only if

1 = 16P—1)/8cd(®p-1)
= 24p=1)/ged(E:p=1) (o p).

Now if 8t p— 1, then ged(8,p—1) is 2 or 4. It follows that 4(p — 1)/ ged(8,p — 1) is a multiple of p — 1,
so 24(p=1)/ged(8:p=1) = 1 (mod p) by Fermat.

On the other hand, if 8|p — 1, then 2 is a quadratic residue mod p, and thus 24(p—1)/ ged(8:p—1) —
2(P=1)/2 = 1 (mod p).

6. We will argue by contradiction, as in Euclid’s proof. Suppose there are only finitely many such primes,
say, P1,-..,DPn. Let
N=(prpa)? -2

First, note that N is odd becauase the p; are all odd. Also, since p; = 7, we have N > 72 — 2 > 1.
Finally, since odd* =1 (mod 8), N=1—-2=7 (mod 8).

Now N is divisible only by odd primes, and if p is a prime dividing N then (p;---p,)? = 2 (mod p),
SO (%) = 1. Thus p = +1 (mod 8). But not all the primes dividing N can be congruent to 1 mod 8,

as that would force N =1 (mod 8), so there exists some prime p | N congruent to 7 mod 8. However,
p cannot be one of the p;, because

(piy N) = (i (1 pn)* = 2) = (pi,2) = L.

Contradiction.



7. Obviously we need p # 2,5. Then, by quadratic reciprocity,
5)-G)G)-6)6G)
p p) \p p)\5/)"

(2)_ +1 ifp=+1 (mod 8)
p) |—-1 ifp=43 (mod )

We have

and

(p){+1 if p=+3 (mod 8)
5

5 ~1 ifp=+2 (mod 5).
So the product will depend on p mod 40. By direct calculation,

2\ (p\ _ )+l ifp==+1,43,4£9,£13 (mod 40)
p)\5) -1 ifp=+7,+11,+17,419 (mod 40).

8. (a) Clearly we need p # 3, and everything is a square mod 2, so let’s restrict our attention to primes
greater than 3. Then, by quadratic reciprocity,

)=G)G)
= (0= (= (5)
-3

_J+1 ifp=1 (mod 3)
-1 ifp=-1 (mod 3).

So —3 is a quadratic residue mod p if and only if p =2 or p =1 (mod 3).

(b) For primes of the form 3k — 1: Suppose there are finitely many, say, p1,pa,...,pn, with p; = 2.
Then we let N = 3p; ---p, — 1 and argue as in Euclid’s proof. Since N = —1 (mod 3) and N is
odd, N must be divisible by some odd prime equivalent to —1 (mod 3).

For primes of the form 3k +1: Now we use N = (2p1 - - p,)? +3. Then N is odd, and if p| N, then
—3=(2p1---pn)? (mod p) so —3 is a quadratic residue mod p. This implies that p =1 (mod 3),
and again a Euclid-style proof finishes the argument.

9. (a) The congruence y*> = 2% + k (mod p) is equivalent to (y — x)(y + ) = k (mod p). Let z =
y —x,w =1y + x. Note that since p is odd, we can invert this system to solve for z,y:

r=%*= (mod p)
+z

w

y="3% (mod p).

So the number of solutions to y> = 2% + k (mod p) is the same as the number of solutions to
zw = k (mod p). Now we can choose any nonzero value for z and let w = k/z. Therefore there
are exactly p — 1 solutions.

(b) The number of solutions to y? = 22 + k, for a fixed value of z, is 1 + (%) So

=X [ (5] 2 (57)

=1

Thus,




10.

11.

12.

(c) The number of solutions to az? + by? =1 (mod p) is

£l (42) -

x=1

where the last equality follows from part (a).

You should observe that for primes congruent to 1 mod 4, R = N, whereas for primes congruent to 3
mod 4, R > N. When p =1 (mod 4), R = N follows easily from observing that if z is a quadratic
residue then so is p — x, so the number of quadratic residues in {1, ..., prl} must be %, exactly half
of the total number of quadratic residues. When p = 3 (mod 4), no elementary proof that R > N is
known. (The known proof uses L-functions and Dirichlet’s class number formula.)

First, it’s easy to see that all the quadratic residues must lie in S7, because for all z € {1,...,p — 1},
x lies in the same set as itself, so 22 lies in S;. Since S5 is nonempty it must contain some quadratic
nonresidue u (mod p). Moreover, the 5% elements in the set {ur : r a quadratic residue} must all lie
in S5 because u € So and r € S;. We’ve now exhausted all the nonzero residue classes of p, so S;

contains all the residues and S, all the nonresidues.

(a) Note that ws; (i) = 7(s;(2)) = 7(i+1), ws;(i+1) = 7(s;(i4+1)) = w(i), and for j # i,7+ 1 we have
wsi(7) = 7(si(j)) = w(j). Now if j, k & {i,7 + 1} then 7(j) = ws;(j) and w(k) = 7ws;(k) so (j, k) is
an inversion of 7 if and only if it is an inversion of ms;. So the changes in inversions happen in
one of the following three cases:

Case L (i,i+1)

Case II: (j,4) or (j,7+ 1), where j <1

Case III: (i,k) or (i + 1,k), where k > i+ 1.

Now for case II, we see that (j,7) is an inversion of 7 if and only if (j,7 + 1) is an inversion of
ms;, and (4,7 + 1) is an inversion of 7 if and only if (j,¢) is an inversion of 7s;. So the total
number of inversions in case II doesn’t change between 7 and 7s;. Similarly, the total number of
inversions doesn’t change in Case IIL. Case I only involves one pair (4,74 1), and thus the number
of inversions changes by exactly £1.

(b) We use proof by induction on the number of inversions in the permutation 7. If 7 has no inversions
then = must be the identity, and is thus an empty product of transpositions. So assume 7 has
k inversions, and we’ve proved the result for all permutations with fewer than &k inversions. Let
(i,7+ 1) be an inversion of . Then ms; has one fewer inversion, so by the inductive hypothesis,
TS; = 84,84, 8, is a product of transpositions. Since s? = 1, we have that 7 = ms? = s;, - - - 5.8
is also a product of transpositions, completing the induction.

(¢) It’s enough to show that sign(ws;) = sign(7)sign(s;) for any transposition s; and permutation 7.
Once we do this, it follows by induction that

sign(s;, -+-s;.) = sign(s;,) - -sign(s;. ) = (=1)",

soif m =g ---s;, and 0 = s4,---5j,, then oo = s, ---8;,85, - - §;, and hence sign(m o o) =

(—1)"** = sign(m)sign(o).

t



Now by part (a), the number of inversions of 7s; is the number of inversions of 7 plus or minus
1. So if we define f(p) to be the number of inversions of a permutation p, then

Sign(ﬂsi) — (_1)f(7f5i)
= (_1)f(‘ff)(_1):tl
= sign(7)sign(s;).

The proof is by induction on k. For the base case k = 2, we have the transposition 7 = (ab)
where we can assume without loss of generality that a < b. Now the number of inversions is
2(b —a — 1) + 1, which is odd, so sign(r) = —1 = (—1)?~%.
Next, consider an arbitrary k-cycle 1 = (aj---ag). Since 7 = (a1 ---ag—1)(ax—1ax), by the
inductive hypothesis

sign(r) = (1) 7(=1) = (-1 .

This completes the induction. Therefore, for a disjoint product of cycles, the sign is (—1)™, where
m is the number of even-length cycles.
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