18.781 Solutions to Problem Set 6

n
1. Since both sides are positive, it’s enough to show their squares are the same. Now H d= H 7 SO
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2. For a prime power p¢, we have

on(p®) = 14+p" + - +p,

which is odd if and only if p = 2 or e is even. So if n = pi* - - pt, then

or(n) = Hffk(P?)

is odd if and only if all the odd primes dividing n divide it to an even power, i.e., n is a square or twice
a square.

3. Suppose g = ged(a,b) > 1, and let S(n) = {d € N : d|n} be the set of all positive divisors of n. We have
a function ¢ : S(a) x S(b) — S(ab) given by ¢(d,e) = de. The map ¢ is surjective, but not injective,
because ¢(g,1) = ¢(1,g). So
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z€S(ab)

< Y e
teS(a)xS(b)

(] (s
dla elb

= oi(a)o(b).

Similarly, d(ab) < d(a)d(b) just says |S(ab)| < |S(a)||S(b)|, which is obvious from the fact that ¢ is
surjective but not injective, or from noting that d(n) = oo(n).

4. (a) If 2™ — 1 is prime then (2™ — 1) = 2™. Since ¢(2™7!) = 1+ 24 --- +2m71 = 2m — 1 if
n =2m"1(2™ — 1), then we have

o(n) =c2™ He(2™ - 1) = (2™ — 1)2™ = 2n.

So n is perfect.



(b) Suppose n is perfect and even. Write n = 2"s where r > 1 and s is odd. It’s easy to rule out
s =1, so we'll assume s > 1. Then o(n) = (2"t! — 1)o(s) must equal 2n = 2"+1s. So 2"+! — 1
divides 2"1s, and since ged(2"t1 — 1,2"+1) = 1, we have 2"t — 1 | s.

Now if s > 271 — 1, then s has at least the three divisors 1, s, and s/(2"*! —1), which are distinct

because r > 1. Thus
1 or+1

so (271 —1)o(s) > 2715, contradiction. Therefore we must have s = 2”1 — 1, and o(s) = 2" 1.
But s = 2"t! — 1 has at least the two divisors 1 and s, which sum to 2"t! already. So the only
possibility is that these are the only two divisors of s, i.e., s is prime.

5. The function Q(n) is the number of primes dividing n, with multiplicity, so Q(mn) = Q(m) + Q(n)
for any m,n. Hence A(n) is totally multiplicative, and Z)\(d) is multiplicative (but not totally
d|n
multiplicative). For prime powers p®,
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So for n = pi* -+ pgr, Z A(d) will be 0 if any of the e; are odd, and 1 if all of the e; are even (which
d|

occurs precisely when n is a perfect square).

6. Both sides are multiplicative, so it’s enough to show the equality for prime powers p®. Since 13 +--- +
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7. (a) This is just a multiplicative version of the Mdbius inversion formula. To prove it we use the fact

that
1 fn=1
d =
;M() {0 if n> 1. (*)
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where m = n/e. By (x), this expression is simply f(n).
(b) Writing this equation as

Z(a,n):l a _ (d! )#(n/d)
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we see that by part (a) it’s enough to show that

where

is the left-hand side.
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Now % is the product over x € {1,...,n} of £. For any such z, let g = ged(z,n). Then the
fraction £ is reduced to %. Conversely, for any divisor n’ of n and any 2’ € {1,...,n’} coprime
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to n’, we have fl—; = where 2'n/n’ € {1,...,n} has ged exactly g = n/n’ with n. Therefore,
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which is what we set out to prove.

(a) We have

mS ns
m>1 n>1
_ Z f(m)g(n)
m,n>1 (mn)é 7
which, when recast as a sum over mn = k, becomes
2o S (m)g(k/m)
S S = (v g.s).

k>1



(b) First suppose f has an inverse g = f~!. Then
(fx9)(1) = f(1)g(1) =1,

so f(1) #0.
Conversely, when f(1) # 0, we will construct a function g such that f % g = 1. First set g(1) =
f(1)~t, which is forced as above. Now we will define g(n) for all n, by induction on n. The base
case n = 1 is done. Suppose g(n) has been defined for all n less than k. Then we have
0=1(k)
= (f*9)(k)

= f(d)g(k/d)
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+ Y f(d)glk/d).
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All the g(k/d) for d > 1 have been defined, by the inductive hypothesis, so we can solve this
equation uniquely for g(k). This completes the induction. By construction, f x g = 1, and by
commutativity of x we also have g *x f = 1.

(a) This is a standard proof by induction.
(b) Splitting the integers from 1 through n by their ged d with n, we get

ijQ:Z > 7

din (j,n)=d

= d*S(n/d)
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(¢) Note that

Therefore,

and Mobius inversion gives

(d) Since the LHS and RHS are both multiplicative, it’s enough to show equality for prime powers

p¢. In this case
> du(d) =
d|pe

and




(e) As shown in part (c),

" =g Ty @)+ g S
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Now, for any n, Z,u(d)% = ¢(n). Also, Zu(d) =1(n). So when n > 1, we get
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10. (a) This follows from the Multiplicative version of M&bius inversion, using f(n) = ®,(z) and 2" —1 =

[[®n(z) = F(n).
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(b) F(n) is the sum of the roots of the polynomial 2™ —1, so it’s equal to the negative of the coefficient

of 2"~ 1 in " — 1. Therefore
0 if 1
OEE S
1 ifn=1.

(¢) Since

H‘I)d(x) =a" -1,
d|n
the sum of the roots of the polynomial " — 1 is
F(n) =Y f(d),
d|n

where

f(d): En: e27ria/n

a=1
(a,n)=1

is the sum of the roots of ®,4(x). Therefore, f « U = 1, so by Mé&bius inversion f = p.
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