18.781 Solutions to Problem Set &

1. We know that
(1+z)" = Z (Z)xk

Now we plug in z = 1,w,w? and add the three equations. If 3 { k& then we’ll get a contribution of
1F + wk + w? =1 + w + w? = 0, whereas if 3 | k we'll get a contribution of 1% + 1% + 1% = 3. So

Z(n) _ 14D+ (14w + (1 +w?)"
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(2"+2)/3 ifn=0 (mod6)
_J(@2"=2)/3 ifn=3 (mod6)
)@ —1)/3 ifn=24 (mod6)’
2"+1)/3 ifn=1,5 (mod 6)
2. We have
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which is the exponential generating function of {aj,as, ... }.

3. Since ¢, is n! times the coefficient of 2" in A(z)B(z),
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4. By part (a), £ E(z) is the exponential generating function for the sequence {r,r%,r3,...}. It follows
that E'(x) = rE(x). Since E(0) = 1, solving the differential equation, we get

T‘nxn T
E(x):z =

n>0

5. (a) In gp, z/(exp(x) — 1) gives the sequence of B, /n!, from which we deduce
n|0] 1]2[3] 4[5] 6[7] 8|9]10
Bull] 31510l -3[0[m[0]-5][0
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(b) First, note that

Fa) — fe)y = 3 2o
n odd
On the other hand,
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So for n > 3 odd, B, = 0.
(¢) Multiplying both sides of the defining equation by e* — 1, we have

For n > 2, the coefficient of z" is

k=0
(d) We have
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Therefore,

(a) If m = a® 4+ b% and n = % + d?, then
mn = (a® 4+ b*)(c? + d*) = (ac — bd)? + (ad — bc)*.
Now if p = 1 (mod 4) then p is a sum of two squares (shown in class). If p = 3 (mod 4) then

q®> = ¢ + 02 is a sum of two squares. Finally, 2 = 12 4+ 12 is a sum of two squares. So any integer
of the given form is a sum of two squares.



(b)

We want to use induction on n. Assume we have shown that for all integers less than n which
are sums of two squares, every prime p = 3 (mod 4) dividing such an integer divides it to an
even power. Now suppose n = a? + b and let ¢ = 3 (mod 4) be a prime dividing n (if there is
no such prime, we are done). We claim that ¢ divides a and b. Otherwise, say without loss of
generality that ¢ 1 b. Since a? +b?> =n =0 (mod ¢), we must have (ab~1)?> = —1 (mod ¢), which
is impossible. This shows that ¢ | a,b.

Now write a = a’q and b = b'q, so that n = ¢%(a’? + b'?). Letting m = a’? + b'?, by the inductive
hypothesis it follows that m is divisible by primes congruent to 3 mod 4 to even powers. Since
n = ¢*m, n satisfies the same property. With the trivial base case n = 1, the induction is
complete.

One direction is obvious: if n is a sum of two integer squares, then it’s a sum of two rational
squares. Suppose now that n is a sum of two rational squares o? and 3%. Taking the common
denominator, we write a = a/d, 3 = b/d. Then a® + b* = nd>.

Now if we consider any prime ¢ = 3 (mod 4) then ¢ divides a® + b? an even number of times.
Obviously g also divides d? an even number of times. Therefore, ¢ divides n an even number of
times, so n is of the form mentioned in part (b), and is thus a sum of two integer squares.

We have
23 -1
D3(x) = o =2 +2+1.
Hence w? = —w — 1. Now for any complex number a + bw,

la + bw|* = (a + bw)(a + bw)
= (a4 bw)(a + bw?)
=a® + b + ab(w + w?)
=a®—ab+ b
Soif M =a? —ab+b* = |a+ bw|? and N = ¢? — ed + d? = |d + cw|?, then

MN = |(a+ bw)(d + cw)|?
= |ad + bew? + (ac + bd)wl|?
= |ad + be(—w — 1) + (ac + bd)w|?
= (ad — be)? — (ad — be)(ac + bd — be) + (ac 4 bd — be)?
is of the same form.

Suppose p =2 (mod 3) and p = a? — ab+ b*. Then p{a or p1{b, since otherwise p = a? — ab + b?
would be divisible by p?. In fact, if p|a then p = a® — ab + b* implies p|b?, so p|b as well. Thus, p
divides neither a nor b. Anyway, (2a — b)? + 3b> = 4(a® — ab+ b?) =0 (mod p), so

<2ab— b>2 = 3 (mod p).

Therefore, —3 is a square mod p. But we’ve shown before (using quadratic reciprocity) that —3
is a square mod p if and only if p =3 or p = —1 (mod 3), contradiction.

For p = 3, we have trivially 3 =12 — (1)(—1) + (-1)2.

Now suppose p = 1 (mod 3). We’'ll prove by induction on p that p is of the form a? — ab + b.
Assume we have proven this statement for primes less than p. (We can take as our base case
7=3%-(3)(1)+12)

We know —3 is a square mod p, so let  be the solution to 22 = —3 (mod p), and write z = 2y — 1
for some y. Then y satisfies y> —y +1 =0 (mod p). We can take |y| < p/2, so

2

yQ—y+1<pZ—|—g+1<p2.



Hence y? — y + 1 = np for some n < p, and we have in addition that n > 0 since y? —y + 1 =
(y—1/2)*+3/4 > 0.

Now let m be the smallest positive integer such that mp can be written in the form a? — ab + b2.
Note that by the above proof m < p, and if m = 1 then we are done.

Assume, for the sake of contradiction, that m > 1. Let mp = a? — ab + b2. We may assume that
g = ged(a,b) = 1, else g?|m and thus we can divide a and b by g to reduce m to m/g?. Now let [
be a prime dividing m. Then [t a or [ 1 b; say I {b. As in Problem 7, we have

(Qab b)2 — 3 (mod 1),

sol=3orl=1 (mod 3).

First, suppose [ = 3. Then we have a? — ab + > = 0 (mod 3). Since 3 cannot divide both a and
b, it can be easily checked that the only possibility is that ¢ = 1 (mod 3) and b = —1 (mod 3)
(or vice versa). Then

a+b 2 a+b 2a — b 2a —b\?> a? —ab+ b2 m
. + _ Ao _(my,
3 3 3 3 3 3

so we have a smaller multiple of p, contradiction.

Therefore we must have [ > 3. Then 22 — 2 +1 =0 (mod [) for z = ab~! (mod l). Also, since
I < m < p, by the inductive hypothesis [ is of the form [ = ¢ — cd + d?. Again, we can assume
that [ 1d, soy> —y+1=0 (mod () for y = cd*.

Now 22 —2+1=y?> —y+1 (mod [), so

(z—y)lza+y—1)=0 (modI).

Thus either z =y (mod I) or z =1—y (mod [). In the second case, replacing (¢, d) by (d—¢,d),
we note that

(d=c)?—(d=c)d+d*=d*—cd+c* =1
and (d —c)d™! =1 —cd ! = 1—y, so we may assume that * = y (mod [). It follows that
ab='=cd™! (mod ), sol|ad— be.
Now we showed in Problem 7 that

(a® —ab+ b*)(¢® — cd + d*) = (ad — be)? — (ad — be)(ac + bd — be) + (ac + bd — be)?.

The LHS and the first two terms of the RHS are divisible by {. Thus, Il|ad 4+ bd — bc. Writing
ad — bc = xl and ac + bd — bc = yl, we now have

(mp)(1) = 221> — xyl® + y*1%

So

m
(T)p:zz—:ry+y27

showing that m is not minimal, contradiction.

Therefore every prime p = 1 (mod 3) can be written in the form a? — ab + b2

One direction is easy: suppose n is positive and every prime ¢ = 2 (mod 3) divides n to an even
power. We showed that 3 and primes p = 1 (mod 3) are of the form a? — ab + b. And for ¢ = 2
(mod 3), we have trivially that ¢ = ¢ — ¢ - 0 + 02 is also of this form. Since the set of numbers
of the form a? — ab+ b? is closed under multiplication, it follows that n is of the form a? — ab+ b?
for some integers a, b.

To prove the converse, we first note that if n = a® — ab + b? then

o ()0



(We will exclude the case a = b =n = 0.) We now proceed with induction on n. The base case
1=1%2—-1-0+ 02 is obvious.
Suppose ¢ = 2 (mod 3) divides 4n. We claim that ¢ | a,b. Otherwise, without loss of generality,

assume that ¢ {b. Then
2 —b\*
b =-3 (mod q),

showing that —3 is a square mod ¢, which is impossible. So we can write a = a’q,b = b’q, and
thus n = ¢?(a’? — a’b’ + v'?). By the inductive hypothesis, ¢ divides a’? — a’b’ + b2 to an even
power, so it divides n to an even power as well. This completes the induction.

9. Computing,

6157 . 676
783 783

1
= 7 _—
7837676

=7+
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1 -
+ 676
1

1
* 6767107

1

6 +

1
3 R
345

=7,1,6,3,34/5]
= [7’ ]‘?6? 37 67 5/4]
=[7,1,6,3,6,1,4].



Next,

V15=3++15-3
6

V15+3

1
(3+/15)/6

3+ !
B V15 —3
Lt ——

=3+ !
B 1

MV —9)

1
1
1+\/ﬁ+3
1
1
1+76+\/ﬁ—3
=[3,1,6,1,...]
- [3.76].

—3+

10. Taking the log of both sides,

2
log sin z :logz+210g <1 — j 2) .
n2m

n>1
Differentiating,
1 — %
cot z = ,+2722 )
z 1- n2m2
SO
52
zeotz=1+2 _—
+2) 5
2
z 1
2 2 \ Kk
z z
=1-2 —_—
=P NC=
k>0
52k
- 1_222 n2kr2k’
n>1k>1

On the other hand, we have

T z"
er 1 ZBTW’



and plugging in z = 2iz,

(2iz)"  2iz
ZBT rl 0 e2iz _ 1
—iz

2ize
62’2 _ efiz

2iz(cos z — isin z)

2isin 2
= zcotz — 2.
Taking the real part of this equation, we get
zcotz =
r>0
T even
k22k:
k>0
By 2%k
—1_ 1)1 52k
2 U T
k>1

Equating the two expressions, and taking the coefficient of z2*

B 2
k—1 2k
(-1) - D

n>1

So we conclude that
221971

(2k)! o

(R =Y = (-1 By

n>1
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