
18.781 Solutions to Problem Set 8

1. We know that

(1 + x)n =

(
n

k

)
xk.

Now we plug in x = 1, ω, ω2 and add the three equations.

∑
If 3 - k then we’ll get a contribution of

1k + ωk + ω2k = 1 + ω + ω2 = 0, whereas if 3 | k we’ll get a contribution of 1k + 1k + 1k = 3. So∑(
n
)

(1 + 1)n + (1 + ω)n + (1 + ω2)n
=

3k 3

2n + (
=

−ω2)n + (−ω)n

3

(2n + 2)/3 if n ≡ 0 (mod 6)

(2n 2)/3 if n 3 (mod 6)
=

 − ≡

 .
(2n

n

− 1)/3 if n ≡ 2, 4 (mod 6)

(2 + 1)/3 if n ≡ 1, 5 (mod 6)

2. We have

d d˜(A(x)) =
dx dx


n

∑ xn
an

n!
≥0


∑ nxn−1


= an

n!
n≥1

=
n

∑ xn
an+1 ,

n!
≥0

which is the exponential generating function of {a1, a2, . . . }.
˜3. Since cn is n! times the coefficient xn ˜of in A(x)B(x),

n
k

cn = !
k

∑ a b
n

k!
=0

· n−k

(n− k)!

n

=
∑(

n
)
akbn

k
−k.

k=0

4. By part (a), d E(x) is the exponential generating function for the sequence {r, r2, r3, . . .dx }. It follows
that E′(x) = rE(x). Since E(0) = 1, solving the differential equation, we get

r
E( ) =

∑ nxn
x = erx.

n!
n≥0

5. (a) In gp, x/(exp(x)− 1) gives the sequence of Bn/n!, from which we deduce

n 0 1 2 3 4 5 6 7 8 9 10
B 1 − 1 1 0 − 1 0 1 1
n 02 6 30 42 − 0 5

30 66
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(b) First, note that

f(x)− f(−x) =
n

∑ 2Bn
xn.

n!
odd

On the other hand,

x
f(x)− f(−x) =

ex
−x

− 1
−
e−x 1

x xex
−

= +
ex − 1 1 ex

x
−

x(1− e )
=

ex − 1

= −x.

So for n ≥ 3 odd, Bn = 0.

(c) Multiplying both sides of the defining equation by ex − 1, we have

x =

 xn xn
Bn .

n! n!
n

∑
≥0

(
n>

∑
0

)

For n ≥ 2, the coefficient of xn is


n−1

0 =
k

∑
=0

(
n

k

)
Bk.

(d) We have

∑ xk k

Sk(n) = (1k + 2k + + nk
x

)
k! k!

k

·
≥0 k

∑
≥0

· ·

= ex + e2x +
nx

· · ·+ enx

1
ex

e
=

−·
ex − 1

enx − 1 x
=

−
x

·
e−x − 1

=

(∑∞ nl+1 ∑∞ B− m
xl

)(
( 1)m xm

(l + 1)! m!
l=0 m=0

)
.

Therefore,

k
nk−m+1 B

S m m
k(n) = k! ( 1)

(k m+ 1)! m!
m

∑
=0

· −
−

k
1 +

=
∑(

k 1
)

(−1)mB k
mn

+1−m.
k + 1 m

m=0

6. (a) If m = a2 + b2 and n = c2 + d2, then

mn = (a2 + b2)(c2 + d2) = (ac− bd)2 + (ad− bc)2.

Now if p ≡ 1 (mod 4) then p is a sum of two squares (shown in class). If p
2 2 2 2 2

≡ 3 (mod 4) then
q = q + 0 is a sum of two squares. Finally, 2 = 1 + 1 is a sum of two squares. So any integer
of the given form is a sum of two squares.

2



(b) We want to use induction on n. Assume we have shown that for all integers less than n which
are sums of two squares, every prime p ≡ 3 (mod 4) dividing such an integer divides it to an
even power. Now suppose n = a2 + b2 and let q ≡ 3 (mod 4) be a prime dividing n (if there is
no such prime, we are done). We claim that q divides a and b. Otherwise, say without loss of
generality that q - b. Since a2 + b2 = n ≡ 0 (mod q), we must have (ab−1)2 ≡ −1 (mod q), which
is impossible. This shows that q | a, b.
Now write a = a′q and b = b′q, so that n = q2(a′2 + b′2). Letting m = a′2 + b′2, by the inductive
hypothesis it follows that m is divisible by primes congruent to 3 mod 4 to even powers. Since
n = q2m, n satisfies the same property. With the trivial base case n = 1, the induction is
complete.

(c) One direction is obvious: if n is a sum of two integer squares, then it’s a sum of two rational
squares. Suppose now that n is a sum of two rational squares α2 and β2. Taking the common
denominator, we write α = a/d, β = b/d. Then a2 + b2 = nd2.

Now if we consider any prime q ≡ 3 (mod 4) then q divides a2 + b2 an even number of times.
Obviously q also divides d2 an even number of times. Therefore, q divides n an even number of
times, so n is of the form mentioned in part (b), and is thus a sum of two integer squares.

7. (a) We have
x3 1

Φ3(x) =
−

= x2 + x+ 1.
x− 1

Hence ω2 = −ω − 1. Now for any complex number a+ bω,

|a+ bω|2 = (a+ bω)(a+ bω)

= (a+ bω)(a+ bω2)

= a2 + b2 + ab(ω + ω2)

= a2 − ab+ b2.

So if M = a2 − ab+ b2 = |a+ bω|2 and N = c2 − cd+ d2 = |d+ cω|2, then

MN = |(a+ bω)(d+ cω)|2

= |ad+ bcω2 + (ac+ bd)ω|2

= |ad+ bc(−ω
2

− 1) + (ac+ bd)ω|2

= (ad− bc) − (ad− bc)(ac+ bd− bc) + (ac+ bd− bc)2

is of the same form.

(b) Suppose p ≡ 2 (mod 3) and p = a2 − ab+ b2. Then p - a or p - b, since otherwise p = a2 − ab+ b2

would be divisible by p2. In fact, if p|a then p = a2 − ab+ b2 implies p|b2, so p|b as well. Thus, p
divides neither a nor b. Anyway, (2a− b)2 + 3b2 = 4(a2 − ab+ b2) ≡ 0 (mod p), so(

2a− b
)2

≡ −3 (mod p).
b

Therefore, −3 is a square mod p. But we’ve shown before (using quadratic reciprocity) that −3
is a square mod p if and only if p = 3 or p ≡ −1 (mod 3), contradiction.

8. (a) For p = 3, we have trivially 3 = 12 − (1)(−1) + (−1)2.

Now suppose p ≡ 1 (mod 3). We’ll prove by induction on p that p is of the form a2 − ab + b2.
Assume we have proven this statement for primes less than p. (We can take as our base case
7 = 32 − (3)(1) + 12.)

We know −3 is a square mod p, so let x be the solution to x2
2

≡ −3 (mod p), and write x = 2y−1
for some y. Then y satisfies y − y + 1 ≡ 0 (mod p). We can take |y| < p/2, so

y2
p2 p− y + 1 < + + 1 < p2.
4 2
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Hence y2 − y + 1 = np for some n < p, and we have in addition that n > 0 since y2
2

− y + 1 =
(y − 1/2) + 3/4 > 0.

Now let m be the smallest positive integer such that mp can be written in the form a2 − ab+ b2.
Note that by the above proof m < p, and if m = 1 then we are done.

Assume, for the sake of contradiction, that m > 1. Let mp = a2 − ab+ b2. We may assume that
g = gcd(a, b) = 1, else g2|m and thus we can divide a and b by g to reduce m to m/g2. Now let l
be a prime dividing m. Then l - a or l - b; say l - b. As in Problem 7, we have(

2a− b
)2

≡ −3 (mod l),
b

so l = 3 or l ≡ 1 (mod 3).

First, suppose l = 3. Then we have a2 − ab+ b2 ≡ 0 (mod 3). Since 3 cannot divide both a and
b, it can be easily checked that the only possibility is that a ≡ 1 (mod 3) and b ≡ −1 (mod 3)
(or vice versa). Then( 2 2

a+ b
)
−
(
a+ b 2a− b 2a − b2 m

+
− b a2 ab+

= = p,
3 3

)(
3

) (
3

)
3

(
3

)
so we have a smaller multiple of p, contradiction.

Therefore we must have l > 3. Then x2 − x + 1 ≡ 0 (mod l) for x ≡ ab−1 (mod l). Also, since
l ≤ m < p, by the inductive hypothesis l is of the form l = c2 − cd + d2. Again, we can assume
that l - d, so y2 − y + 1 ≡ 0 (mod l) for y ≡ cd−1.
Now x2 − x+ 1 ≡ y2 − y + 1 (mod l), so

(x− y)(x+ y − 1) ≡ 0 (mod l).

Thus either x ≡ y (mod l) or x ≡ 1− y (mod l). In the second case, replacing (c, d) by (d− c, d),
we note that

(d− c)2 − (d− c)d+ d2 = d2 − cd+ c2 = l

and (d c)d−1 = 1 cd−1 = 1 y, so we may assume that x y (mod l). It follows that
ab−1

− − − ≡
≡ cd−1 (mod l), so l | ad− bc.

Now we showed in Problem 7 that

(a2 − ab+ b2)(c2 − cd+ d2) = (ad− bc)2 − (ad− bc)(ac+ bd− bc) + (ac+ bd− bc)2.

The LHS and the first two terms of the RHS are divisible by l. Thus, l|ad + bd − bc. Writing
ad− bc = xl and ac+ bd− bc = yl, we now have

(mp)(l) = x2l2 − xyl2 + y2l2.

So
m

p = x2
l

− xy + y2,

showing that m is not minimal, contradiction.

( )
Therefore every prime p ≡ 1 (mod 3) can be written in the form a2 − ab+ b2.

(b) One direction is easy: suppose n is positive and every prime q ≡ 2 (mod 3) divides n to an even
power. We showed that 3 and primes p ≡ 1 (mod 3) are of the form a2 − ab+ b2. And for q

2 2 2
≡ 2

(mod 3), we have trivially that q = q − q · 0 + 0 is also of this form. Since the set of numbers
of the form a2− ab+ b2 is closed under multiplication, it follows that n is of the form a2− ab+ b2

for some integers a, b.

To prove the converse, we first note that if n = a2 − ab+ b2 then

n =

(
b

a−
2

)2

+

(
b

2

)2

> 0.
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(We will exclude the case a = b = n = 0.) We now proceed with induction on n. The base case
1 = 12 − 1 · 0 + 02 is obvious.

Suppose q ≡ 2 (mod 3) divides 4n. We claim that q | a, b. Otherwise, without loss of generality,
assume that q - b. Then (

2a− 2
b

3 (mod q),
b

)
≡ −

showing that −3 is a square mod q, which is impossible. So we can write a = a′q, b = b′q, and
thus n = q2(a′2 − a′b′ + b′2). By the inductive hypothesis, q divides a′2 − a′b′ + b′2 to an even
power, so it divides n to an even power as well. This completes the induction.

9. Computing,

6157 676
= 7 +

783 783
1

= 7 +
783/676

1
= 7 +

107
1 +

676
1

= 7 +
1

1 +
676/107

1
= 7 +

1
1 +

34
6 +

107
1

= 7 +
1

1 +
1

6 +
107/34

1
= 7 +

1
1 +

1
6 +

5
3 +

34
1

= 7 +
1

1 +
1

6 +
1

3 +
34/5

= [7, 1, 6, 3, 34/5]

= [7, 1, 6, 3, 6, 5/4]

= [7, 1, 6, 3, 6, 1, 4] .
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Next,

√
15 = 3 +

√
15− 3

6
= 3 + √

15 + 3
1

= 3 +
(3 +

√
15)/6

1
= 3 + √

15 3
1 +

−
6
1

= 3 +
1

1 +
6/(
√

15− 3)

1
= 3 +

1
1 + √

15 + 3

1
= 3 +

1
1 +

6 +
√

15− 3

= [3, 1, 6,

=

Taking the log of sides,

[
3, 1, 6

10. both

]1, . . . ]
.

log sin z = log z +
∑ z2

log 1
n 1

(
−
n2π2

≥

)
.

Differentiating,
1 2z

cot z = +
z

∑ −n2π2

1− z2
,

n2π2

so

z cot z = 1 + 2
∑ z2

z2 − n(2π2

= 1− 2
∑ z2 1

n2π2 1− z2

n2π2

)
∑ ∑( )k

z2
= 1− 2

n2 2
 z2

π n2π2
k≥0


= 1− 2

∑∑ z2k
.

n2kπ2k
n≥1 k≥1

On the other hand, we have
x

=
ex − 1

∑ xr
Br ,

r!
r≥0
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and plugging in x = 2iz, ∑ (2iz)r 2iz
Br =

r! e2iz − 1

2ize−iz
=
eiz − e−iz
2iz(cos z

=
− i sin z)

2i sin z
= z cot z − iz.

Taking the real part of this equation, we get

z cot z =
∑ (2i)r

B zrr
r!

r≥0
r even

=
∑ (

B2k
−1)k22k

z2k
(2k)!

k≥0

B2k22k
= 1−

∑
( 1)k−1

k≥1

− z2k.
(2k)!

Equating the two expressions, and taking the coefficient of z2k,

k22kk 1B2 2 1
(−1) − =

(2k)! π2k
n

∑
.

n2k
≥1

So we conclude that

ζ(2k) =
n

∑ 1 1

= ( 2
n2k

−1)k−1
22k−

B k π2k.
(2k)!

≥1
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