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1. We have
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Now as n — oo we’ve shown that ¢, — co. So
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2. Using n + 1 instead of n in Problem 1, we have
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since x,1+1 > 1. We need to show that the RHS is greater than 1/g,42. Now z,4+1 < apy1 + 1, so
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and since ¢n41 = Anqn + gn_1 > gn, we get
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3. (a) Proceed by contradiction, assuming that b < ¢,4+1 and |bx — a| < |g,z — pp|. As in the hint,
we write the vector (a,b) as an integer linear combination of (p,,¢,) and (pn+t1,¢n+1). This is
possible because the matrix with rows (p,, ¢,) and (pn11,¢ny1) has determinant (—1)"*! and is
therefore invertible with the inverse having integer entries. So there are integers y, z such that

a4 = YDPn + ZPn+1

b=yaqn + 2Gn+1
First let’s make sure that y and z are nonzero. If y = 0 then b = z¢,,1, which is impossible since
0 <b< gpt1. If 2z =0 then
bx — a| = |yl|lzgn — pnl > |2Gn — pul,

contradicting the assumption that |xb — a| < |xg, — pn|. So both y and z are nonzero.
Next, we’ll show that they have opposite signs. If z > 0 then

Ydn = b_ZQn-‘rl < b_Qn-‘rl < 0;

so y < 0, and if z < 0 then
Yqn = b — 2Gn41 > 0,

so y > 0. Finally,

Tb—a= l‘(yqn + zanrl) - (ypn + an+1)
= y(xqn — Pn) + 2(TGny1 — Pri1)

Now we showed that © —p,, /¢, and £ —p,,+1/gn+1 have opposite signs. Since y and z have opposite
signs, y(xq, — pn) and z(x¢n+1 — Pn+1) have the same sign. So

bz — a| = |y(xgn — Pn) + 2(2qn+1 — Pry1)|
= |yllzgn — pnl + 12||2¢n+1 — Prgal

contradiction.

(b) Suppose 1 <b < ¢q,. Then b < ¢,,+1, so by part (a), |bx — a| > |gnx — pn|. Since 1/b > 1/q,,
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4. Suppose a/b is not a convergent. As in the hint, choose n such that ¢, < b < ¢p4+1. (This is possible
since the ¢; are increasing and go to infinity.) Then
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Now |ag, — bpn| > 1 because by assumption § # Z—:. Hence,

L < ‘GQn - bpn|

bgn bgn
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1 + 1
202 2bq,

This implies that #qn < #, so b < g, contradiction.

5. Problem 4 shows that if p/q satisfies
P 1
= < —, 1
‘¢ q‘ Kg? 0
then p/q is a convergent to ¢, since k > /5 > 2. So it’s enough to show that only finitely many
convergents p,/qn, to ¢ can satisfy this bound.

We showed that the (n — 1)st convergent to ¢ is just Fj,11/F,. So suppose
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Now, we claim that
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From this statement it would then follow that for some sufficiently large N,

Fn+1
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for all n > N. Then the only solutions to (*) occur when n < N, and thus there are finitely many such
convergents.

Now let a and 3 be the roots of 22 —x — 1 = 0, with ¢ = a > . Since F,, = (a" — ") /(a — f3),
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We know that 32" — 0 as n — oo because || < 1. It follows that the magnitude of the RHS approaches
1/4/5, and we are done.

6. (a) Since i is the largest integer such that ¢; < /p, we have \/p < g;41. So

1 1

pi u
<
qi%i+1  Gi\/P

g P

Multiplying by pg;, we get the desired bound |p;p — ug;| < \/p.



(b)

We have © = ¢; < /p, and by part (a), [y| = |pip — ugi| < /P, so 2® +y* < p+p = 2p. Moreover,

o® +y? = ¢} +u’q]
= (u* +1)q}
=0 (mod p).

Clearly, 2 + y* > 0, since * = ¢; > 0. The only multiple of p in (0,2p) is p, so we must have
2 2
x° +y° =p.

7. We need to find all ¢ such that z = (v/d 4+ |Vd])/c > 1 and its conjugate =’ = (—v/d + [Vd])/c lies
between 0 and —1. The second condition is automatic since the numerator is always between 0 and
—1, and c is a positive integer. The first condition holds for all positive integers ¢ < 2L\/3j

8.

9.

(a)

(a)

Consider the fractional part {iz} of ix as ¢ ranges from 0 through N. Since z is irrational, each
{iz} is a distinct number in the range [0, 1). In fact, we’ll want to wrap the interval into a circle.
Consider the N +1 segments that the circle is broken up into by the {iz}. Since the total arclength
of the segments is 1, some segment has length no more than ﬁ What this means is that there
are two integers ,j € {0,1,..., N} such that for some integer a

0<|jz—ix+al <

N+1

Setting ¢ = |i — j| < N and p = a, division by i — j yields

z——| <

0< < ,
q] ~ q(N+1)

P ‘ 1

as desired.

First we pick any N7, and find ¢; < N; such that

1 1
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Then, since x is irrational, we can pick an N5 such that

Again using part (a), there exists ps/ge with ga < N3 such that

P2 1 1 p1
T—=2| < ————— < — < |z — =],
@]~ g@N2+1) Ny T
so p1/q1 is distinct from py /g2, and as before
D2 1 1

r— 22
q2

<— < —.
(N2 +1) g3
Picking N3 with 1/N5 < |z — pa/q2| and continuing this process, we can form an infinite series of
distinct p;/q; such that |z — p;/q;| < 1/¢2.
We have that x = m + % Solving the quadratic equation and taking the positive root, we get

m+vm?+4
—

xr =



(b) We know that p,, = mp,_1 + pn_2, so the characteristic polynomial is 2 — maz — 1 = 0. Thus,

letting
m+vm? +4 _m— vm? +4
2 = 2
be the roots of the characteristic polynomial, p, = Aa™ + Bf™. Using the initial conditions
po/qo = m/1 and py/q1 = (m? + 1)/m, we can solve the linear system of equations to get
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vm?2 44
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So
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Similarly, it can be shown that ¢, = (o™ — 8"1)/(a — ). Therefore,
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(a) Suppose we have proven the inequality for n = 2¥=1. Then

T1 =+ +T'2k—l + T‘2k—1+1 =+ +T2k
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completing the induction.
(b) Let 2871 < n < 2% and append 2¥ — n copies of r = % Then the arithmetic mean of
TlyeeesTnyTyenn, T 1S

T+ 28 —n)r e+ (2F —n)r
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Now part (a) tells us that
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from which it follows that
> Y

Equality holds if and only if ry =ry =+ =1r,.



11. We will first define a particular number z (called Liouville’s number) which will work for any ¢. Choose
exponents e, = n! and let g, = 10°». Note that for all k, ex, < exy1, SO ¢k | gr+1. Now define

1 1 1
r=1+—+—+—4---,
q1 q2 g3

which converges because g, > 10" and the geometric series 1 +1/10+ 1/100 4 - - - converges, and let

1 1
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dn q1 qn
The denominator is exactly g, because each of ¢1,...,q,—1 must divide ¢,. Now
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So we’ll be done if we show that for all large enough n,

2 1
< —.
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Taking logs base 10, this is equivalent to saying that
logip 2+ c(n!) < (n+ 1)},

which is obviously true as soon as n > ¢ + 1, for instance. Thus, for any ¢, there are infinitely many
rational numbers p/q such that
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