
Solutions to practice problems for Midterm 1

1. Find the gcd of 621 and 483.

Solution: We run the Euclidean algorithm:

621 = 1 · 483 + 138

483 = 3 · 138 + 69

138 = 2 · 69.

So gcd(621, 483) = 69.

2. Find a solution of 621m+ 483n = k, where k is the gcd of 621 and 483.

Solution: Building upon problem 1, we extend the table:

1 1 0 621
1 0 1 483
3 1 −1 138

−3 4 69

So −3 · 621 + 4 · 638 = 69, i.e. (m,n) = (−3, 4) works.

3. Calculate 364 modulo 67 by repeated squaring.

Solution: We have

34 = 81 ≡ 14 (mod 67)

38 ≡ 142 = 196 ≡ −5 (mod 67)

316 ≡ 52 ≡ 25 (mod 67)

332 ≡ 252 = 625 ≡ 22 (mod 67)

364 ≡ 222 = 484 ≡ 15 mod 67.

4. Calculate 364 modulo 67 using Fermat’s little theorem.

Solution: We know 366 ≡ 1 (mod 67). So

32 · 364 ≡ 1 (mod 67)

. so we just need to invert 9 mod 67. You can either do this by the Euclidean algorithm, or
by inspection. For example, 67 · 2 + 1 = 135 = 15.9, so it follows that 9−1 ≡ 15 (mod 67).

5. Calculate φ(576).

Solution: The factorization is 576 = 242 = 26 · 32. So φ(576) = 25 · 3 · 2 = 192.

6. Find all the solutions of x3 − x + 1 ≡ 0 (mod 25). Let f(x) = x3 − x + 1. First we find
solutions to f(x) ≡ 0 (mod 5), just by trying all the values of x modulo 5. We see that
x ≡ −2 (mod 5) is the only solution. Now we want to apply Hensel’s lemma. We have
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f ′(x) = 3x2 − 1 and f ′(−2) = 11 ≡ 1 (mod 5). So f ′(−2) = f ′(−2)−1 ≡ 1 (mod 5). Finally,
f(−2) = −5, so the solution modulo 25 is

−2− (−5) · 1 = 3 (mod 2)5.

We check that 33 − 3 + 1 = 25 ≡ 0 (mod 25).

7. Find all solutions of x3 − x+ 1 ≡ 0 (mod 35).

Solution: The idea is to solve it modulo 5 and 7 and then use the Chinese remainder theorem.
The unique solutions modulo 5 and 7 are −2 and 2 , respectively. Also, we have 3 ·5−2 ·7 = 1.
So to combine the solutions, we take

15 · 2 + (−14) · (−2) = 30 + 28 = 58 ≡ 23 (mod 35).

8. Find the smallest integer N such that φ(n) ≥ 5 for all n ≥ N .

Solution: Trying out small values of n, we see that φ(12) = 4 but φ(n) seems to be greater
than 4 for all n ≥ 13. Let’s prove this: suppose n ≥ 11. Let n = peii , so φ(n) =∏

pe −1i

i (pi − 1). Let e be the power of 2 dividing n. If e ≥ 4, then φ(n) ≥

∏
2e−1 ≥ 8. So we

only need to consider e = 0, 1, 2, 3.

If e = 0, then n is odd. If n is prime, then φ(n) = n − 1 ≥ 12. Otherwise, either n will be
divisible by at least two distinct odd primes p and q, in which case φ(n) ≥ (p−1)(q−1) ≥ 2·4 =
8, or n is divisible by p2 for some odd prime p, in which case φ(n) ≥ p(p− 1) ≥ 3(3− 1) = 6.

Next suppose e = 1. Then n = 2m where m is odd and m = n/2 ≥ 7. We have φ(n) = φ(m).
Then if m is prime, φ(n) = m − 1 ≥ 6. Otherwise, the above reasoning (for the e = 0 case)
shows that φ(n) ≥ 6.

Next, the case e = 2. Then n = 4m, with m odd and m = n/4 > 3, so m ≥ 5 since m is an
odd integer. So φ(n) = 2φ(m). As before we show that φ(m) ≥ 4, so φ(n) ≥ 8.

Finally, if e = 3 then n = 8m, with m odd and m = n/8 > 1. So m ≥ 3. Then φ(n) =
4φ(m) = 4 · 2 = 8.

9. Find two positive integers m,n such that φ(mn) = φ(m)φ(n).

Solution: In fact, any two integers which are not coprime will do! For example, m = n = 2
gives φ(m) = φ(n) = 1 and φ(mn) = 2.

10. True or false: two positive integers m,n are coprime if and only if φ(mn) = φ(m)φ(n). Give
a proof or counterexample.

Solution: This is true. Let pi (for i ∈ I) be the common primes dividing both m and n.
Let qj (for j ∈ J) be the primes dividing m but not n, and let rk (for k ∈ K) be the primes
dividing n but not m.

m =
∏

peii
∏

f
q j

j

and
n =

∏
fp i

i

∏
rhk

k .
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Then calculating φ(m), φ(n) and φ(mn) gives

φ(m)φ(n) 1
= 1− .

φ(mn)

∏(
pi

)

Since 1− 1/pi < 1, the only way this product could be 1 is if its is empty, i.e. if there are no
common primes dividing m and n.

11. Give the definition of a reduced residue system modulo n.

12. State and prove the Chinese remainder theorem.

13. Show that (n−1)! ≡ 0 (mod n) for composite n > 4. [Hint: Make sure that your proof works
for the case n = p2, where p is a prime].

Solution: Let p be the smallest prime dividing n. If n = p2 then p and n/p are both less
than n and are distinct. So (n − 1)! is divisible by p(n/p) = n. Now, if n = p2 then since
p > 2 (because n > 4) we see that p and 2p are both less than n. So (n − 1)! is divisible by
p · 2p = 2p2 = 2n and therefore by n.

14. Solve the system of congruences

x ≡ 1 (mod 3)

x ≡ 2 (mod 5)

x ≡ 3 (mod 7)

Solution: We need to apply CRT. We have 3 · 5 = 15 ≡ 1 (mod 7), with inverse 1. Next,
3 · 7 = 21 ≡ 1 (mod 5), with inverse 1. Finally, 5 · 7 = 35 ≡ −1 (mod 3), with inverse −1. So
the solution is

x ≡ 1 · 35 · (−1) + 2 · 21 · 1 + 3 · 15 · 1 = −35 + 42 + 45 = 52 (mod 105).

15. Let n be a positive integer. Show the identity

n∑ (
n

i
i

i=1

)
= n2n−1.

[Hint: differentiate both sides of the Binomial theorem, or manipulate the binomial coeffi-
cients.]

We have (1 + x)n =
∑n

(
n
)
xiSolution: i=0 i
. Differentiating we get

n

n(1 + x)n−1
n

=
∑

i
i=1

(
i

)
xi−1

where the i = 0 term goes away because differentiating a constant gives 0. Now plugging in
x = 1, we get the result.
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16. Calculate the order of 3 modulo 301.

Solution: Note that 301 = 7 · 43. If h1 is the order of 3 mod 7 and h2 is the order of 3
mod 43, then the order of 3 mod 301 will just be the LCM (least common multiple of h1 and
h2). Now, we know by Fermat that 36 ≡ 1 (mod 7). It’s easy to see that 32 and 33 are not
1 modulo 7. So h1 = 6. Also 342 ≡ 1 (mod 43). Since the order divides 42, it either equals
42 or divides 42/p, where p is one of the primes dividing 42, namely 2, 3 or 7. Now it’s easy
to check that 321, 314, 36 are all not 1 mod 43. So h2 = 42. Therefore h2 = 42. Therefore the
order of 3 mod 301 is LCM(6, 42) = 42.
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