18.781 Practice Questions for Midterm 2

Note: The actual exam will be shorter (about 10 of these questions), in case you are timing yourself.

1. Find a primitive root modulo 343 = 73.

Solution: We start with a primitive root modulo 7, for example 3. The proof of existence of
primitive roots modulo p? shows that if g is a primitive root mod p, then there is exactly one
value of t mod p such that g + tp is not a primitive root mod p?, and for this value of t, we
will have (g + tp)?~! =1 (mod p?). So we just compute 3% modulo 49, and see that we get
43 # 1 (mod 49). Therefore, 3 is a primitive root modulo 49. Now the proof of existence of
primitive roots modulo p® showed that if we have a primitive root mod p?, it’s also a primitive
root mod p®. So 3 is a primitive root modulo 343 as well.

2. How many solutions are there to 2! =7 (mod 19)? To ' =6 (mod 19)?

Solution: In general, if p { a, the number of solutions to ¥ = a (mod p) can be calculated as
follows. Let d = ged(k, p—1). Then there are no solutions if a?~1/¢ 2 1 (mod p), and there
are d solutions if a?~1/¢ = 1 (mod p). To see this, let g be a primitive root mod p. Write
a = ¢*. Then any z solving the congruence equals ¢ for some m, and then the congruence
says ¢"F = ¢® (mod p), which is equivalent to mk = b (mod p — 1), since the order of g mod
p is p — 1. Now this is just a linear congruence, and it has exactly 0 or d = ged(k,p — 1)
solutions, according to whether d 1 b or d|b. This latter condition is equivalent to whether or
not p — 1 divides (p — 1)b/d, which is equivalent to whether 1 = g®~1¥/d = (P=1/d (mod p).

For the given examples, compute 7'%/¢ = 73 = 1 (mod 19), so the first congruence has 6
solutions. On the other hand, 63 = 7 (mod 19), so the second congruence has no solutions.

3. Solve the congruence 322 + 4 — 2 =0 (mod 31). Solution: First, we make the congruence
monic by inverting 3 mod 31. Noting that 3-10 = 30 = —1 (mod 31), we see that 3~ = —10.
So

2? — 402 +20=0 (mod 31).

Next, complete the square to see
(r —20)>=20>—20=380=8 (mod 31).

We need to check whether 8 is a square mod 31 and also to compute a square root if it is.

First, check
s\ _(2)_,
31) \31)

To compute a square root, one can use Tonelli’s algorithm. Here, it’s pretty easy since 31 = 3
(mod 4). So a square root of 8 is

QBIH1)/4 _ g8 _ 924 — 16 (mod 31).

So x =20+ 16 (mod 31). i.e x = 4,5 (mod 31) are the two solutions.



4. Characterize all primes p such that 15 is a square modulo p.

Solution: Obviously 15 is a square mod 2,3,5. So suppose p > 5. We compute the Jacobi

(5)- () () -cr ) )

So the answer will depend on p modulo 4 - 15 = 60. Looking at the ¢(60) = 2-2-4 = 16
residue classes mod 60, we see that the RHS is 41 exactly when

p=+1,47,+11,+17 (mod 60).

5. If n is odd, evaluate the Jacobi symbol (n”—_32>

Solution: Using quadratic reciprocity for the Jacobi symbol (noting that one of n and n — 2
must be 1 mod 4, we have

<nn_32> - (ni2> B (nf) B (:12>

which is 1 when n = 1,3 (mod 8) and —1 when n = 5,7 (mod 8).

6. If n = p{'...p¢", how many squares modulo n are there? How many quadratic residues
modulo n are there (i.e. the squares which are coprime to n)?

Solution: For both these questions, we can use the Chinese Remainder theorem. Let’s solve
the second question first. If p is an odd prime, then there are (p — 1)/2 quadratic residues
mod p. For each such quadratic residue a, Hensel’s lemma can be applied to f(z) = 2% —a to
see that a (and anything congruent to @ mod p®) must be a square. Since there are p®~! such
lifts for every choice of a Z 0 (mod p), we see that the number of quadratic residues mod p°
is p¢~Hp—1)/2 = p°(1—1/p)-1/2. If p = 2, then we can use the fact that modulo 2, 4, 8 there
is exactly one quadratic residue (namely 1), and if a is a square mod 8, then it is a square
mod every higher power of 2 (this follows from an extended version of Hensel’s lemma). So
the number of quadratic residues mod 2¢ is : 1 if e < 3 and 2°73 if ¢ > 3. Therefore, the
number of quadratic residues mod n = 2¢[] pi* is, by CRT, equal to

max(1,2°7%) pri_l(pi —1)/2.

Now for the number of squares mod n. The number of squares will again be a product over all
the primes dividing n, of the number of squares mod p;’. Separate out the squares according
to what their ged with p€ is; it must be an even power of p. We get the following: if e is even
then 1 1 1
e—1 P— e—3 P— p—
R T R |
p 5 P oot p ot

(the last term corresponding to 0 being a square mod p¢). The sum equals

P Hp 1) 2 Coeja-tyy 4 P =1 (1-p7°)
(Pt )+1= ; 7 1
_p =1 o p("+1)+2
2(p+1) 2(p+1)



Similarly, if e is odd we get

e—1 p_l e—3 p_l p_l pe+1+2p+1
R T I R [ S M
P p TP g Tt 2(p+ 1)

I’ll leave the calculation for when p = 2 to you. The answer is

2671 4 2671 5
£+ if e is even |, 2t if e is odd.

3 3

. Let p > 3 be a prime. Show that the number of solutions (z, %) of the congruence x2 +y? =
(mod p) is p — (_71)

. The number of solutions is
p—1 9 p—1 2 p—1 2
3—x 3—x —1 -3
+1)=p+ =p—+ —

~((55)+)=-r2(57) -2 (5) (5)
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We showed on homework that for any &, > (xQI;H“ ) = —1. Therefore the expression above

simplifies to p — (%)
. Compute (with justification) the cyclotomic polynomial ®1o(x).

Solution: We start with z'? — 1, factoring it and removing any factors that divide z¢ — 1
for proper divisors d of 12. We have

22 —1= (25 -1)(2%+1)
and so we can immediately throw out 2% — 1. Next,
2+ 1= (22 +1)(z* — 22 +1)

and 22 + 1 is a factor of 2% — 1. So ®15(x) must divide x* — 22 + 1. Now since ¢(12) = 4, we
see that equality must hold. So ®15(z) = 2* — 2% + 1.

. Let f(n) = (—1)". Compute
Z(£,2)=> %

n>1
(you may use that Y. 1/n? = 72/6.)
Solution: We want to know the value of

1 1 1 1

S=—1+2—2—§+4—2—5—2+...



11.

12.

13.

We already know

~Z 1 1 1 1
—:1++++?

6 22 32 42 e

Adding these we get

62

1 1 1
' ﬁ+2_2+§+“'
2

w2 1 1 1
S+ —=2=4+—=+—=+...
+6 <22+42+ + >

== R

l
5
Therefore S = —72/12.

For n = p{*...p¢r, calculate the value of (U % U % U)(n), where U is the arithmetic function
such that U(n) =1 for all n.

Solution: Since U is multiplicative, so is U « U * U. So enough to calculate it for p¢. Then
we have

U«U«U)(p*) = > Uld)U(d)U(ds)= > 1
didad3=p® e1tezx+tez=e
since d; can only be a power of p, say p®. So the value of the function is just the number
of nonnegative integer solutions of e; 4+ e2 + e3 = e. There are many ways to compute this
number. One easy way is: if we fix any e; between 0 and e, the number of possible ey is
e —e1+ 1 (since ey can range between 0 and e — e1) and then eg is forced to equal e — ey — e5.
So the total number of solutions is

e

dle—er+1)=) (e+1)- Zel (e+1)2—e(e4+1)/2=(e+1)(e+2)/2.

e1=0 e1=0 e1=0

So for n = p{' ... p¢", by multiplicativity, we have

T

(U U «U)(n) = [](ei + 1)(e: +2)/2.

i=1

Let p be a prime which is 1 mod 4, and suppose p = a? + b? with @ odd and positive. Show
that (%) =1

Solution: We have by Quadratic Reciprocity,

©)-0-(32)- ()

Let a1, a9, as, ay be integers. Show that the product p =[]

i<j(ai — a;) is divisible by 12.
Solution: Enough to show it’s divisible by 3 and by 4. Since there are four integers, and only
three residue classes mod 3, two of them must be congruent mod 3. Therefore divisibility by
3 follows. For divisibility by 4, note that the only way no two of them are congruent modulo
4 is if they are all the four distinct classes mod 4, namely 0, 1,2,3. But then 0 —2 and 1 — 3
are both divisible by 2, which makes the product divisible by 2% = 4.



14.

15.

16.

17.

Let the sequence {ay} be given by ap = 0,a; = 1 and for n > 2,
an = day_1 — 6ay,_o.

Show that for every prime p > 3, we have p | a,_1.

Solution: The characteristic polynomial is 72 — 5T + 6 = (T — 2)(T — 3). So we must
have a, = A-3" + B - 2" for some A, B. Plugging in n = 0,1 we get A =1,B = —1. So
an = 3" — 2". Now by Fermat, if p > 3 then 2P~1 =1 =3P~ (mod p), so a,—; =0 (mod p).

Find a positive integer such that p(n) + pu(n+ 1) + p(n +2) = 3.

Solution: We know p(n) = £1 if n is squarefree, and 0 otherwise. The only way we could
have the equation holding is if p(n) = pu(n +1) = pu(n + 2) = 1. That is, n,n + 1,n + 2 are
all squarefree and products of an even number of primes. In particular, n must be 1 mod 4
(else 4 will divide one of these numbers). Trying the first few values, we see that n = 33 is
the smallest value which works.

Compute the set of integers n for which > u(d)¢(d) = 0.
din

Solution: Since p(n)¢(n) is a multiplicative function of n, so is

f(n) =" u(d)p(d).

din

Let’s compute what it is on prime powers. We have f(1) = 1, and for e > 1, f(p°¢) =
#(1) — ¢(p) = 2 — p. Therefore, for n = p* ...p¢", we have f(n) = [[(2 — p;). Therefore
f(n) =0 iff one of the p; is 2, i.e. iff n is even.

Let f be a multiplicative function which is not identically zero. Show that f(1) = 1.
Solution: We have f(1) = f(12) = f(1)f(1), so f(1)(f(1) — 1) = 0. If f(1) # 1, this forces
f(1)=0. Then f(n) = f(n-1) = f(n)f(1) = f(n)-0=0 for all n, so f is identically 0. We
used that 1 is coprime to all integers.
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