
Lecture 15
Linear Recurrences

Proof of 4. from last time, that probability of any two positive integers at random
are relatively prime is 6

π2 . ie., that

|{(x, y) ∈ {1 . . . N} × {1 . . . N} : (x, y) = 1
lim

}| 6
=

→∞ N2 π2N

Why? If x, y random, fixed prime p, probability p divides x is 1∏that p , so probabil-
ity divides both is 1

2 , with complement 1− 1
2 . p prime(1−

1
2 )p p p is the probability

that no prime divides both x, y, which means x, y are coprime.

Proof of 5. from last time - with a, b random, the probability that their gcd is n
has to be of the form c

n2 for some constant c.

(a, b)⇒ a = na′, b = nb′

(a′, b′) = 1

6⇒ P ((a, b) = n) =
π2n2

6 c⇒ c = =
π2 n2

Also because ∑ (
1 1

P ((a, b) = n) = 1 = c + + . . .
12 22

n

)
then cπ

2

= 1⇒ c = 6 ((π2 so P a, b) = n) = 6
6 π2n2 .

If (a, b) = (c, d), they’re equal to same n, so

P ((a, b) = (c, d)) =
∑

P ((a, b) = n, (c, d) = n)
n

=
∑ 1 1

ζ(2)n2 ζ(2)n2
n

1 1
=
ζ(2)2

∑
n4

n

ζ(4)
=
ζ(2)2

π2

= ( 90

π2 2

6

2
=

5

)
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Combinatorial Principles - 1. count in two different ways, 2. pigeon-hole
principle, 3. inclusion/exclusion principle

1. Counting in two different ways

Eg. ∑
φ(d) = n

d|n

by counting set {1 . . . n} in 2 different ways.

RHS - count 1, 2, . . . n.

LHS - split {1 . . . n} into subsets dependent on what its gcd with n is.

{1 . . . n} =
⊔
Sd where Sd = {x ∈ 1 . . . n : (x, n) = d}

d|n

If x in S x n x n
d then is integer in range 1 . . . , and also such that ( , ) = 1d d d d ,

conversely if 1 ≤ x′ ≤ n then x = x′d lies in Sd. So |S n
dd | is φ( )d

n =
∑

φ )
d|

(n
d

)
= φ(d

n

∑
d|n

Eg. Binomial Coefficients (
2n

n

) n

=
k

∑
=0

(
n

k

)2

LHS - choose n from 2n

RHS - choose k from first n and n− k from second n, then use
(
n = n

n
om

)
and−k

fr

) (
k

sum over k 0 to n

2. Pigeonhole Principle - n pigeonholes and at least n+ 1 pigeons, then some
pigeonhole must have at least 2 pigeons

Eg. If p is odd prime, and a, b, c coprime to p, then ax2 + by2 + cz2 ≡ 0 mod p
has a non-trivial solution. Enough to show that ax2 + by2 + c ≡ 0 mod p has a
solution (x0, y0), since then (x0, y0, 1) is solution to original congruence.

Consider the p+1
2 integers ax2, where x ∈ {0, 1, . . . p−12 }. They are all distinct
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mod p. (If not, then

ax2 ≡ ax′2

⇒ x2 ≡ x′2 mod p

⇒ x2 − x′2 = (x+ x′)(x− x′)
⇒ x′ ≡ ±x mod p

but this is impossible if x 6≡ x′ and they’re both in range.

Similarly, set of integers −c− by2 as y ranges from 0 to p−1
2 are all distinct (p+1

2
of them).

So p+ 1 integers in all, but only p residue classes mod p, so there must be two
that are congruent mod p, but they can’t both be of form ax2 or of form−c− by2.
so we must have some ax2 ≡ −c− by2 mod p.

3. Inclusion/Exclusion We’ll have a finite set X (universe) and A,B ⊆ X .

|A ∪B| = |A|+ |B| − |A ∩B|
|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C|

− |B ∩ C|+ |A ∩B ∩ C|∣∣ ⋃
An

∣∣
=
k

∑n∣ ∣ (
=1

−1)k−1

1 i <

∑
· ∩Aik

<i n

|Ai1 ∩Ai2 ∩ · · |

∣ ≤ 1 ··· k≤∣∣ ⋃∣ An

∣∣∣∣ =
∣∣ ⋂ n∣ A k

n

∣∣∣ =
k

∑
( 1) Ai1 Ai2 Ain

=0

−
1

∑
≤n

| ∩ ·
≤i

∩ · · ∩
1<···<i

|
k

where k = 0 (empty intersection) is defined to be all of X .

Proof. For any element x of X - if in none of Ai, then it gets counted (on RHS)
exactly once in empty intersection, equation to number of times it’s counted
in LHS. If x ∈ X is in exactly m of these sets (m ≥ 1), then it gets counted
(choosing k sets from among m sets in which x appears

∑n ( m
k m k m

( 1) = ( 1) = (1 1)m = 0
k k

k=0

−
)

k

∑
=0

−
( )

−

this equals contribution to LHS. �

Another way - let χAi be the characteristic function of the set Ai, where

χAi(x) =

{
1 x ∈ Ai
0 otherwise

3



The element x is not in any of theAi when each of χAi(x) = 0 - ie., (1−χAi)(x) =
1 ∏n

(1
i=1

− χAi)(x) =

{
1 x 6∈ Ai∀ i
0 otherwise

= χ
Ai

So χ⋃ = (1 χ
Ai

⋃
− A1

)(1− χA2
) . . .

= 1−
∑

χAi +
∑

χ︸AiχAj . . .
χAi∩Aj

Summing χ⋃ (x) over all x
A

︷︷ ︸
i

⇒∣∣∣ ⋃∣ Ai

∣∣∣∣ = |x| −
∑
|Ai|+

∑
|Ai ∩Aj | . . .

Eg. If n = pe11 . . . penn , φ(n) = n(1 − 1 ) . . . (1 − 1 ). X = {1 . . . n =p1 n
}, Aip {m ∈

X∣∣ . If , then some must divide and conversely. So∣ ⋃: pi|m} (m,n) > 1 pi m

A n
i

∣∣∣ = φ(n). |Ai| = , |Ai ∩A n
j =pi
| pipj

, etc. So RHS says

n n n n
n− . . . +

p1
− . . .

pr p1p2
· · · −

p1p2p3
1 1 1 1

= n(1− .
p1
− . . +

pr p1p2
· · · − . . . )

p1p2p3
1

= n
∏(

1−
pi

)

Recurrences - Recurrence is a rule for generating the next element of a sequence
from previous elements.

Eg. a0 = 1, an = nan 1 for n ≥ 1⇒ an = n!−

Eg. n(n+1)a0 = 0, a1 = 1, an = an 1 + n⇒ an =− 2

Eg. F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 This is the Fibonacci sequence, where

1
((

1 +
√ n n

5 1
Fn =

5 2

)
−

( √
− 5√
2

) )
√ √ n

|(1 − 5)/2| < 1, and |√1
(

1− 5
2

)
| < 1

2 , so Fn is the closest integer to
5

√1
5

(
1+
√
5

2

)n √
. Implies that Fn+1/Fn ⇒ 1+ 5

2 as n⇒∞.
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We’ll see how to get this explicit formula from the theory of linear of recurrences
with constant coefficients (very similar to linear ordinary differential equations
with constant coefficients).

Eg. Start with a linear recurrence un + aun 1 + bu 2− n n−2 = 0 for ≥ , given
initial values. To get explicit formula, we’ll use characteristic polynomial Tn +
aTn−1 + bTn−2 = 0⇒ T 2 + aT + b = 0 and use the roots of this characteristic
polynomial.
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