Lecture 15
Linear Recurrences

Proof of 4. from last time, that probability of any two positive integers at random
are relatively prime is 5. ie., that

lim H{(z,y) €{l...N} x{1...N}: (z,y) =1} _ 6
N—o00 N2 2

Why? If 2, y random, fixed prime p, probability that p divides « is %}, so probabil-
ity divides both is ., with complement 1 — . [, . ime (1 — ;7) is the probability
that no prime divides both x, y, which means x, y are coprime.

Proof of 5. from last time - with a, b random, the probability that their gcd is n
has to be of the form - for some constant c.

(a,b) = a=nad',b=nb

(a',b') =1
= P((a,b) =n) = —26 5
m2n
b= b _ ¢
T2 n?

Also because

ZP((a,b):n):1:c<112+212+...)

n

then ¢ =1 = ¢ = &5 50 P((a,b) = n) =

6 m2n2”

If (a,b) = (c,d), they’re equal to same n, so

P((a,b) = (c,d)) = ZP((a,b) =n,(c,d) =n)
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Combinatorial Principles - 1. count in two different ways, 2. pigeon-hole
principle, 3. inclusion/exclusion principle

1. Counting in two different ways

Eg.

> () =n

d|n

by counting set {1...n} in 2 different ways.
RHS-count 1,2,...n.

LHS - split {1...n} into subsets dependent on what its gcd with n is.

{1...n}:|_|dehereSd:{:v€1...n:(x,n):d}

d|n

If z in Sy then & is integer in range 1... 7%, and also such that (%, %) = 1,

conversely if 1 <2’ < % then z = z'd lies in Sy. So [ Sy is (%)

n=Y0(5)=> 0
din

d|n

Eg. Binomial Coefficients

LHS - choose n from 2n

RHS - choose k from first n and n — k from second n, then use (nf k)
sum over k from 0 to n

() and

2. Pigeonhole Principle - n pigeonholes and at least n + 1 pigeons, then some
pigeonhole must have at least 2 pigeons

Eg. If p is odd prime, and a, b, c coprime to p, then az? + by? + cz> =0 mod p
has a non-trivial solution. Enough to show that az? + by*> + ¢ =0 mod p has a
solution (zg, ¥o), since then (x¢, yo, 1) is solution to original congruence.

Consider the ¥ integers az?, where z € {0,1,... 25*}. They are all distinct



mod p. (If not, then

az® = ax’?

= 22=2"" modp
= (z+a)(x -2

=2 =4z modp

=22 -2

but this is impossible if  # 2’ and they’re both in range.

Similarly, set of integers —c — by? as y ranges from 0 to 25 are all distinct (25+
of them).

So p + 1 integers in all, but only p residue classes mod p, so there must be two
that are congruent mod p, but they can’t both be of form az? or of form —c — by?.
so we must have some ax? = —c — by?> mod p.

3. Inclusion/Exclusion We'll have a finite set X (universe) and A, B C X.
|AU B| = |A| 4+ |B| — |AN B|

[AUBUC|=|A|+|B|+|C]—-|ANnB|—-]ANC|
—|BNC|+|ANnBNC|

= i(_l)k_l > |A;, N A, NN Ay,

k=1 1<iy < <ip<n

:‘rpg

Us.
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0 1< < <ig<n

where k& = 0 (empty intersection) is defined to be all of X.

Proof. For any element x of X - if in none of A;, then it gets counted (on RHS)
exactly once in empty intersection, equation to number of times it’s counted
in LHS. If € X is in exactly m of these sets (m > 1), then it gets counted
(choosing k sets from among m sets in which x appears

n_kmim_kmi _\ym _
St (h) =St (f) = a-om=o
k=0 k=0
this equals contribution to LHS. n

Another way - let x 4, be the characteristic function of the set A;, where

1 ze€ A
Xa,(z) = {

0 otherwise



The element z is not in any of the A; when each of x 4, (z) = 0-ie., (1—xa4,)(z) =
1

- 1 2 ¢ AVi
]-_ . =
11;[1( x4:)(@) {0 otherwise
= Xga;
Soxga; = (1 —xa,)(1 = xa4,) -

=1—ZXA1.+ZXA1-XA]----

XA;NA;

Summing Xﬁ(x) overall z =

‘UAi = 2| =) A+ AN Al

Eg. Ifn=p{"...p¢, ¢(n)=n(1—1)...1-L1) X={1...n}, A, ={m €

p1 Pn
X : pilm}. If (m,n) > 1, then some p; must divide m and conversely. So

| Ui | = 6(n). |4 = 2,14 1 4;| = 32, etc. So RHS says
n n n n
n———... cee—
D1 Pr  P1P2 P1p2p3
1 1 1 1
=n(l—-——...—+ -
D1 Pr  DP1DP2 P1p2p3

Recurrences - Recurrence is a rule for generating the next element of a sequence
from previous elements.

Eg. ap = 1,a, = na,_, forn > 1= a, =n!

n(n+1)

Eg. ap =0,a1 =1,ap, = ap_1 +n=ap = —

Eg. [y =0,F, =1, F, = F,,_1 + F,,_> This is the Fibonacci sequence, where

() ()

n
(1= v5)/2] < 1, and |- (1_2‘/5) | < 1, s0 F, is the closest integer to
(HQ‘/g)n. Implies that F,, 1 /F,, = % asn = oo.

5




We'll see how to get this explicit formula from the theory of linear of recurrences
with constant coefficients (very similar to linear ordinary differential equations
with constant coefficients).

Eg. Start with a linear recurrence u,, + au,—1 + bu,—2 = 0 for n > 2, given
initial values. To get explicit formula, we'll use characteristic polynomial 7" +
alT™ ! +bT"=2 =0 = T? + aT + b = 0 and use the roots of this characteristic
polynomial.
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