Lecture 17
More on Generating Functions, Two Squares Theorem

Generating Functions - for a sequence ag . .. we candefine A(z) = >, -, an2".
Eg - if {a, } satisfies a linear recurrence = ag + a1 + agz? ... then A(x) will be
a rational function of x. If we know A(z) then a,, can be obtained as coefficients
of ™ in A(x).

1. If a,, = r™ for some fixed r then A(x) =1+ rz +r?z%. .. =

1—rz®

2. If A(z) is a generating function for {a,} and B(x) for {b,}, and «, 8 are
constants, then {aa,, + 8b,,} has generating function o A(z) + SB(z).

Z(aan + Bby)2" = « Z apx™ + B8 Z bz

3. Shift - if A(z) is generating function for {a,}, then zA(z) is generating
function for sequence {a,—1} (ie., {0,a0,a1,...})

4. Generating function for {na,} is « d‘zf) .

A(z) = Z anz"

n>0
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A(x) = ag + a1z + aza? ...
B(z) = by + bix + boz? . ..
A(x)B(z) = (ag + a1z + azz? ... ) (bo + bz + bpz? .. .)
= agbo + (a1bo + brag)x + (agby + arby + agho)z? . ..

n
= generating function for {c,}, ¢, = Z arbn_1
k=0

6. Can be useful, when we want to evaluate partial sums of series (e.g.,

> a,). Useful technique - plug in roots of unity.
k=1 (mod 7)
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Eg. We know the generating function for {(3)"} is

Another way to see it: plug in 4 roots of unity (z* — 1 =0,z = £1, +i)
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Add them, and use the fact that

0 n#0 mod4

1"+ (=D)" 4+ ()" + (=)" = {4 n=0 mod 4



If we want to evaluate >, _, ., - then multiply (A), (B), (C), (D) by 173,
(—1)73,i73, (—i)~3 and then add.

7. Zeta functions are very much like geometric functions, so many of the same
techniques apply (differentiation is trickier).

Eg. Tocalculate S = —1+ § — & + 15 ... Thisis Z(f,2) when f(n) = —1. Two
ways of calculating this S.
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Theorem 57 (Two Square Theorem). A prime p is a sum of two integer squares if
andonlyifp=2o0orp=1 mod 4.

Proof. If p = 2 then 2 = 12 + 12, so assume p odd from now on. If p = a? + b?
then one of a and b must be event and one must be odd, since odd® = 1 mod 4
and even? = 0 mod 4 = p = 1 mod 4 - ie., condition of being 1 mod 4 is
necessary.

Reduction: Need to show that any prime p =1 mod 4 is sum of two squares.
We'll show by (strong) induction on p - ie., assume every prime g < p which is 1
mod 4 is a sum of two squares.

Lemma 58. There’s a positive integer < p such that a®> + m? = mp.

Proof. 1is a quadratic residue mod p so there exists some integer x such that
2?2 = —1 mod p (can assume that |z| < % because 0,£1,+2--- £+ 21 isa
complete residue system mod p). Therefore p|z? + 1 and 22 + 1 < % +1<p?
sox?+1=mpwith0 <m < p. O



Let m be the smallest positive integer such that mp is a sum of 2 integer squares.
If m = 1 we're done with the induction step. If m > 1 we’ll get a contradiction
by constructing a smaller m. Assume m > 1. We have a? + b> = mp, so
la],|b] < psince a?,b? < a? + b? = mp, p°.
First, (a,b) must be 1. Else if g = (a,b) > 1 then (%)* + (2)* would be a smaller
integer multiple of p. (Note: g < p so dividing by g* doesn’t cancel p).
Next, m must be odd. If not, then a? + b? is even, so a and b have same parity
(in fact, both odd since (a, b) = 1). Then

)p

a+62 a—b\> 1, 9 1 m
( > ) +<2) = 5@ +¥) = gm= (5

contradicting minimality of m.

Now let ¢ be an odd prime dividing m, let m = gn.
A+ =mp=gnp=a>+b>=0 modgq
Note that ¢ { a and ¢ 1 b (otherwise ¢ divides both a and b, contradicting
(a,b) =1). So
(ab™1)?= -1 mod ¢
=¢g=1 mod4

By induction hypothesis, ¢ = ¢? + d? is a sum of two squares.

a’>=-b*> modyq
2=—-d> modgq
(ac)? = (bd)*> mod ¢

ac = £bd mod q

Assume wlog that ac = bd mod ¢ (if ac = —bd mod ¢, replace ¢ with —c in
q = ¢ + d?). We now have

a4+ b% = pgn

A+d>=q

(a® +b)(c¢* +d%) = pg’n

(ac — bd)* + (ad + bc)* = pg*n  (“miracle of complex numbers”)

Now, we know ¢|ac — bd, so also divides ad + be, so ad + be =0 mod g, since
(ac — bd)? + (ad + bc)* = (a® + b?) (¢ + d?)
—_——
q
=0 modgq



SO

(acbd>2 <ad+bc>2
+ =pn
q q

So we replaced m by n which is < m, resulting in contradiction. (4)
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