
Lecture 18
Continued Fractions I

Continued Fractions - different way to represent real numbers.

415 43 1 1 1 1
= 4 + = 4 + = 4 + = 4 + = 4 +

93 93 93 7 1 1
2 + 2 + 2 +

43 43 43 1
6 +

7 7
= [4, 2, 6, 7]

In general:
1

a0 + = [a0, a1, a2, . . . an]
1

a1 +
1

a2 +
. . 1

a3 + .
an

Simple continued fraction if ai ∈ Z and ai > 0 for i > 0. Contains the same
information as an application of Euclid’s Algorithm

415 43
415 = 4 · 93 + 43 ⇒ = 4 +

93 93
93 7

93 = 2 · 43 + 7 ⇒ = 2 +
43 43
43 1

43 = 6 · 7 + 1 ⇒ = 6 +
7 7

7 = 7 · 1

With this we see that the simple continued fraction of a rational number is
always finite. Never terminates for an irrational number.

Eg.
π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, . . . ]

Eg.
e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . . ]
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√
Eg. Golden Ratio φ = 1+ 5

2 ≈ 1.618 . . . satisfies φ2 = φ+ 1⇒ 1 = φφ−1 .

1 1
φ = 1 + (φ− 1) = 1 + = = [1, 1, 1, 1, 1, 1, . . . ]

1 1 + φ

φ− 1

Finite simple continued fraction ⇐⇒ rational number.

Periodic simple continued fraction ⇐⇒ quadratic irrational (like φ)

Eg. What about
√

2? Look at

1
1
√ 1 1

+ 2 = 2 + (
√

2− 1) = 2 + = 2 + = 2 +
1 1 +

√
2 1 +

√
2√

2− 1 (1 +
√

2)(1
√
− 2)

1 +
√

2 = [2, 2, 2, 2, 2, 2, . . . ], so
√

2 = [1, 2, 2, 2, 2, 2, . . . ]

What about other algebraic numbers such as
√
3 2? It’s a complete mystery.

(Definition) Convergent: [a0, a1, . . . ak] is called a convergent to [a0, a1, . . . an]
for 0 ≤ k ≤ n. An infinite simple continued fraction [a0, a1, . . . ] equals
limk [a→∞ 0, a1, . . . ak]. (We will prove this limit exists.)

For 415
93 :

4 2 6 7
0 1 4 9 58 415
1 0 1 2 13 93

Determinants are −1, 1,−1, 1,−1

Recurrence:

pk = akpk−1 + pk−2

qk = akqk−1 + qk−2

a0 a1 a2 . . .
p 2 = 0 p 1 = 1 p0 p1 p2 . . .− −
q 2 = 1 q 1 = 0 q0 q1 q2 . . .− −

Theorem 59.
pk

[a0, a1 . . . ak] =
qk
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Proof. By induction, base case k = 0

p0 a0p a0
=

−1 + p−2 1
=

·
= a0

q0 a0q 1 + q− −2 1

Now assume holds for all k:

1
[a0, a1, . . . ak+1] =

[
a0, a1, . . . ak 1, a− k +

ak+1

p′

]
= k(qk′

ak + 1 pak+1

)
k
′ +−1 pk

′
−2

= (
ak + 1

ak+1

)
qk
′
−1 + qk

′
−2

(akak+1 + 1)p′
= k−1 + ak+1p

′
k−2

(akak+1 + 1)qk
′
−1 + ak+1qk

′
−2

ak+1(akp
′

= k−1 + p′k−2) + p′k−1
ak+1(akqk

′
−1 + qk

′
−2) + qk

′
−1

ak+1(akpk 1 + p
=

− k−2) + pk−1
ak+1(akqk−1 + qk )−2 + qk−1
ak+1pk + pk

=
−1

ak+1qk + qk−1
pk+1

=
qk+1

�

Theorem 60.
pk 1qk − qk 1pk = ( 1)− − − k

Proof. By induction, base case is easy to check. Assume to hold for k

pkqk+1 − qkpk+1 = pk(ak+1qk + qk 1)− qk(ak+1p +− k pk−1)

= pkqk−1 − qkpk−1
= −(qkpk−1 − pkqk−1)

= (−1)(−1)k

= (−1)k+1

�
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Proof 2. [
pk pk−1

] [
ak+1 1

]
pk + pk−1 p

=

[
ak+1 k =

qk qk−1 1 0 ak+1qk + qk−1 qk

p p a

] [
pk+1 pk
qk+1 qk

]
[
n n−1

]
=

[
0 1 a1 1 a2 1

. . .
qn qn−1 1 0

] [
1 0

] [
1 0

n

]
=
k

∏
=0

[
ak 1
1 0

]
∣∣ n∣p a∣ n pn−1 1

= k

qn qn−1

∣∣∣ ∏ ∣∣∣
k=0

∣∣ 1 0

∣
= ( n

∣
−1) +1

∣∣

�

Note: Take the transpose[
pn qn an
pn 1 qn 1

]
=

[
an 1 −1 1 a

. . . 0 1
1 0 0− −

] [
1

] [
1 0

]
a

k

∏0
=

=n

[
k 1
1 0

]
We get that

pn
= [an, an 1, . . . a0]

pn−1
−

qn
= [an, an 1, . . . a1]

qn−1
−

Corollary 61.
p k
k−1 p

qk 1
− k (

=
−1)

qk q q− k k−1

Corollary 62.
(pk, qk) = 1

Corollary 63.
p k 1
k 2qk − qk−2pk = (−1) − a− k
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Proof.

pk−1qk − qk−1pk = (−1)k

akp
k

k−1qk − akqk 1pk = (− −1) ak

(pk − pk−2)qk − (qk − q k
k )−2 pk = (−1) ak

p +1
k q−2 k − q −2p k

k k = (−1) ak

�

pk 2 p (−1)k−1k ak
{
< 0 k even

Corollary 3⇒ −

qk−2
− = =
qk qk−2qk > 0 k odd

p0 p2 p⇒ 4
< < . . .

q0 q2 q4
p⇒ 1 p3 p5

> > . . .
q1 q3 q5

Even terms increasing, bounded above by odd terms, odd terms decreasing,
bounded below by even terms, so they both converge. From Corollary 1 the
even and odd convergents get arbitrarily close. So both even and odd sequences
converge to the same real number x.

∣∣pk ∣∣ ∣∣∣pk p

q
− k+1

x
k
− ≤

qk qk+1

∣∣

very good approximations.

∣∣ ∣∣ ∣ ∣∣ 1 1
=
qkqk−1

≤
q2k

⇒

Theorem 64. One of every 2 consecutive convergents satisfies∣∣∣pk 1∣ qk − x
∣∣∣∣ ≤ 2q2k

Theorem 65. One of every 3 consecutive convergents satisfies∣∣ ∣∣pk − x∣∣ 1≤ √
5q2k

(Pr

∣ qk
oofs in next lecture)

∣
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